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A B S T R A C T   

Cerebral small vessel disease (SVD) is a major cause of cognitive impairment in older people. As secondary 
endpoints in a phase-2 randomised clinical trial, we tested the effects of single administration of a widely-used 
PDE5 inhibitor, tadalafil, on cognitive performance in older people with SVD. In a double-blinded, placebo- 
controlled, cross-over trial, participants received tadalafil (20 mg) and placebo on two visits ≥ 7 days apart 
(randomised to order of treatment). The Montreal Cognitive Assessment (MOCA) was administered at baseline, 
alongside a measure to estimate optimal intellectual ability (Test of Premorbid Function). Then, before and after 
treatment, a battery of neuropsychological tests was administered, assessing aspects of attention, information 
processing speed, working memory and executive function. Sixty-five participants were recruited and 55 
completed the protocol (N = 55, age: 66.8 (8.6) years, range 52–87; 15/40 female/male). Median MOCA score 
was 26 (IQR: 23, 27], range 15–30). No significant treatment effects were seen in any of the neuropsychological 
tests. There was a trend towards improved performance on Digit Span Forward (treatment effect 0.37, C.I. 0.01, 
0.72; P = 0.0521). We did not identify significant treatment effects of single-administration tadalafil on neu-
ropsychological performance in older people with SVD. The trend observed on Digit Span Forward may help to 
inform future studies. 
Clinical trial registration: http://www.clinicaltrials.gov. Unique identifier: NCT00123456, https://eudract.ema. 
europa.eu. Unique identifier: 2015–001,235–20NCT00123456.  

Abbreviations and acronyms: CANTAB, Cambridge neuropsychological test automated battery; CBF, cerebral blood flow; DBP, diastolic blood pressure; DGM, deep 
gray matter; FSIQ, full scale intelligence quotient; MOCA, Montreal cognitive assessment; NAWM, normal appearing white matter; NIHSS, national institutes of 
health stroke scale; PASTIS, perfusion by arterial spin labeling following single dose tadalafil in small vessel disease; PDE5i, phosphodiesterase-5 inhibitors; SBP, 
systolic blood pressure; SOIP, speed of information processing; SVD, small vessel disease; TOPF, test of premorbid function; WMH, white matter hyperintensities; VCI, 
vascular cognitive impairment. 
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1. Introduction 

Vascular cognitive impairment (VCI) is a major contributor to de-
mentia in older adults worldwide [1]. A widespread cause of VCI is 
cerebral small vessel disease (SVD) [2,3]. With few treatment options for 

SVD or VCI, re-purposing existing drugs is an attractive approach [4]. 
As nitric oxide-cGMP signaling participates in cerebrovascular 

function, as well as synaptic function, we reasoned that augmenting this 
signaling pathway could influence SVD and VCI. The cytoplasmic 
enzyme phosphodiesterase-5 (PDE5) degrades cGMP and potent, selec-
tive PDE5 inhibitors (PDE5i) are available. The PDE5i drugs sildenafil, 

Fig. 1. Trial design and recruitment.  
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vardenafil and tadalafil are in clinical use for erectile dysfunction and 
pulmonary arterial hypertension. PDE5 is present in vascular myocytes 
within human brain [5] and also in human brain neurons [6]. In a 
phase-2 clinical trial, we tested whether single administration of tada-
lafil increased cerebral blood flow (CBF) in older people with symp-
tomatic SVD [7]. Tadalafil was chosen because it has a relatively-long 
plasma half-life (16 h in healthy adults) [8,9], with evidence of brain 
penetration in rodents and primates [10,11]. 

