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Abstract: Antimicrobial peptides (AMPs) can directly kill Gram-positive bacteria, Gram-negative bac-
teria, mycobacteria, fungi, enveloped viruses, and parasites. At sublethal concentrations, some AMPs
and also conventional antibiotics can stimulate bacterial response increasing their resilience, also
called the hormetic response. This includes stimulation of growth, mobility, and biofilm production.
Here, we describe the discovery of AMPs that stimulate the growth of certain mycobacteria. Peptide
14 showed a growth stimulating effect on Mycobacteria tuberculosis (MTB), M. bovis, M. avium subsp.
paratuberculosis (MAP), M. marinum, M. avium-intracellulare, M. celatum, and M. abscessus. The effect
was more pronounced at low bacterial inocula. The peptides induce a faster transition from the lag
phase to the log phase and keep the bacteria longer in the log phase before entering stationary phase
when compared to nontreated controls. In some cases, an increase in the division rate was observed.
An initial screen using MAP and a collection of 75 peptides revealed 13 peptides with a hormetic
effect. For MTB, a collection of 25 artificial peptides were screened and 13 were found to reduce the
time to positivity (TTP) by at least 5%, improving growth. A screen of 43 naturally occurring peptides,
11 fragments of naturally occurring peptides and 5 designed peptides, all taken from the database
APD3, identified a further 44 peptides that also lowered TTP by at least 5%. Lasioglossin LL-III (Bee)
and Ranacyclin E (Frog) were the most active natural peptides, and the human cathelicidin LL37
fragment GF-17 and a porcine cathelicidin protegrin-1 fragment were the most active fragments of
naturally occurring peptides. Peptide 14 showed growth-stimulating activity between 10 ng/mL and
10 µg/mL, whereas the stability-optimised Peptide 14D had a narrow activity range of 0.1–1 µg/mL.
Peptides identified in this study are currently in commercial use to improve recovery and culture for
the diagnostics of mycobacteria in humans and animals.

Keywords: antimicrobial peptides; MTB; tuberculosis; mycobacteria; TB diagnostics; MAP; Johne’s
disease; bacterial growth; culture; Mycobacterium tuberculosis

1. Introduction

Mycobacterium tuberculosis (MTB) is the primary causal agent of tuberculosis in humans.
MTB belongs to the M. tuberculosis complex (MTBC) which includes the closely related
species M. bovis, M. africanum, M. microti, M. pinnipedii, M. caprae, and M. canetti. The
slow-growing M. tuberculosis divides in conventional culture media every 16–20 h [1].
According to the Centres for Disease Control and Prevention (CDC), one-fourth of the
world’s population is infected with tuberculosis (TB) [2]. The World Health Organization
(WHO) estimated 10.6 million TB cases in 2021, causing 1.6 million TB-related deaths
worldwide [3].TB is a leading killer among human immunodeficiency virus (HIV)-infected
people with weakened immune systems. In recent years, the treatment of TB has become
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more challenging due to the emergence of multi- and extreme drug-resistant strains (MDR-
and XDR-TB).

Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne’s disease, a chronic
enteritis that can lead to severe economic losses in sheep, goat, and dairy cattle farms.
The disease has also been reported in primates, horses, pigs, deer, alpacas, llamas, rabbits,
stoats, foxes, and weasels [4]. The huge excretion of MAP from clinically diseased animals
contaminates milk and meat supplies and is detected in pasteurised milk (including infant
milk formula) and pastureland wash-offs which carry over through treatment plants to
remain viable in potable water supplies. MAP is also a slow-growing organism, often
taking months to generate visible colonies.

Antimicrobial peptides (AMPs), also called host defence peptides, represent a ubiqui-
tous response in nature to overcome microbial infections or to compete for an ecological
niche [5]. The antimicrobial activities can include actions against Gram-negative and
Gram-positive bacteria, including mycobacteria, fungi, and enveloped viruses [6–10]. Of
particular interest is their ability to kill multidrug-resistant bacteria [11]. Within the last two
decades, it has become increasingly clear that various antimicrobial peptides play a role in
regulating the process of innate immunity. It has been reported that some AMPs can have
direct and indirect chemotactic functions, regulate chemokine and cytokine production, and
promote wound healing [12–17]. With the multitude of cationic peptide sources, structures,
and spectra of activity come a number of complex and controversial structure-function
theories attempting to describe and explain peptide modes of interaction that kill bac-
teria [18]. Most AMPs bind avidly to the lipopolysaccharides (LPSs) of Gram-negative
bacteria and lipoteichoic acids of Gram-positives, and subsequently associate with and
depolarise and/or permeabilize cytoplasmic membranes [19]. In many cases, the peptide
translocates into the microbial cell and attacks internal targets. AMPs can therefore affect
very different processes, and most likely have often not one target, but multiple. It has
been reported that some AMPs bind to lipid II, DNA and RNA, chaperons and ribosome,
proteases, adenosine triphosphate (ATP), and ABC transporter [18,20–28]. At sublethal
concentrations, some AMPs and antibiotics, in general, can stimulate growth, mobility,
frequency of mutation, and plasmid conjugative transfer [29]. For example, GL13K pep-
tides have shown growth stimulation and an increase in metabolic activity for Pseudomonas
aeruginosa [30]. This effect is called a hormetic response.

WHO estimates that about 60 million tests for human TB are carried out per year. The
most common test is a microscopic evaluation of stained sputum smears which is simple,
rapid, and inexpensive. However, not only is the sensitivity of this method compromised
when the bacterial load is low (less than 1 × 104 organisms/mL), but it also performs
poorly in extrapulmonary tuberculosis, paediatric tuberculosis, and patients coinfected
with HIV [31–33]. Other rapid tests like GeneXpert and interferon-gamma release assays
(IGRAs) are now available but have their limitations. Limitations for DNA tests include
susceptibility to inhibitors in some samples, and amplicon contamination leading to false
positive reporting. Antibiograms through single-nucleotide polymorphisms (SNPs) can
only detect known resistance mechanisms. IGRA does not differentiate between active and
latent infection and is not useful in some children, immunocompromised patients, and
during early acute infection. Culturing M. tuberculosis is the gold standard because it can
identify and quantify bacterial load and allow antibiotic sensitivities or strain typing to be
tested. However, worldwide, only 3–4 million samples are sent for culture per year. This
is due to the need for infrastructure and training, cost, and the long-held perception that
MTB grows too slowly to help initial diagnosis.

