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The gradual spread of Aspergilli worldwide is adding to the global shortage of food 
and is affecting its safe consumption. Aspergillus-derived mycotoxins, including 
aflatoxins and ochratoxin A, and fumonisins (members of the fusariotoxin 
group) can cause pathological damage to vital organs, including the kidney or 
liver. Although the kidney functions as the major excretory system in mammals, 
monitoring and screening for mycotoxin induced nephrotoxicity is only now 
a developmental area in the field of livestock feed toxicology. Currently the 
assessment of individual exposure to mycotoxins in man and animals is usually 
based on the analysis of toxin and/or metabolite contamination in the blood 
or urine. However, this requires selective and sensitive analytical methods (e.g., 
HPLC-MS/MS), which are time consuming and expensive. The toxicokinetic of 
mycotoxin metabolites is becoming better understood. Several kidney biomarkers 
are used successfully in drug development, however cost-efficient, and reliable 
kidney biomarkers are urgently needed for monitoring farm animals for early signs 
of kidney disease. β2-microglobulin (β2-MG) and N-acetyl-β-D-glucosaminidase 
(NAG) are the dominant biomarkers employed routinely in environmental 
toxicology research, while kidney injury molecule 1 (KIM-1) and neutrophil 
gelatinase-associated lipocalin (NGAL) are also emerging as effective markers to 
identify mycotoxin induced nephropathy. Pigs are exposed to mycotoxins due to 
their cereal-based diet and are particularly susceptible to Aspergillus mycotoxins. 
In addition to commonly used diagnostic markers for nephrotoxicity including 
plasma creatinine, NAG, KIM-1 and NGAL can be used in pigs. In this review, the 
currently available techniques are summarized, which are used for screening 
mycotoxin induced nephrotoxicity in farm animals. Possible approaches are 
considered, which could be used to detect mycotoxin induced nephropathy.
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1. Introduction

Mycotoxins are low-molecular-weight naturally occurring organic 
contaminants and are secondary metabolites of filamentous fungi, 
mainly Aspergillus, Penicillium, and Fusarium (Bennett and Klich, 
2003). Their presence cause damage to agricultural products and they 
can persist in the food supply chain (Ganesan et al., 2022). Increased 
temperature, elevation in carbon dioxide, and extremes in water 
availability can influence the occurrence and/or frequency of 
mycotoxin production. This accumulates in food mainly cereal grains, 
which increases the risk of dietary contamination (Perrone et  al., 
2014). Aspergillus, Penicillium, and Fusarium spp. usually infect cereal 
grains (Udomkun et al., 2017). They can occur in the field before and 
after harvest as well (Patriarca and Fernández, 2017). Alternative and 
effective pre- and post-harvest strategies should be used to minimize 
contamination in food and feed products to ensure that mycotoxin 
levels are below the regulated limits for safety (Prietto et al., 2015). 
Modern management methods for Aspergillus mycotoxin are oriented 
toward investigating the fungal diversity and the population 
distribution of Aspergillus spp. (Battilani et al., 2006). Mycotoxins can 
enter the food chain in the field during storage or later. The production 
of mycotoxins usually occurs at the pre-harvest stage and their 
accumulation increases after harvest. The best way to prevent mold 
infection and mycotoxin production is by keeping optimal storage 
conditions for agricultural products (Torres et al., 2014). Moreover, 
Good Agricultural Practices (GAPs) should be followed wherever 
agricultural production is carried out (Sakuda et al., 2014). Aspergillus 
is an airborne and soil-borne fungus; strategies should minimize the 
survival of Aspergillus in weeds close to the crop, which reduces the 
possibility of mycotoxin contamination (Abbas et al., 2009). During 
cultivation, fertilizers should be applied, and soil chemical properties, 
such as pH and organic carbon content of soil, should be monitored. 
Adequate plant protection and harvest time are important factors in 
cereal cultivation and provides a simple way to reduce mycotoxin 
contamination (Leslie et al., 2021; Keszthelyi et al., 2022). Additionally, 
different cultivars are defined by yield, sensitivity to abiotic factors like 
temperature or water deficiency, and sensitivity to biotic factors like 
plant pathogens and pests, which result from mycotoxin 
contamination (Afolabi et al., 2007). Contamination with Aspergillus 
mycotoxins of cereal grains in Europe in the first quarter of 2022 was 
moderate (DSM, 2022). The prevalence of aflatoxins (AFs) was 32%, 
and ochratoxin A (OTA) 11% in positive samples. The average 
contamination level of AFs was 127 μg/kg, and OTA was 9 μg/kg. 
Regulated levels in cereal grains used for animal feeds for AFs is 20 μg/
kg [Regulation EC 574/2011 (EU—COM 2014/015, 2014)] and 
250 μg/kg for OTA [Recommendation EC 2006/576; EC (European 
Comission), 2006]. Besides the appropriate pre- and postharvest 
technologies toxic effects of mycotoxins can be  mitigated with 
different mycotoxin binding agents (Kolawole et al., 2022), such as 
algal polysaccharides (Guo et  al., 2021; Liu et  al., 2022b) or 
biodegradation by probiotic bacteria (Park et al., 2022). Additionally, 
antioxidants can reduce some toxic effects of mycotoxins (Liu et al., 
2022a,b). Unlike Aspergillus, which is more widespread in warmer 
climates Penicillium is more significant in regions with a temperate 
climate and is endemic in Northern Europe and Canada (Awuchi 
et al., 2021). In addition to OTA, Penicillium can produce Citrinin 
(CIT). Penicillium-produced CIT and OTA occur most commonly 
during storage (Kamle et al., 2022). In contrast, Fusarium mycotoxin 