Neuropsychological performance was specified prospectively as a 
secondary outcome in the PASTIS trial [7]. Some prior data from 
pre-clinical paradigms suggested a cognitive effect of PDE5i treatment, 
some with rapid actions [11–15]. Acute dosing of rats with sildenafil 
improved performance in a test of executive function [14] and reversed 
the impairment in learning produced by the nitric oxide synthase in-
hibitor L-NAME [15]. Cognitive benefits of tadalafil might be hypothe-
sized, at least on clinical tests in humans [16], as more likely to accrue 
over time by preventing decline in cognitive function, rather than after a 
single administration. Nonetheless, we included change in neuropsy-
chological tests as secondary endpoints. 

We performed a double blinded, randomized clinical trial, testing the 
PDE5i tadalafil for effects on cerebral blood flow (CBF). The trial was 
neutral and we recently reported the primary outcomes [17]. Neuro-
psychological test data were secondary outcomes. Here we present 
neuropsychological data from the PASTIS trial, testing whether a single 
administration of tadalafil changes cognitive performance. 

2. Materials and methods 

This trial was preregistered at http://www.clinicaltrials.gov (Unique 
identifier: NCT00123456) and https://eudract.ema.europa.eu (Unique 
identifier: 2015–001,235–20NCT00123456). The data supporting this 
report are available from the corresponding author upon reasonable 
request. We will deposit the data in the DementiasplatformUK portal 
(Home - DPUK Data Portal (dementiasplatform.uk). 

2.1. Trial design, randomization and endpoints 

The trial received ethical approval from the UK National Research 
Ethics Service (REC reference: 15/LO/0714). Within the UK the Na-
tional Research Ethics Service, part of the NHS Health Research Au-
thority (https://www.hra.nhs.uk/) enacts the principles of the 
Declaration of Helsinki (and subsequent amendments; World Medical 
Association) for medical research involving human subjects. Written 
informed consent was obtained from all participants or their next of kin. 
Participants were enrolled by members of the trial team and randomised 
to order of treatment (tadalafil 20 mg, placebo; oral administration). 
The randomization list was generated in advance by Sharp Clinical 
Services, Crickhowell, Powys, UK. Each participant received on two 
separate occasions, visit#1 and visit#2, a placebo dose and a tadalafil 
20 mg dose which were identical in size, shape, weight and color. Two 
study visits were performed at least 7 days apart, with blood pressure 
measurement, MRI scanning and a battery of cognitive tests up to 3 h 
before and 3–5 h after dosing (see Fig. 1A). Participants, care providers 
and those assessing outcomes were all blind to treatment allocation. The 
primary endpoint was change in subcortical CBF. Neuropsychological 
tests were used as secondary endpoints. The following cognitive in-
struments were specified as secondary outcomes [7,18]: CANTAB simple 
and choice reaction time (RT); speed of information processing 
(adjusted and total); digit span forward and backward; semantic fluency. 
As the protocol entailed two visits, each with a pre-dosing and 
post-dosing assessment, we employed tests with four alternative ver-
sions to avoid learning effects. 

Fig. 1. Design and recruitment of the PASTIS trial [17]. A, protocol 
for study visits. Participants were randomized to order of treatment. 
Group 1 received tadalafil on visit #1 and placebo on visit #2, Group 2 
vice versa. B, CONSORT diagram for the PASTIS trial. 

The trial commenced 4th September 2015. Participants were 
recruited from St George’s Hospital and local Participant Identification 
Centres. All visits, data management and trial coordination were per-
formed at the St George’s site. The trial ended when the pre-determined 
recruitment target was met (25 January 2018). See CONSORT flow di-
agram, Fig. 1B. 

2.2. Study population 

All data were from older adults without a known diagnosis of de-
mentia, with radiological and clinical evidence of symptomatic SVD. 
People with a known diagnosis of dementia were excluded, based on 
existing clinical records at the time of recruitment. For further details on 
Inclusion/Exclusion criteria, see the Supplementary file, also the study 
protocol [7]. 