During a project to find antimicrobial peptides effective against Mycobacterium avium
subsp. paratuberculosis (MAP), we unexpectedly came across a group of peptides that had
a unique property of stimulating growth (referred to as hormetic response [29,30]). This
study aimed to further investigate the characteristics of these peptides. We started by
investigating whether this hormetic response could also be observed in other slow-growing
mycobacteria, such as MTB. Surprisingly, we found that some peptides were capable
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of inducing the hormetic response, including MTB. This finding presents an exciting
opportunity to develop peptides that could enhance routine culture-based diagnostics for
MTB. Based on this discovery, we decided to screen more peptides against MTB and also
assessed their ability to reduce time to positivity (TTP) in a routine diagnostic setting. For
specific peptides, we explored dose dependency and measured the effects of more stable
D-enantiomers. The peptides identified in this study have subsequently been used in a
clinical trial (to be published elsewhere), demonstrating the superiority of diagnosing MTB
using these peptides compared to a standard method.

2. Methods
2.1. Peptides

From the 139 peptides used in the study, 2 peptides were purchased at Bachem (Buben-
dorf, Switzerland), 35 at Umpep (Nordwestuckermark, Germany), and 40 at Kinexus Bioin-
formatics Corporation (Vancouver, BC, Canada). A total of 62 peptides were synthesized
in our laboratory by automated solid-phase peptide synthesis (SPPS) on a MultiPep RSI
peptide synthesizer (Intavis, Tuebingen, Germany) using the 9-fluorenyl-methoxycarbonyl-
tert-butyl (Fmoc/tBu) strategy. Reactive side chains were protected by tBu (Tyr and Asp),
trityl (Trt, for Asn, Cys, Gln and His), 2,2,4,6,7 pentamethyldihydrobenzofuran-5-sulfonyl
(Pbf, for Arg), and tert-butoxycarbonyl (Boc, for Lys and Trp). For automated SPPS, four
equivalents of Fmoc amino acids (Bachem, Bubendorf, Switzerland) were coupled on
TentaGel® HL RAM resin (25 µmol scale, loading 0.3–0.4 mmol/g, Rapp Polymere, Tuebin-
gen, Germany) after in situ activation with four equivalents of N,N,N′,N′-Tetramethyl-O-
(1H-benzotriazol-1-yl)uronium hexafluorophosphate (HBTU; Carbosynth, Berkshire, UK)
and eight equivalents of N-Methylmorpholine (NMM, Sigma, Dorset, UK). After a double-
coupling procedure (2 × 30 min), the Fmoc group was cleaved using 20% (v/v) piperidine
(Thermofisher Acros Organics, Geel, Belgium) in dimethylformamide (DMF, Jencons-VWR,
Leicestershire, UK). Peptide amides were cleaved from the resin with 95% (v/v) aqueous
trifluoroacetic acid solution (TFA, Fisher Scientific, Loughborough, UK) containing 5%
(v/v) triisopropylsilane (TIPS, Thermofisher Acros Organics, Geel, Belgium)/water (1:1)
scavenger mixture within 3 h. Cleaved peptides were precipitated from ice-cold methyl
tert-butyl ether (MTBE; Thermofisher Acros Organics, Geel, Belgium). After washing
and collection by centrifugation, crude peptides were dissolved in 20% (v/v) acetonitrile
(ACN, Jencons-VWR, Leicestershire, UK)/80% (v/v) water containing 1% (v/v) TFA to a
concentration of 15 mg/mL and analysed by analytical reversed-phase (RP) HPLC on a
Shim-pack VP-ODS (120 Å, 150 × 4.6 mm, Shimadzu, Milton Keynes, UK) using a Shi-
madzu LC2010AHT system (Shimadzu, Milton Keynes, UK). The binary solvent system
contained 0.1% (v/v) TFA in H2O (solvent A) and 0.1% (v/v) TFA in acetonitrile (solvent B).
The identity was verified by a liquid chromatography–electrospray ionisation mass spec-
trometry (LC-ESI-MS) Shimadzu LC2020 system (Shimadzu, Milton Keynes, UK) equipped
with a Jupiter 4 µ Proteo C18 column (90 Å, 250 × 4.6 mm, Phenomenex, Cheshire, UK).
The binary solvent system contained 0.01% (v/v) TFA in H2O (solvent A) and 0.01% (v/v)
TFA in acetonitrile (solvent B).

Selected crude peptides were purified to the homogeneity of >92% by preparative RP
HPLC on a Shimadzu LC2020 system equipped with a Jupiter 10 µ Proteo C18 column
(90 Å, 250 × 21.2 mm, Phenomenex, (Phenomenex, Cheshire, UK)) using a linear gradient
system containing 0.01% (v/v) TFA in H2O (solvent A) and 0.01% (v/v) TFA in acetonitrile
(solvent B). Pure products were finally characterized by analytical RP-HPLC and LCMS.

2.2. Mycobacterial Culture

The following strains were used: Mycobacterium marinum NCTC 2275, Mycobacterium
branderi (clinical human isolate), Mycobacterium intracellulare serotype 7 NCTC10682, My-
cobacterium celatum (clinical isolate), Mycobacterium gastri ATCC25158, Mycobacterium ab-
scessus (clinical human isolate), Mycobacterium porcinum strain L53 (buffalo milk isolate),
Mycobacterium fortuitum ATCC6841, Mycobacterium vaccae NCTC10916, Mycobacterium smeg-
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matis (laboratory strain MC2155), Mycobacterium avium subspecies paratuberculosis (MAP,
cattle isolate), and Mycobacterium tuberculosis (laboratory strain H37Rv). All mycobacte-
rial species used in this study were grown in Middlebrook 7H9 media (BD, Wokingham,
UK) with 0.2% glycerol (Sigma, UK), 0.1% casitone (Oxoid, UK), and 10% OADC (Becton
Dickinson, Wokingham, UK) at 37 ◦C (except M. marinum, which was grown at 30 ◦C). For
MAP, Mycobactin J (IDVet, Grabels, France) was added to the above growth media (final
2 µg/mL). Initial screening assays with peptides were carried out in 1.6 mL polystyrene
semi-micro cuvettes (Fisherbrand, Loughboroughe, UK) with lids sealed with parafilm.
Growth was measured by estimating optical density using a spectrophotometer every
2 days. Further confirmatory analysis was carried out in a BACTEC MGIT 320 automated
mycobacterial detection system using 7 mL MGIT (Becton Dickinson, UK) mycobacterial
culture tubes, supplemented with 0.8 mL oleic acid, albumin, dextrose, and catalase (OADC)
and PANTA (antibiotic mixture) growth supplement prepared according to manufacturer
recommendations.

2.3. Peptide Screening

Initial assays to screen for peptide activity on mycobacterial growth used 1 mL culture
of Middlebrooks 7H9 (Difco, Oxford, UK) plus 10% OADC (Becton Dickinson, UK) and
2 µg/mL Mycobactin J (IDVet, Grabels, France) inoculated to 0.1 optical density at 600 nm
(OD600) from exponential growth starter cultures in semi-micro cuvettes (Fisherbrand,
Loughborough, UK) with lids sealed with parafilm. Growth (37 ◦C) was measured by
OD600 every 2 days. Further confirmatory analysis was carried out in a BACTEC MGIT 320
automated mycobacterial detection system using 7 mL MGIT (Becton Dickinson, UK) my-
cobacterial culture tubes, supplemented with 0.8 mL OADC/PANTA growth supplement
prepared according to manufacturer recommendations being inoculated as previously with
exponential starter cultures and peptides up to various test final concentrations. Growth
curves were derived by retrieving growth index values, based on the relative fluorescence
of a proprietary oxygen depletion indicator, each day from an automated reader.