generation, occurs predominantly in the field (Birr et  al., 2021). 
Fusarium verticillioides is generally associated with maize but it is also 
capable of asymptomatic infections in other monocots and even sugar 
beet (Blacutt et al., 2018).

AFs caused the first well documented mycotoxin induced toxicosis 
in a turkey farm in England, where 100,000 turkeys died in 1960 
(Nesbitt et al., 1962; Pickova et al., 2021). From the 1970’s, there are 
reports that the mycotoxin induced nephropathy was present in 
40–60/100,000 pigs in Denmark, similar reports have been published 
from all over Europe. Furthermore, among farm animals, pigs are the 
most susceptible to the accumulation of OTA and consequent kidney 
damage (Kępińska-Pacelik and Biel, 2021). The objective of this review 
is to summarize the current literature on mycotoxin induced 
nephropathy, particularly in domesticated pigs, focusing on kidney 
biomarkers monitored by different analytical methods.

2. Kidney and mycotoxins

2.1. Mycotoxin exposure and general 
introduction of nephrotoxic mycotoxins

AFs are considered genotoxic mycotoxins and no exposure level 
is considered safe. The more frequent subtypes are AFB1, AFB2, 
AFG1, AFG2. A toxic metabolite of AFB1, AFM1 is excreted through 
milk and its presence in milk and milk products, causes a significant 
food safety problem. AFB1 is the most toxic of known aflatoxins 
(Manafi et  al., 2011; Rushing and Selim, 2019). AFs modify the 
expression of various genes associated with fatty acid metabolism and 
energy production at the cellular level (Kumar et al., 2017). They also 
cause downregulation of antioxidant defense (Yarru et  al., 2009). 
Hepatotoxic effects in humans and experimental animals have been 
described. AFs are well-known hepatocarcinogens in laboratory 
animals, and there is epidemiological evidence linking human 
exposure and hepatocellular carcinoma; it is classified as Group 1 
human carcinogen (International Agency for Research on Cancer, 
2012). The potential mechanisms of AFB1 and AFM1 subacute 
toxicity in the kidney were studied in a mouse model. Results revealed 
that AFB1 or AFM1 activated oxidative stress and caused renal 
damage, particularly in the proximal tubule (see Figure 1). Proline 
dehydrogenase (PRODH) and pro-apoptotic factors (Bax, Caspase-3) 
were upregulated, while the apoptosis inhibitor Bcl-2 was 
downregulated in mRNA and protein expression (Li et al., 2018). 
Ochratoxins are a group of mycotoxins produced by Aspergillus 
species, e.g., Aspergillus niger as well as some Penicillium which can 
exert damage to organisms (Ringot et al., 2006). For example, OTA 
disrupts several cell functions, including cell proliferation, division, 
and signaling pathways (Vettorazzi et al., 2013; Hassan et al., 2022), it 
also has a synergistic effect on other co-occurring mycotoxins (Liu 
et al., 2022a).