2.3. Study assessments 

In the screening visit (“Visit 0″) informed consent was documented 
and education level and Montreal Cognitive Assessment (MoCA) scores 
were recorded, along with estimated premorbid IQ as measured by the 
Test of Premorbid Function (TOPF). In study visits (Visit#1, Visit#2) 
participants underwent blood pressure measurements, brain MRI and a 
neuropsychological test battery [7]. The battery of neuropsychological 
tests was designed to assess aspects of attention, information processing 
speed, working memory and executive function. As the trial protocol 
entailed two visits, each with a pre- and post-dosing assessment, we 
employed cognitive tests with four alternative versions to avoid a 
learning effect, administered in a random order. All cognitive tests were 
administered by an experienced researcher who had received training in 
administering the study battery from a Consultant Clinical Neuropsy-
chologist (SB), who also provided ongoing supervision. 

The tests administered were: CANTAB® Reaction Time subtest; 
Speed of Information Processing (SOIP) subtest of the BMIPB (Brain 
Injury Rehabilitation Trust Memory and Information Processing Battery; 
Digit Span Forward (DSF) and Digit Span Backward (DSB), from 
Repeatable Battery for the Assessment of Neuropsychological Status 
(RBANS); Semantic fluency (also from RBANS). Aside from the TOPF 
and the MOCA (which were baseline-only measures) the test battery was 
such that it was suitable for administration to any fluent speaker of 
English. Hence no modifications of the standardised administration 
procedures for non-native English speakers were applied. 

At the end of each study visit, and at least 3 h post dosing, two blood 
samples (5 ml) were taken for full blood count and analysis of tadalafil 
concentration. For further details, see the Supplementary file. 

2.4. Statistical analysis 

All analyses were based on the intention-to-treat principle (i.e. par-
ticipants were analyzed according to randomized treatment group 
regardless of whether they received the intended treatment). Change 
within each treatment group was analysed using paired sample t-tests. 
Treatment effects were defined as [(after tadalafil-before tadalafil)- 
(after placebo-before placebo)]. Treatment effects on primary and sec-
ondary outcomes were analysed using linear mixed effects models with 
Wald confidence intervals, with fixed effects of baseline value, treat-
ment, visit and random effect of subject. Models were not corrected for 
age, blood pressure or full blood count. No imputation or other missing 
data approaches were used in the analysis plan. Analysis was conducted 
using R v.3.4.1 with the lme4 and lmerTest packages (https://www. 
R-project.org/). No corrections were made for multiple comparisons. 
p < 0.05 was considered significant. 

3. Results 

Sixty-five individuals gave consent and were randomized and 55 
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completed the protocol (Fig. 1B). There were no clinically-meaningful 
demographic differences between those randomized and those who 
completed the protocol (Table 1). 

The cohort of people who completed the protocol were older adults 
(15F/40 M, mean (SD) age 66.8 (8.6), range: 52–87 years, Table 1). 
They had a MOCA score of 25.1 (3.5) and 12.7 (3.2) years of education. 
In all cases, visit#1 took place at least six months after stroke or TIA. 
Visit#1 and visit#2 were 20 (19) days apart (mean (SD); range 7–117 
days). Four participants completed visit#2 > 30 days after visit#1 
(range 54–117 days). 

There were no statistically significant treatment effects in any of the 
neuropsychological tests (Table 2). The “longest sequence” parameter 
for digit span forward trended an increase in performance (treatment 
effect 0.37, C.I. 0.01, 0.72; P = 0.0521). No such trend was apparent in 
the digit span backward (treatment effect − 0.26, C.I. − 0.64, 0.11; P =
0.176). 

There was no significant effect of group allocation (tadalafil at visit 
#1 and placebo at visit #2, or vice versa). No significant carry-over 
effect was detectable in any of the statistical models. There were no 
serious adverse reactions to the trial intervention. Adverse events are 
listed in Supplementary Table S1. 