2.4. Quantitative PCR

qPCR was performed using a CFX 96 machine (BioRad, Hercules, CA, USA) with each
reaction containing 500 nM mycobacteria-specific Taqman primers cydA-F (5′ GACCAC-
CAAGGCAAGCTGA 3′), cydA-R (5′ TCGCACAACGATTCGGC 3′) and 200 nM labelled
probe cydA-P (5′ FAM-CATCTTCATCGGCTGCTGCTGGAA-TAMRA 3′) in 10 µL of 2x
SsoAdvanced Universal Probes supermix (BioRad, USA) according to manufactures recom-
mendations. Conditions used were 98 ◦C for 2 min; 58 ◦C for 30 s; 72 ◦C for 10 min. MTB
H37Rv was grown as detailed above and incubated in the presence (1 µg/mL, 10 µg/mL,
and 50 µg/mL) or absence of peptides. All samples were carried out in duplicates, incu-
bated in the MGIT system and removed only when the control (without peptide) went
positive. Sterile water was used as a negative control. The culture tubes were centrifuged at
10,000× g for 10 min and DNA was extracted using a Qiagen DNeasy blood and tissue kit
(Qiagen, Manchester, UK). An MTB H37Rv gDNA dilution series (assuming 1 ng = 2 × 105

genome equivalents) was used as a calibration curve in all qPCR reactions to estimate copy
number for all experimental samples.

3. Results
3.1. Initial Screen against Mycobacterium avium subsp. paratuberculosis (MAP)

The first screen was originally designed to identify peptides that could inhibit the
growth of Mycobacterium avium subsp. paratuberculosis (MAP) as a starting point for the
development of an antimicrobial drug candidate. A collection of 75 peptides from var-
ious projects was created, that had already shown antimicrobial activity against other
microbes [10,34–36]. The screen was performed at 20 µg/mL to find the most active in-
hibitory peptides. We expected to find two classes of peptides: (1) peptides that did not
affect growth with a growth curve similar to the control and (2) peptides with antimicro-
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bial activity with reduced growth resulting in a growth curve below the control. Of the
75 peptides, 41 peptides did not change the growth curve and 21 peptides showed growth
inhibition. Unexpectedly, however, the results revealed a third class of peptides where
the growth in the presence of peptides increased compared to the control, indicating a
hormetic response. In total, 13 peptides were identified with a hormetic response, with
peptides 14 and 69 showing the strongest effects (see Table S1A–C in the Supplementary
Materials). Peptide 102, a version of Peptide 69 with a C-terminal modification, showed
a slightly reduced effect compared to Peptide 69. The experiment was repeated with a
smaller number of peptides to confirm this unexpected effect (see Figure 1).
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Figure 1. Growth curve of Mycobacterium avium subsp. paratuberculosis (MAP) with and without
peptide treatment at 20 µg/mL. Growth was followed by measuring the optical density (OD) at
600 nm.

As a consequence of this discovery, a series of experiments was performed to study
which peptides can induce growth stimulation and at what concentrations (see Figure 2).
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Figure 2. Schematic representation of experiments performed in this study. Growth means studies
that follow the growth from start to end, whereas TTP (time to positivity) just looks at the early stages
of growth until the mycobacteria can be detected by an MGIT in a BD BACTECMGIT 320 system.
MAP stands for Mycobacterium avium subsp. paratuberculosis, MTB for Mycobacterium tuberculosis,
and MDR for multidrug resistance. Stable peptides refer to peptides that are not easily degraded
by proteases.

These data showed that the inclusion of any cationic peptide was insufficient to cause
an effect. There is a peptide-sequence-dependent activity occurring. A comparison of



Microorganisms 2023, 11, 2225 6 of 22

peptide sequences from each different activity class (reduced growth, normal growth, and
accelerated growth) revealed that small changes in the primary structure can result in
a strong effect on their biological activity. For example, Figure 3 illustrates three 12mer
peptides containing the conserved core motif “RIVVIR”, which is also present in the bovine
antimicrobial peptide bactenecin (RLCRIVVIRVCR-CONH2). Peptide 70 (RLARIVVIRVRR-
CONH2) exhibited no discernible effect on the growth of Mycobacterium avium subsp.
paratuberculosis (MAP). However, introducing minor alterations to the N-terminal region of
the peptides, involving the substitution of only two amino acids, resulted in an increase
in positive charge (R) and enhanced hydrophobicity, along with improved membrane
integration conveyed by tryptophan (W). These modifications, in turn, led to a notice-
able acceleration in the growth of MAP, as evidenced by the behaviour of Peptide 69
(RRWRIVVIRVRR-CONH2). On the other hand, by reducing the positive charge (R ->A)
and enhancing hydrophobicity, along with an increased ability to interact with membranes
(A, W) at the C-terminal region of the peptides, we observed a significant reduction in the
growth of MAP for Peptide 72 (RLARIVVIRWAR-CONH2).
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Figure 3. Primary structure of three 12mer antimicrobial peptides. (A) Peptide 69 (RRWRIVVIRVRR-
CONH2), which improved growth, (B) Peptide 72 (RLARIVVIRWAR-CONH2), which reduced
growth, and (C) Peptide 70 (RLARIVVIRVRR-CONH2), which showed no effect on growth. PEP-
DRAW was used to generate these structures (http://pepdraw.com/) (accessed on 14 Septem-
ber 2019).

http://pepdraw.com/
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3.2. Test of Growth-Enhancing Activity in Other Mycobacterial Species and Inoculum Effect

Peptide 14 (WKIVFWWRR-CONH2) was selected and tested for growth-enhancing
activity in other mycobacterial species, including slow-growing mycobacterial species
Mycobacterium marinum, Mycobacterium branderi, Mycobacterium avium-intracellulare, and
Mycobacterium celatum, and fast-growing mycobacterial species Mycobacterium gastri, My-
cobacterium abscessus, Mycobacterium porcinum, Mycobacterium fortuitum, Mycobacterium
vaccae, and Mycobacterium smegmatis. Peptide 14 was added to the cultures at 20 µg/mL
and the OD600 was measured over time. The results in Figure 4 show that Peptide 14 was
able to enhance the growth of most slow-growing mycobacteria (except Mycobacterium
branderi) and one fast-growing mycobacterium (Mycobacterium abscessus).
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Figure 4. Monitoring the growth curve of slow- and fast-growing mycobacteria with and without
Peptide 14 at 20 µg/mL. T in the legend indicates treatment with Peptide 14. The slow-growing
mycobacteria included (A) Mycobacterium marinum, (B) Mycobacterium branderi, (C) Mycobacterium
avium-intracellulare and (D) Mycobacteria celatum. The fast-growing mycobacteria included (E) Mycobac-
terium gastri, (F) Mycobacterium abscessus, (G) Mycobacterium porcinum, (H) Mycobacterium fortuitum,
(I) Mycobacterium vaccae, and (J) Mycobacterium smegmatis.