Dietary exposure to OTA causes severe health problems in animals 
and humans, including poultry ocochratoxicosis, porcine nephropathy, 
human endemic nephropathies, and urinary tract tumors (Heussner 
et al., 2015). As OTA has showed carcinogenic effects, it has been 
classified as Group 2B human carcinogen (Ostry et al., 2017). Besides 
its carcinogenic and nephrotoxic effects, hepatotoxic, teratogenic, 
neurotoxic, genotoxic, and immunotoxic effects have also been 
described in animals (Marin-Kuan et al., 2006; Solcan et al., 2013; 
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Vlachou et al., 2022). CIT often found together with OTA and can 
be analyzed together. According to the classification of IARC, CIT is a 
group 3 human carcinogen which means that CIT is not classified in 
terms of its carcinogenicity in human (Ali and Degen, 2019). However, 
CIT of special interest in pigs and poultry, as their diet are normally 
based on cereals and other grains. It is produced by several species in 
the genera Monascus, Aspergillus and Penicillium, and it occurs 
principally in plant products and stored grains. CIT has a “level of no 
concern for nephrotoxicity”—a provisional tolerable daily intake 
(PTDI) value of 0.2 μg/kg bw (Leszkowicz et  al., 2008; Flajs and 
Peraica, 2009). CIT and OTA have also been associated with alterations 
in renal function and/or with the development of renal pathologies 
(Ostry et al., 2013). The exact mechanism of CIT induced nephropathy 
is not fully understood and is species specific (see Figure 1), however, 
several hypotheses exist. CIT could target calcium homeostasis of the 
kidney cells. Several animal studies have been carried out, e. g. CIT 
treatment resulted in swollen and degenerate mitochondria in renal 
cortical cells of broiler chickens, pigs and laying hens as well (Meerpoel 
et al., 2020). CIT tends to accumulate in different tissues of pigs and 
poultry; however, a 3 week-long treatment caused no toxicological 
problem (Meerpoel et al., 2020).

Fumonisin mycotoxins are mainly produced by filamentous fungi 
Fusarium verticillioides and Fusarium proliferatum and provide at least 
28 conformational analogues; these are classified into the sub-groups, 
A, B, C, and P series (Rheeder et al., 2002). From a toxicological aspect 
the B series, in particular fumonisin B1 (FB1) is the most challenging, 

exerting species-specific and target organ specific effects (Chen et al., 
2021; Guerre et al., 2022).

Due to the variety of feedstuffs used in the pig industry, multiple 
fungi contamination has been detected, so several different types of 
mycotoxin toxicity occur (Holanda and Kim, 2021). It is known that 
the toxic effects of several different mycotoxins together are stronger 
because it has been shown that although the individual level of toxins 
are below the governmental guidelines the total effect can be above 
(Holanda and Kim, 2021).

3. Animal and cellular models of 
nephrotoxicity

The kidney is a multifunctional organ, containing the nephrons 
which are its structural and functional units (Wasung et al., 2015). A 
variety of different cells in the nephron perform highly complex and 
precisely organized biological processes. Any trauma on these cells 
can induce kidney damage and associated cardiovascular disease as 
well as metabolic disorders, resulting in subsequent endocrine 
dysfunction, and further decline toward renal failure. Owing to the 
high blood flow in the kidney and its unique metabolism, it is 
particularly susceptible to nephrotoxic attack (Nigam et al., 2015). 
Environmental pollutants which target the kidney include metals, 
solvents as well as naturally occurring compounds, including 
aristolochic acid and mycotoxins (Vanmassenhove et  al., 2013; 
Weidemann et al., 2016).

3.1. Nephrotoxicity in animals

Acute kidney injury (AKI) is a frequently occurring kidney 
problem in humans, and farm animals as well (Schiffl and Lang, 2012). 
Early identification, precise veterinary diagnosis and appropriate 
treatment are therefore needed. Renal problems could cause significant 
weight loss, lethargy and decreased meat production, e.g., in pigs or 
poultry (Vlachou et al., 2022). Estimated glomerular filtration rate 
(eGFR), blood urea nitrogen (BUN) and serum creatinine (sCr) have 
been used to detect kidney failure as biomarkers in routine 
laboratories, however, these are unspecific and occur late in the 
development of the disease (see Figure 2; Wasung et al., 2015; Hall 
et al., 2021). Early detection of AKI, is preferred and as a consequence 
more sensitive diagnostic markers are needed. There is little data in 
the literature, where early markers have been used to detect mycotoxin 
induced nephropathy (Elling et  al., 1985; Hoffmann et  al., 2010a; 
Musiał, 2021). The most visible sign of nephropathy in animals is 
retarded growth, and at this timepoint is often too late to treat the 
animals. Traditional methods to used estimate kidney function, e.g., 
eGFR, sCr and BUN need to be supported by more sensitive markers 
such as the more recently described biochemical biomarkers (see 
Figure 2; Wasung et al., 2015; Malir et al., 2019).