4. Discussion 

This paper reports neuropsychological secondary outcomes from a 
double-blinded, randomized clinical trial of PDE5i treatment in older 
people with SVD. Single administration of tadalafil did not significantly 
change neuropsychological performance in the tests used here. These 
tests were selected to assess functionally relevant aspects of cognition, 
which have been implicated in SVD, and where four parallel forms were 
available. The issue of cognitive assessment in clinical trials for SVD, and 
for stroke in general, is an area of current debate [19]. There may be 
emerging cognitive instruments that will benefit future trials. 

A trend towards a treatment effect on DSF was observed. DSF is 

Table 1 
Participant demographics for the study cohort.   

Participants who consented and were randomised (N = 65) Participants who completed the protocol (N = 55) 

Variable All Group 1. tadalafil 
followed by placebo 

Group 2. placebo 
followed by tadalafil 

All Group 1. tadalafil 
followed by placebo 

Group 2. placebo 
followed by tadalafil 

N 65 33 32 55 30 25 
Age (y) 66.7 

(8.7) 
65.5 
(9.0) 

68.0 
(8.4) 

66.8 
(8.6) 

65.9 
(8.9) 

67.9 
(8.4) 

Age range (y) 52, 87 52, 83 53, 87 52, 87 52, 83 53, 87 
Female/Male 19/46 5/28 14/18 15/40 5/25 10/15 
MoCA score 25.4 

(3.4) 
25.4 
(3.6) 

25.4 
(3.3) 

25.1 
(3.5) 

25.2 
(3.7) 

25.0 
(3.4) 

Estimated FSIQ 100.8 (9.2) 101.4 (10.8) 100.2 (7.3) 100.9 (9.6) 101.4 (11.0) 100.4 (7.7) 
Education (y) 12.8 (3.1) 12.8 (3.3) 12.7 (2.9) 12.7 (3.2) 12.7 (3.4) 12.7 (3.0) 
Time from stroke to consent 

(months) 
16.0 
(17.6) 

16.8 
(22.6) 

15.3 
(12.0) 

14.6 
(12.1) 

14.3 
(12.8) 

14.9 
(11.8) 

Modified Rankin score (0/ 
1/2/3/4/5–6) 

18/26/16/ 
3/2/0 

11/13/6/1/2/0 7/13/10/2/0/0 16/20/14/3/2/ 
0 

11/10/6/1/ 
2/0 

5/10/8/2/ 
0/0 

NIHSS (range 0–42) 1.0 
[0.0, 2.0] 

1.0 
[0.0, 2.0] 

1.0 
[0.0, 2.0] 

1.0 
[0.0, 2.0] 

0.5 
[0.0, 2.0] 

1.0 
[0.0, 3.0] 

WMH volume (mm3) NA NA NA 14,600 [7200, 
31,700] 

11,800 [6800, 27,600] 15,700 [9200, 34,500] 

Cerebral microbleeds, total 
count 

1 [0, 4] 1 [0, 4] 1 [0, 4] 1 [0, 4] 1 [0, 4.5] 1.5 [0, 4] 

SBP (mm Hg) 145 
(16.6) 

144 
(16.4) 

147 
(17.1) 

145 
(16.6) 

144 
(14.8) 

147 
(18.7) 

DBP (mm Hg) 81.0 
(10.7) 

81.0 
(11.9) 

81.0 
(9.6) 

79.9 
(10.7) 

80.5 
(11.6) 

79.2 
(9.7) 

Data are reported as mean (SD), except for modified Rankin score (number of participants with respective score listed), NIHSS score, WMH volume (both actual scores 
listed) and cerebral microbleed counts, which are reported as median [inter-quartile range]. Scoring on the MoCA ranges from 0 to 30, with a score of 26 or higher 
indicating normal cognitive ability. These scores have been adjusted for educational level (+1 if the participant had less than12 years of education). WMH volume and 
cerebral microbleed data are derived from post hoc analyses after trial completion. All other data are from the time of randomization. 
Abbreviations. DBP: diastolic blood pressure; FSIQ: full scale intelligence quotient; MoCA: Montreal Cognitive Assessment; NIHSS: National Institutes of Health Stroke 
Scale; SBP systolic blood pressure; WMH: white matter hyperintensities. 