Peptide 14 was then tested for growth-enhancing effects in relation to the starting
inoculum and time point of treatment. An exponentially growing culture of MAP was
subcultured and regrowth was monitored. Peptide 14 was added at 20 µg/mL directly
after the dilution or after 3 days (see Figure 5). The degree of effect from the peptide was
dependent on the size of the starting inoculum, with the lower inocula being more greatly
affected. Improved growth stimulation through the addition of peptide during the growth
phase was also demonstrated (day 3).
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3.3. Peptides Stabilized against Protease Cleavage

During many days of mycobacterial culture, growth-enhancing peptides are exposed
and possibly degraded by secreted and cell-surface-located proteases expressed by the
bacteria themselves. We thus tested whether several modifications to increase the prote-
olytic stability of the peptides including a stereo-enantiomer of Peptide 14 showed any
further growth effect. Peptide 14D (wkivfwwrr-CONH2), the retro-inverse sequence 14D-
rev (rrwwfvikw-CONH2), and a version of Peptide 14, where proteolytic sensitive residues
(arginine and lysine) were exchanged against ornithine (O) resulting in Peptide 14L-KR
(WOIVFWWOO-CONH2), were synthesized [37]. In addition, the stereo-enantiomer of
Peptide 69, Peptide 69D (rrwrivvirvrr-CONH2), and an ornithine exchange variant Peptide
69L-R (OOWOIVVIOVOO-CONH2) were synthesized and tested using MAP (see Figure 6).
In the first experiments at 20 µg/mL, we noticed that some D-peptides showed toxicity
(reduced growth) against Mycobacteria (for TB see Section 3.4) at higher concentrations.
In consequence, this study was performed at 10 µg/mL instead of 20 µg/mL. Except for
Peptide 14L-KR, the growth-enhancing activity remained, with Peptide 14D and 14D-rev
even showing some small improvement in activity, especially the longer the experiment
lasted. This indicated that the L-peptide might be inactivated by proteases whereas the
D-peptide continues to act, with a difference seen from day 15 onwards.
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at 600 nm. 14L stands for Peptide 14 (WKIVFWWRR-CONH2), 14D for Peptide 14D (wkivfwwrr-
CONH2), 14 rev for the retro-inverse sequence (rrwwfvikw-CONH2), 14 L-KR for an ornithine
exchange peptide (WOIVFWWOO-CONH2), 69D for Peptide 69D (rrwrivvirvrr-CONH2), and 69L-R
for an ornithine exchange variant (OOWOIVVIOVOO-CONH2).

Peptide 14D was then used to test if growth enhancement was retained after the
peptide was removed. MAP was grown with and without Peptide 14D at 20 µg/mL and
the growth was monitored by absorbance measurement at 600 nm (see Figure 7). After
20 days, the Peptide 14D-treated sample was intensively washed, diluted, and split into
two samples, with one exposed for a second time to Peptide 14D at 20 µg/mL, and the
other grown in Peptide 14D-free media. Washed samples reverted to growth curves similar
to the control, showing that growth stimulation by Peptide 14D was reversible.
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3.4. Peptides Tested on Mycobacterium Tuberculosis

With an estimated 10.6 million TB cases in 2021 causing 1.6 million TB-related deaths
worldwide [3] it is undoubtfully clear that new diagnostics and treatments are of utmost
importance. Therefore, the next question to answer was if those peptides can also affect the
MTB growth and, if so, can they improve recovery and diagnostic culture confirmation of
MTB? Because of the slow growth of this organism, the time to positivity (TTP) from clinical
samples is very high compared to many other bacteria. For example, one study reported an
average TPP of 14 days using the Mycobacterium Growth Indicator Tube (MGIT) system
(Becton Dickinson, Allschwil, Switzerland), with all positive samples detected within
28 days [38]. We aimed to identify peptides that could reduce the TTP in a commercial
MTB test. In consequence, the first screen was performed by using the MGIT system.

A subset of peptides previously tested against Mycobacterium avium subsp. paratu-
berculosis (MAP) was also assessed for their impact on Mycobacterium tuberculosis (MTB).
The evaluation was carried out using the BD BACTEC MGIT320 system, employing the
MGIT (Mycobacteria Growth Indicator Tube) to measure the fluorescence of a specific dye
as growth units over time. This assay relies on the depletion of oxygen due to bacterial
growth, which activates the fluorescence signal.

During preliminary experiments, Peptide 14 exhibited a hormetic response in MTB
across a wide range of concentrations. Considering our earlier observations of growth
inhibition in MTB using some of the peptides from this study [10], we decided to adjust the
concentration for all subsequent investigations, reducing it from 20 µg/mL to 10 µg/mL.

A similar activity pattern was observed with MTB as had been with MAP, see Figure 8.
Out of 27 peptides screened at 10 µg/mL, two peptides showed slight improvements
(Peptide 69 and Peptide 14), 12 showed similar activity to the control, and 13 peptides
showed less growth than the control.



Microorganisms 2023, 11, 2225 11 of 22Microorganisms 2023, 11, x FOR PEER REVIEW 12 of 24 
 

 

 
Figure 8. Growth curves of M. tuberculosis in the presence of different peptides at 10 µg/mL deter-
mined using MGIT in a BD BACTECMGIT 320 system. The numbers are the peptide identifications 
used in Table S1. 

In further experiments, dose dependency was measured for a selected set of peptides 
(see Figure 9). The experiments included four peptides: Peptides 14, 14D, 14Drev, and 
69D. Peptide 14 displayed a hormetic response across a broad concentration range (10 ng 
to 10 µg/mL), with growth inhibition observed only at 50 µg/mL. Peptide 14D exhibited a 
hormetic response at two concentrations, 0.5 and 1 µg/mL, but higher concentrations (10 
µg/mL and above) resulted in growth inhibition. Peptide 14Drev, which shares the same 
amino acids as Peptide 14D, showed slightly lower toxicity, displaying a hormetic re-
sponse between 0.1 and 1 µg/mL, with inhibitory effects starting at 25 µg/mL. On the other 
hand, Peptide 69D demonstrated a hormetic response within the concentration range of 
10 ng/mL to 500 ng/mL, with some early activity noted at 1 µg/mL. Growth inhibition for 
Peptide 69D was observed starting from 10 µg/mL. In summary, all three D-enantiomers 
were found to be more toxic towards M. tuberculosis compared to Peptide 14, but at lower 
concentrations (1 µg/mL for Peptide 14D, 0.5 µg/mL for Peptide 14Drev, and 10 ng/mL for 
Peptide 69D), a strong sustained growth stimulation was observed. Peptide 14 showed the 
widest concentration range with growth stimulation (10 ng/mL to 10 µg/mL). 