Table 2 
Neuropsychological Test Data.   

First pre- 
dose score 
Mean (SD) 

Change post 
Placebo 
Mean (SD) 

Change post 
Tadalafil 
Mean (SD) 

Treatment 
effect Mean 
(C.I.), P 

CANTAB Choice 
Reaction time, 
seconds (n =
52) 

463.2 
(55.8) 

− 6.1 
(27.9) 

2.9 
(36.6) 

9.35 
(− 2.30, 
20.99) 
0.122 

CANTAB Simple 
Reaction time, 
seconds (n =
52) 

425.5 
(93.0) 

− 10.0 
(30.8) 

− 10.6 
(79.2) 

8.94 
(− 6.58, 
24.45) 
0.266 

SOIP Adjusted 53.3 
(17.4) 

3.1 
(8.5) 

1.2 
(11.2) 

− 2.11 
(− 5.67, 1.45) 
0.250 

SOIP Total 46.3 
(14.1) 

2.6 
(6.6) 

1.6 
(6.7) 

− 1.11 
(− 3.40, 1.18) 
0.348 

SOIP Motor 
Speed Control 
Task (number 
correct) 

40.5 
(10.8) 

2.5 
(5.4) 

1.7 
(4.9) 

− 0.73 
(− 2.59, 1.13) 
0.444 

Digit span 
forward, 
longest digit 

6.1 
(1.4) 

0.1 
(1.1) 

0.5 
(1.3) 

0.37 
(0.01, 0.72) 
0.0521 

Digit span 
backward, 
longest digit (n 
= 54) 

4.5 
(1.4) 

0.3 
1.0) 

0.0 
(1.2) 

− 0.26 
(− 0.64, 0.11) 
0.176 

Semantic fluency 17.1 
(4.9) 

1.5 
(4.1) 

0.0 
(4.2) 

− 0.43 
(− 2.72, 0.20) 
0.568 

Data for 55 non-withdrawn participants. 
Abbreviations. CANTAB: Cambridge Neuropsychological Test Automated Bat-
tery; SOIP: speed of information processing. 
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typically considered highly stable, with negligible practice effects [20] 
and not amenable to short-term intervention. Some variation in DSF 
scores was observed in response to state and trait anxiety [21]. Treat-
ment effects, when observed, typically result from extensive training, 
either in the form of repetitive practice or the development of elaborate 
metacognitive strategies (e.g. [22,23]) or a much larger number of ad-
ministrations than in the present study. For example, 20 repeated daily 
administrations of common neuropsychological tests to people with or 
without brain injury, yielded performance increases on DSF only in the 
brain injury group and only in the latter 10 administrations [24]. Our 
data suggesting a potential treatment effect on DSF, a measure of 
attentional efficiency, a relatively low-level yet highly functionally 
relevant skill, and over a short time interval, are therefore striking. If 
confirmed in other studies, these findings suggest that the perception of 
DSF as a relatively immutable tool may need to be updated. Further, the 
effect sizes we report for DSF (and other cognitive measures) may be 
useful in planning future studies. 

There was some sex imbalance in the trial. We do not know the 
reason for this. A recent meta-analysis reported a ratio of 1:1.67 women: 
men with SVD [25] but our ratio is much higher (1:2.42 among con-
sented, 1:2.67 among completing participants, Table 1). As tadalafil is 
best known as a drug for enabling erectile function, we speculate that 
the sex bias might reflect more men than women being interested in 
participating in a tadalafil clinical trial. 