Figure 8. Growth curves of M. tuberculosis in the presence of different peptides at 10 µg/mL deter-
mined using MGIT in a BD BACTECMGIT 320 system. The numbers are the peptide identifications
used in Table S1.

In further experiments, dose dependency was measured for a selected set of peptides
(see Figure 9). The experiments included four peptides: Peptides 14, 14D, 14Drev, and
69D. Peptide 14 displayed a hormetic response across a broad concentration range (10 ng
to 10 µg/mL), with growth inhibition observed only at 50 µg/mL. Peptide 14D exhibited
a hormetic response at two concentrations, 0.5 and 1 µg/mL, but higher concentrations
(10 µg/mL and above) resulted in growth inhibition. Peptide 14Drev, which shares the
same amino acids as Peptide 14D, showed slightly lower toxicity, displaying a hormetic
response between 0.1 and 1 µg/mL, with inhibitory effects starting at 25 µg/mL. On the
other hand, Peptide 69D demonstrated a hormetic response within the concentration range
of 10 ng/mL to 500 ng/mL, with some early activity noted at 1 µg/mL. Growth inhibition
for Peptide 69D was observed starting from 10 µg/mL. In summary, all three D-enantiomers
were found to be more toxic towards M. tuberculosis compared to Peptide 14, but at lower
concentrations (1 µg/mL for Peptide 14D, 0.5 µg/mL for Peptide 14Drev, and 10 ng/mL
for Peptide 69D), a strong sustained growth stimulation was observed. Peptide 14 showed
the widest concentration range with growth stimulation (10 ng/mL to 10 µg/mL).



Microorganisms 2023, 11, 2225 12 of 22Microorganisms 2023, 11, x FOR PEER REVIEW 13 of 24 
 

 

 
Figure 9. Growth curves of M. tuberculosis in the presence of different peptides: (A) Peptide 14, (B) 
Peptide 14D, (C) Peptide 14Drev, and (D) Peptide 69D at a range of concentrations, determined 
using MGIT in a BD BACTECMGIT 320 system. 

Figure 9. Growth curves of M. tuberculosis in the presence of different peptides: (A) Peptide 14,
(B) Peptide 14D, (C) Peptide 14Drev, and (D) Peptide 69D at a range of concentrations, determined
using MGIT in a BD BACTECMGIT 320 system.

To further confirm the effect of 14D on M. tuberculosis, a quantitative analysis of
copy number was performed, see Figure 10. As DNA was extracted when M. tuberculosis
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control went positive, it gave further insight into the effect of the peptide on M. tuberculosis
growth in comparison to the control. This showed that M. tuberculosis spiked with 14D at
1 µg/mL not only had gone positive on the MGIT system before the control but also had
a higher copy number. This correlates with our hypothesis that 14D at this concentration
accelerates growth.

Microorganisms 2023, 11, x FOR PEER REVIEW 14 of 24 
 

 

To further confirm the effect of 14D on M. tuberculosis, a quantitative analysis of copy 
number was performed, see Figure 10. As DNA was extracted when M. tuberculosis control 
went positive, it gave further insight into the effect of the peptide on M. tuberculosis growth 
in comparison to the control. This showed that M. tuberculosis spiked with 14D at 1 µg/mL 
not only had gone positive on the MGIT system before the control but also had a higher 
copy number. This correlates with our hypothesis that 14D at this concentration acceler-
ates growth.  

 
Figure 10. qPCR analysis of M. tuberculosis in the absence (MTB control) and presence of 14D at 1 
µg/mL. 

Whilst culturing of MTB is a very slow method, it is currently the only one to allow 
the determination of any drug resistance. Drug resistance is becoming a problem in the 
effective treatment of TB; therefore, culturing MTB remains essential. It was thus im-
portant to check if the peptide also affects multidrug-resistant MTB. The effect of Peptide 
14D at 1 µg/mL was then tested on a multidrug-resistant strain of M. tuberculosis (see Fig-
ure 11). Indeed, Peptide 14D could affect the growth of multidrug-resistant MTB, espe-
cially by reducing the lag time before growth starts. In addition, the change in the slope 
of the growth curves indicated a faster division rate. 

953750

1762000

0
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

MTB control 14D-1 Neg con

Co
py

 n
um

be
r

Figure 10. qPCR analysis of M. tuberculosis in the absence (MTB control) and presence of 14D at
1 µg/mL.

Whilst culturing of MTB is a very slow method, it is currently the only one to allow
the determination of any drug resistance. Drug resistance is becoming a problem in the
effective treatment of TB; therefore, culturing MTB remains essential. It was thus important
to check if the peptide also affects multidrug-resistant MTB. The effect of Peptide 14D at
1 µg/mL was then tested on a multidrug-resistant strain of M. tuberculosis (see Figure 11).
Indeed, Peptide 14D could affect the growth of multidrug-resistant MTB, especially by
reducing the lag time before growth starts. In addition, the change in the slope of the
growth curves indicated a faster division rate.

After those encouraging results, the next set of experiments was designed to show
whether peptides from our library (most of them designed) and naturally occurring pep-
tides could reduce the time to positivity (TTP) using standard automated MGIT using a
BD BACTECMGIT 320 system widely used for clinical testing (see Table 1). That would
open up the possibility to develop them into enhancers of MTB diagnostics by culture.
We focused on peptides with high activity at low concentrations, which would be best for
development as an adjunct for currently used commercial products, since most TB tests are
performed in low- and middle-income countries and the cost of goods is critical. Therefore,
the screens were performed at 10 µg/mL and a technical repeat was introduced in the case
that observed differences were very small. Since the effect of the peptides depends on
the inoculum, two inocula sizes were used, resulting in TTP values of 7 and 15 days for
the untreated control. A total of 13 (59, 69, 61, 12, 71, 14, 5, 16, 20, 60, 49, 9, and 78) out
of 25 tested peptides showed an overall average larger than 5% decrease in TTP (see Ta-
ble 1). As observed before, small changes in the sequence led to strong effects; for example,
peptides 59–61 showed strong effects, whereas very similar peptides (62 and 63) delayed
TTP, especially in low inocula. Similar to the growth curves presented in Figure 1 when
using MAP, peptides 69, 12, and 14 induced a strong hormetic response also in MTB (see
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Table 1). Peptide 69 showed the 2nd strongest response, 12 the 4th, and 14 the 6th. Notably,
the human cathelicidin LL37 showed a lower TTP as well. Growth curves monitor the
complete growth of the microorganism, while TTP only relies on the early phase of growth,
and this is the most important parameter with regard to diagnostics. As demonstrated
above, Peptide 14D showed similar activity to Peptide 14 but at lower concentrations. Since
for an application in routine MTB diagnostics low costs of goods are important, a short
peptide used at low concentration would be ideal. Peptide 14 was ranked as the sixth
most active, but second for the short 9mer peptides tested. Peptide 14D was therefore
selected to test the concentration effect on the TTP in MGIT using a BD BACTECMGIT
320 system (see Table 2). These inocula without peptide treatment resulted in a TTP of
6 days. The addition of peptides showed faster TTP values within a concentration range
between 0.1 and 1 µg/mL, whereas 1 µg/mL had the strongest effects, with an average
increase of TTP of 21.6%. The reduction in time until positivity was between 17 and 38 h.
At 10 µg/mL, the time to positivity was increased by 8 and 20 h, respectively. At 50 µg/mL,
a strong delay of growth was observed, taking about triple the number of days to reach
positivity. The data correlate well with the growth observed over 20 days (see Figure 9). In
summary, Peptide 14D at a concentration of 1 µg/mL showed the strongest effect on the
TTP measure so far. In future research, other peptides that outperformed Peptide 14 could
be tested in their D-enantiomer forms in a concentration-dependent manner to find even
more active peptides.
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Table 1. Effect of selected peptides at 10 µg/mL on the time to positivity (TTP) of M. mycobacterium
measured in MGIT in a BD BACTECMGIT 320 system. Experiments 1a and 1b are technical repeats,
independent of experiments 2a and 2b (technical repeats). Since the effect of the peptides depends
on the inoculum, two inocula sizes were used, one less diluted, resulting in a TTP of 7 days, and
a diluted one, with an TTP of 15 days. The averages for % faster than control were calculated for
experiments 1a and 1b as well as 2a and 2b. The overall average was then calculated from these two
average values.

Peptide
Code Sequence

Time to
Positivity

(Days.Hours)
Experiment 1a

Time to
Positivity

(Days.Hours)
Experiment 1b

Time to
Positivity

(Days.Hours)
Experiment 2a

Time to
Positivity

(Days.Hours)
Experiment 2b

Average %
Faster than

Control

TB control
(no peptide) 7.02 7.01 15.01 15.20

59 ILKWKRKWWKWRR 5.17 5.22 13.19 12.22 14.5
69 RRWRIVVIRVRR 6.02 6.02 13.12 13.02 12.8
61 ILKWKTKWWKWFR 6.20 5.23 13.11 14.21 10.4
12 RRRIKIRWY 6.14 5.20 14.08 14.22 10.2
71 RLWRIVVIRVKR 6.04 6.06 14.01 14.02 9.4
14 WKIVFWWRR 6.01 6.12 13.23 14.01 9.1
5 FFIYVWRRR 5.21 6.08 14.06 14.16 8.8

16 RLKRWWKFL 6.01 5.22 14.17 14.20 8.6
20 KWKWWWRKI 6.11 6.00 14.01 14.16 8.3
60 ILKWKIFKWKWFR 6.03 6.02 14.19 14.16 7.9
49 VRLRIRVRVIRK 5.22 6.06 15.12 15.02 6.2
9 KRRWRIWLV 6.07 6.04 15.08 14.21 5.8

78
LLGDFFRKSKEKIGKEF
KRIVQRIKDFLRNL
VPRTES

6.08 6.09 14.15 15.00 5.8

77 VRLRIRVAVIRA 6.14 6.04 14.22 15.03 5.0
29 RWRWWWRVY 6.13 6.00 15.12 15.01 4.9
22 IRMRIRVLL 6.00 6.07 15.19 15.10 4.7
70 RLARIVVIRVRR 6.03 6.19 14.22 15.06 4.2
3 WKWRVRVTI 6.08 6.17 14.22 15.02 4.0

68 RLRRIVVIRVAR 6.09 6.17 15.00 15.23 2.3
65 RGARIVVIRVAR 6.16 6.03 16.11 16.01 0.8
72 RLARIVVIRWAR 6.22 7.01 15.01 15.13 −0.2
67 RLWRIVVIRVAR 6.19 6.11 16.00 16.05 −0.4
64 RLARIVVIRVAR 6.19 6.16 15.21 16.13 −1.4
76 VRWRIRVAVIRA 6.13 6.16 16.08 16.14 −1.4
62 ILKWKMFKWKWFR 6.07 7.02 16.20 17.16 −3.4
66 RRARIVVIRVAR 6.05 6.16 17.06 17.16 −3.5
63 ILPWKWPWWPWRR 6.22 6.22 17.01 17.10 −5.5

Peptide 14D was used to check if other machines that are routinely used in medical
microbiology for the detection of mycobacteria show shorter TTP as well. BacT/Alert
(Biomerieux, Marcy-l’Étoile, France and VersaTrek (ThermoFisher, Waltham, MA, United
States) were tested, and shorter TTP was shown for both systems (see Figure S1 in the
Supplementary Materials).
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Table 2. Effect of Peptide 14D at different concentrations on the time to positivity (TTP) of M.
tuberculosis in two independent experiments measured in MGIT in a BD BACTEC MGIT 320 system.

Peptide 14D Concentration
(µg/mL)

Time to Positivity
(Days.Hours)
Experiment 1

Time to Positivity
(Days.Hours)
Experiment 2

Average % Faster
than Control

0 6.19 6.12
0.1 5.12 5.19 15.0
0.5 5.17 5.17 14.1
1 5.05 5.08 21.6
10 7.03 7.08 −7.3
25 9.21 9.17 −48.7
50 19.15 21.5 −207.6

3.5. Testing Naturally Occurring Antimicrobial Peptides against M. tuberculosis

A screen was performed with naturally occurring peptides (n = 43, crude peptides),
synthetic fragments of naturally occurring peptides (n = 11, crude) and short-designed
peptides (n = 5, crude) taken from the ADP3 (http://aps.unmc.edu/AP/) (accessed on 29
August 2023) and confirmed for their antimicrobial activity against methicillin-resistant
Staphylococcus aureus (MRSA) (unpublished results). In two independent experiments,
their effect on TTP of M. tuberculosis at 10 µg/mL was determined, inoculated from an
exponentially grown stock culture and emulsified before inoculation by passing through a
G25 needle (see Table 3). Taking into consideration experiment 1 and experiment 2 (see
Table 3), 44 peptides showed an average faster TTP larger than 5%. Nine peptides showed a
faster TTP of 10% or more. All of these peptides showed a consistent effect between the two
screens; however, the protegrin-1 fragment, where the last two amino acids are omitted,
showed a very strong effect only in the second screen. Full-length Protegrin-1 shows
antibacterial as well as anticancer activity [39,40]. Lasioglossin LL-III, the peptide inducing
the second-best hormetic response, was isolated from the eusocial bee Lasioglossum laticeps
and can kill Gram-positive and Gram-negative bacteria and various cancer cells; however,
it is only mildly toxic against human cells. An internal target was suggested and it was
shown that the peptide does not disrupt the membrane (nonlytic) [41,42]. The third-best
peptide in the table was the full-length peptide Ranacyclin E from the frog skin of Rana
esculenta [43]. It is active against Gram-positive bacteria, some Gram-negative, like Yersinia
pseudotuberculosis, and some fungi. The fourth most active peptide is GF-17. It is a fragment
of the human antimicrobial peptide LL37, a cathelicidin. This fragment was described with
strong antibacterial and antiviral activity [44,45]. The full-length peptide LL37 showed a
similar but less pronounced effect (see Table 1, Peptide 78).