The dose of tadalafil used here (20 mg) was within the range licensed 
for prescribing (5–40 mg) and between the dose typically prescribed in 
erectile dysfunction (5–10 mg) and that used in clinical trials for pul-
monary arterial hypertension (40 mg). As described previously [17] 
plasma tadalafil concentrations were consistent with previous studies 
[8,9] and indicative of brain tadalafil concentrations well above the 
concentration required for half-maximal PDE5 inhibition. 

PDE5 is expressed in brain tissue at mRNA and protein level [26,27]. 
As PDE5 is present in human brain neurons [6] effects of PDE5i on 
cognitive function might therefore be hypothesized [16]. In terms of 
acute PDE5i treatment, several groups have reported cognitive effects in 
rodents [11–15]. In non-human primates, acute treatment with silden-
afil dose-dependently increased cognitive performance, in a paradigm 
considered a prefrontal task of executive function [28]. In humans, acute 
PDE5i treatment had little or no effect on cognitive performance in small 
cohorts of young healthy adults [29], healthy volunteers [30,31] or 
people with schizophrenia attending outpatient clinics [32]. These 
human findings accord with our present data from the PASTIS trial. 

Longer term PDE5i treatment has been reported by several labora-
tories to produce cognitive changes in animals and humans. Mice and 
rats showed improved performance in standard behavioural assays 
following semi-chronic treatment (3–10 weeks) with sildenafil [11, 
33–35], vardenafil [36] or tadalafil [11,37]. In some studies, brain 
biochemical effects consistent with synaptic changes were detected. For 
example, treating mice for 21 days with sildenafil modified expression of 
synaptic proteins (synaptophysin, AMPA and NMDA receptors)[38]. 
Chronic treatment of aged Tg2576 mice with a novel agent, described as 
a dual antagonist of PDE5 and histone deacetylases, reduced cognitive 
deficits and enhanced dendritic spine density [33]. 

In human studies, two months of treatment with a PDE5i (udenafil) 
enhanced performance in the MMSE and a frontal assessment battery, in 
a small study of ED patients [39]. Similarly, in a small study of 12 pa-
tients with benign prostatic hyperplasia or erectile dysfunction, tadalafil 
gave some evidence of altered auditory evoked potentials and of 
cognitive improvement (in tests of mental processing speed and atten-
tion) [40]. By contrast, in a phase-2 randomised clinical trial in 70 
ischaemic stroke survivors, 90-day treatment with a novel PDE5i did not 
change neuropsychological performance [41]. Nevertheless a recent 
systematic review concluded that there is a need for a clinical trial to test 
sildenafil for cognitive enhancement in AD [42]. This is further sup-
ported by a recent analysis of real-world prescribing data, where sil-
denafil and vardenafil were both in the top 20 medications associated 

with reduced dementia risk [43]. Overall, prior data suggest that 
long-term PDE5i treatment can lead to synaptic changes, consistent with 
enhanced cognition. We speculate that longer-term treatment with a 
brain-penetrant PDE5i might produce synaptic effects, leading to altered 
cognitive performance [16]. 

The present study has limitations. The cohort was small and was not 
powered a priori for detecting a change in neuropsychological perfor-
mance. The PASTIS trial was designed to test for a change in brain blood 
flow, and was powered accordingly [17]. Most notably, the duration of 
treatment was brief, limited to one administration of tadalafil, with 
assessment only a few hours after dosing. In addition, the neuropsy-
chological assessment was quite limited. The instruments used in this 
trial were focused on the key domains of interest, a comprehensive 
neuropsychological assessment was not attempted. Further, tadalafil is 
contra-indicated in patients with recent stroke or uncontrolled hyper-
tension, hence there may be constraints on possible repurposing for use 
in SVD or dementia (Hainsworth et al., in press, [16]). 

5. Conclusions 

In conclusion, this study found insufficient evidence to support a 
significant difference between single dose tadalafil (20 mg) and placebo 
with respect to neuropsychological test performance. The trend 
observed on Digit Span Forward will serve to estimate effect sizes that 
may inform future studies. 
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