Table 3. A screen of 43 naturally occurring peptides, 11 fragments of naturally occurring peptides,
and 5 designed peptides, all taken from the APD3, was performed at 10 µg/mL in two independent
experiments on the TTP of M. tuberculosis measured in MGIT in a BD BACTECMGIT 320 system.
Fragments are labelled with the * symbol.

Name/Source Sequence
Time to Positivity

(Day.Hours)
Experiment 1

Time to Positivity
(Day.Hours)

Experiment 2

Average % Faster
than Control

Control (TB only) 11.10 9.10
Protegrin 1/Pig * RGGRLCYCRRRFCVCV 10.23 6.22 15.3
Lasioglossin LL-III/Bee VNWKKILGKIIKVVK 9.18 8.08 13.1
Ranacyclin E/Frog SAPRGCWTKSYPPKPCK 10.07 8.01 12.2
GF-17/Human * GFKRIVQRIKDFLRNLV 10.02 8.07 11.8

http://aps.unmc.edu/AP/
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Table 3. Cont.

Name/Source Sequence
Time to Positivity

(Day.Hours)
Experiment 1

Time to Positivity
(Day.Hours)

Experiment 2

Average % Faster
than Control

Arenicin 1/Annelid worm * RWCVYAYVRVRGVLVR 10.15 8.02 10.5
PP13/Wasp * IRLHRLYTWKATIYTR 10.17 8.02 10.2
Peptide B9/Frog FLPLIAGLIGKLF 10.19 8.01 10.0
CM15/Bee venom KWKLFKKIGAVLKVL 10.19 8.01 10.0
Macropin 1/Wasp GFGMALKLLKKVL 10.12 8.07 10.0
Salusin-beta/Scorpion * FIFIRWLLKLGHHGRA 10.18 8.03 9.8
GLK-19/Designed * KKLLGKLLKKLGKLLL 10.17 8.04 9.7
Odorranain-H1/Frog * FGKILGVGKKVLCGLS 10.19 8.03 9.6
Temporin-HN1/Frog AILTTLANWARKFL 10.23 8.01 9.3
CPF-AM4/Frog GLGSLVGNALRIGAKLL 10.17 8.06 9.3
Tachyplasin II/Crab RWCFRVCYRGICYRKCR 10.18 8.06 9.1
Mastoparan-VT6/Wasp INLKAIAALVKKLL 10.21 8.04 9.0
Temporin-1TSa/Frog FLGALAKIISGIF 11.00 8.02 8.9
Temporin-1DRa/Frog HFLGTLVNLAKKIL 10.18 8.09 8.5
Temporin-HN2/Frog NILNTIINLAKKIL 11.03 8.02 8.4
NRC-15/Fish * WGKLFKLGLHGIGLLH 10.21 8.07 8.3
CM-3/Designed ALKAALLAILKIVRVI 11.04 8.03 8.0
Piscidin 1/Fish * FFHHIFRGIVHVGKTI 10.18 8.12 7.8
Eumenitin/Wasp LNLKGIFKKVASLLT 11.00 8.08 7.6
OdVP2/Wasp ILGIITSLLKSLGKK 10.22 8.11 7.3
Clavanin C/Sea squirt VFHLLGKIIHHVGNFV 10.21 8.12 7.2
P-04/Tunicate FFPYAALKWLRKLLKK 11.02 8.08 7.2
Temporin L/Frog FVQWFSKFLGRIL 11.06 8.05 7.1
Protegrin 4/Pig * GRLCYCRGWICFCVGR 11.11 8.01 7.1
D28/Designed * FLGVVFKLASKVFPAV 11.02 8.09 7.0
TsAP-1/Scorpion FLSLIPSLVGGSISAFK 11.07 8.05 7.0
Brevinin-1Ta/Frog FITLLLRKFICSITKKC 11.07 8.05 7.0
Bombolitin V/Bee INVLGILGLLGKALSHL 10.22 8.13 6.8
Temporin-LTb/Frog FIITGLVRGLTKLF 11.07 8.06 6.7
Temporin-1Cb/Frog FLPLFASLIGKLL 11.08 8.06 6.6
Hylin a1/Frog GAILPLALGALKNLIK 11.14 8.02 6.3
Arenicin-2/Lugworm YAYVRIRGVLVRYRRC 11.13 8.03 6.3
Temporin-PTa/Frog FFGSVLKLIPKIL 11.07 8.08 6.3
Decoralin/Wasp SLLSLIRKLIT 11.12 8.04 6.3
Pd_mastoparan
PDD-B/Wasp INWLKLGKKILGAL 11.06 8.09 6.3

NRC-15/Flounder GFWGKLFKLGLHGIGL 11.02 8.14 5.9
Clavanin E/Sea squirt LFKLLGKIIHHVGNFV 11.05 8.12 5.8
Temporin 1Vb/Frog FLSIIAKVLGSLF 11.10 8.08 5.8
Alyteserin-2b/Toad ILGAILPLVSGLLSNKL 11.18 8.02 5.6
Polyphemusin/Crab * WCFRVCYKGFCYRKCR 11.05 8.13 5.6
IsCT2/Scorpion IFGAIWNGIKSLF 10.23 8.21 4.9
Indolicidin/Cow ILPWKWPWWPWRR 11.03 8.18 4.8
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Table 3. Cont.

Name/Source Sequence
Time to Positivity

(Day.Hours)
Experiment 1

Time to Positivity
(Day.Hours)

Experiment 2

Average % Faster
than Control

Temporin-SN1/Frog FFPFLLGALGSLLPKIF 10.22 8.23 4.6
Pelophylaxin-4/Frog ILPFLAGLFSKIL 11.05 8.18 4.5
P9/Designed KRRWRIWLV 11.10 8.14 4.4
Brevinin 1Tb/Frog LVPLFLSKLICFITKKC 11.10 8.15 4.2
Casecidin 17/Cow YQEPVLGPVRGPFPIIV 11.12 8.14 4.1
Brevinin-1DYc/Frog LLAGLPKLLCLFFKKC 11.10 8.16 4.0
Temporin-1Oc/Frog FLPLLASLFSRLF 11.10 8.17 3.8
Temporin A/Frog FLPLIGRVLSGIL 11.02 9.00 3.7
Fallaxidin/Frog * LSFLPKVIGVIGHLIH 11.18 8.13 3.2
Pantinin-3/Scorpion FLSTIWNGIKSLL 11.08 8.23 2.8
Temporin-1Vc/Frog FLPLVTMLLGKLF 11.12 8.21 2.5
P8/Designed * FFIYVWRRR 11.16 8.22 1.6
Tritrpticin/Pig VRRFPWWWPFLRR 11.08 9.13 −0.3

4. Discussion

Antimicrobial peptides are naturally occurring molecules in microbes, plants, and
animals that perform a variety of different biological functions, including antimicrobial
and immunomodulatory activities. By screening short artificial peptides for their antibac-
terial activity against the very slow fastidious pathogen Mycobacterium avium subspecies
paratuberculosis (MAP), we discovered 13 peptides that had growth-stimulating activity,
with Peptide 14 and Peptide 69 among the peptides showing the strongest effects (see
Table S1 and Figure 1). A comparison of peptide sequences revealed that small changes
in the sequence could induce dramatically different effects on growth. For example, the
peptides in Figure 3 show three 12mer peptides, with the conserved core motif RIVVIR
found in the bovine AMP bactenecin. Peptide 70 (RLARIVVIRVRR-CONH2) has no activity
on the growth of MAP. Changes of only two amino acids at the N-terminal region increased
positive charge (R) and increased hydrophobicity as well as the ability to integrate into
membranes (W) consequently showing an acceleration of growth of MAP, Peptide 69
(RRWRIVVIRVRR-CONH2). Reducing the positive charge (A) and increasing hydropho-
bicity and ability to interact with membranes (A, W) at the C-terminal region showed
a reduction of growth in MAP, Peptide 72 (RLARIVVIRWAR-CONH2). Further studies
revealed that Peptide 14 displayed growth stimulation in both slow- and some selected
fast-growing mycobacterial species. Growth stimulation was strongest in low-load inocula
and was reversible (Figures 5 and 7). Modifications of peptides 14 and 69 showed that the
stereoisomer Peptide 14D, Peptide 14Drev, and Peptide 69D (all containing only D-amino
acids) further increased growth stimulation of MAP at 10 µg/mL, indicating that inter-
actions were negated by stereoselectivity but, rather, improved (Figure 6). Furthermore,
studies of such D-enantiomers on MTB showed a reduced concentration range compared
to all the L-peptides (see below).

Further studies using MTB identified the same two peptides (14 and 69) that improved
growth. Dose dependency was measured for four peptides (14, 14D, 14Drev, and 69D).
Overall, the peptides’ effects on cell growth were dose-dependent, showing hormetic
response in a dose-dependent manner. At low concentrations, the peptides had stimulatory
effects on cell growth, while at higher concentrations, they led to growth inhibition. Peptide
69D exhibited the least growth inhibition among the D-enantiomers tested. The dose
dependency of Peptide 14 showed the largest range of activity (50 ng/mL and 10 µg/mL)
of the growth stimulatory effect for all peptides tested. All tested D-peptides showed a
smaller activity range for growth stimulatory effect and, in addition, revealed a stronger
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antimicrobial effect at higher concentrations (see Figure 8 and Table 3). Conducting dose-
dependency studies on a diverse range of peptides in further research could enhance our
understanding of the optimal peptide concentrations to be used in subsequent screenings.
This approach may lead to the identification of a broader set of peptides that exhibit a
hormetic response against slow-growing Mycobacteria. Peptide 14D stimulated the growth
of both antibiotic-sensitive and multidrug-resistant M. tuberculosis similarly.

Nine artificial peptides were identified that consistently lowered TTP for M. tuberculosis
using culture techniques and cut-offs in line with routine diagnostic protocols. In addition,
we identified 44 peptides from the database ADP3 that lowered TTP for MTB growth by
5–15.3% and 9 peptides which lowered TTP by 10% or more (Tables 1 and 2).

We observed that peptides are active as low as 10 ng/mL; we thus hypothesise that
these types of peptides are sensed by mycobacteria and, in slow-growing mycobacteria
in particular, induce a hormetic response. It is well described that Gram-positive and
Gram-negative bacteria can sense antimicrobial peptides, for example, PhoP/PhoQ, a two-
component sensor/regulator system in Salmonella typhimurium and Aps in Staphylococcus
epidermidis [46]. We observed three changes in the growth of the mycobacteria tested. The
first change is the faster transition from the lag phase into the log phase compared to
untreated cells. Lower inoculation sizes tend to have a longer lag phase and therefore
the effects of the peptide are most pronounced at lower inoculum sizes. The second
change observed is a faster decision rate, which was more pronounced with MAP and not
consistently seen with Mycobacterium tuberculosis. Further research is needed to investigate
this in more detail. These two changes give hope that those peptides can indeed be used
to improve mycobacterial diagnostics by culture. The third change observed was a longer
continuation of the log phase compared to the untreated control, indicating higher cell
numbers at the end of the growth phase. These could be interesting for research purposes.
In Figure 12, all three changes are presented in two modelled growth curves. Further results
for the mode of action will be published in a separate paper.

The WHO estimates that about 3–4 million culture tests are performed worldwide to
grow Mycobacteria, especially M. tuberculosis. Phenotypic antibiograms require culture
and provide the most accurate way to determine resistance and inform on management
therapy. Our discovery that the strongest effect of these peptides occurs at very low
bacterial loads suggests that the sensitivity of culturing MTB could be improved. In
consequence, this discovery represents a platform for the product development of a growth
enhancer for different mycobacteria. These products have been introduced to the market.
A clinical study evaluating growth-enhancing peptides in combination with a new sample
preparation procedure has been performed and showed higher sensitivity (publication will
be submitted separately). Further work is needed to deduce the full mechanism of action
of these agents and their possible role in the recovery of latent, viable unculturable forms
of pathogenic mycobacteria.

We conclude that some natural and artificial cationic antimicrobial peptides demon-
strate a hormetic effect on mycobacteria, mainly on slow-growing mycobacteria. Whereas a
range of different sequences showed activity, small changes in the sequence can destroy
the activity. Inverse and retro-inverse peptides also displayed activity, but at a smaller
concentration range and displaying stronger toxicity. The hormetic effect we observed is
dose-dependent and occurred at a concentration as low as 10 ng/mL. In addition, the effect
is dependent on the starting inocula; the lower the inocula, the greater the effect.
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