3.2. Novel nephrotoxicity biomarkers 
analyzed in animals

Various animal models are widely used to test the nephrotoxic 
effects of many pharmacologically active substances. Renal biomarkers 

FIGURE 1

Mycotoxins affecting kidney, a schematic illustration. AFB1 dose 
dependently reduces Na+/Pi co-transport in proximal tubule 
epithelial cells, reducing reabsorption of inorganic phosphates; OTA 
also targets the proximal tubule, causing cell death and profibrotic 
effects; citrinin targets the proximal tubule in many species, such as 
dogs, pigs, rabbits and rats but in mice citrinin targets the distal 
tubule (indicated by asterisk in the figure). The figure was created 
with BioRender.com.
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are defined in terms of their chemical, structural, physiological 
characteristics. That show the progress, severity or presence of any 
damage within the kidney that alters its function. As an example, 
urinary biomarkers including NAG are suitable to estimate the 
incidence and size of drug-induced kidney injuries (Hoffmann et al., 
2010a; Sheira et al., 2015). According to Vaidya et al. (2010) urinary 
KIM-1 excretion outperforms other markers in rats exposed to 
different agents including Vancomycin, Tacrolimus, Gentamicin, 
Cisplatin (proximal tubular toxicants); Puromycin, Doxorubicin 
(glomerular toxicants); Lithium, Furosemide (tubular and collecting 
duct toxicants); α-Naphthyl isothiocyanate (ANIT) and Methapyrilene 
(hepatotoxicants; Vaidya et al., 2010). Moreover, urinary NAG is one 
of the most frequently used biomarkers to detect renal tubulopathy in 
both human and animal studies (Sheira et al., 2015), however the 
correlation needs to be precisely defined.

In rat models, puromycin aminonucleoside (PAN) or cisplatin 
(CDDP) induce glomerular and proximal tubular injuries, respectively. 
PAN increased urinary NGAL and albumin levels (dysfunction of 
proximal tubule) meanwhile CDDP was detected with highest 
sensitivity by KIM-1 (Tonomura et al., 2010). Lactate dehydrogenase 
(LDH) was applicable for the detection of a wide spectrum nephron 
injuries (Tonomura et al., 2010). In a large-scale comparative study, 
the following biomarkers were tested and compared: total protein, 
albumin, KIM-1 clusterin, β2-MG, Cystatin-C, alpha-glutathione 
S-transferase, mu-glutathione S-transferase, NAG, aspartate 
aminotransferase and NGAL (Tonomura et al., 2010).

Urinary cystatin-C levels are indicative of early acute kidney 
injuries provoked by, e.g., cisplatin treatments in rats although the 
change ratios for urinary KIM-1, GST-α, and EGF were higher. 
Furthermore, other biomarkers, including β2-MG, calbindin, clusterin, 

GST-μ, NGAL, osteopontin, TIMP-1, and VEGF have been also tested 
(Togashi et al., 2012).

Animal models other than rats are also used to estimate 
nephrotoxicity triggered by aminoglycosides including pigs (e.g., 
tobramycin; Lipcsey et al., 2009), cynomolgus monkeys (gentamicin; 
Gautier et al., 2016); dogs and mice (gentamicin; Al Suleimani et al., 
2018). In a most recent study, 10 urinary biomarkers (albumin, 
clusterin, cystatin C, KIM-1, NGAL, liver-type fatty acid-binding 
protein, NAG, osteopontin, retinol binding protein 4 and total 
protein) were assayed to detect nephrotoxicity elicited by 5 
nephrotoxicants (cefpirome, cisplatin, naproxen, cyclosporine, and a 
combination of gentamicin with everninomicin) in primates. KIM-1 
and clusterin showed the best overall performance across these studies 
(Vlasakova et al., 2020). There were differences in the histopathological 
patterns, which could be  related to tubular injury severity and 
recovery potential, underlying histopathologic processes, biomarker 
response and the resulting prognosis (Vlasakova et al., 2020). The 
biomarkers discussed above are biomarkers of effect, that is they are 
markers of damage caused by nephrotoxins. As can be  seen in 
Figure 1, different mycotoxins target different regions of the nephron 
and hence, as with other nephrotoxins, one can differentiate between 
damage to distinct regions of the tubule. As other nephrotoxins may 
also cause similar damage, the expression of the biomarkers 
themselves does not conclusively prove exposure to particular 
mycotoxins, they indicate renal damage. Combined measurement of 
biomarkers of effect and biomarkers of exposure would provide a 
more precise diagnosis. A number of recent studies in humans have 
measured urinary aflatoxin to determine exposure in at risk 
populations (Ezekiel et al., 2018; Ferri et al., 2020; Nasir et al., 2021). 
Although, this would not prove that the mycotoxin caused the renal 

FIGURE 2

Mycotoxin induced nephropathy and the possibilities for intervention. The different types of mycotoxins could cause the deterioration of kidney 
function. In order to prevent acute kidney injury (AKI), novel kidney biomarkers should be applied to screen the affected animals. Detecting the 
traditional markers (eGFR: estimated Glomerular Filtration Rate; BUN: Blood Urea Nitrogen; sCr: serum Creatinine) are often too late to act and treat 
the animals. The figure was created with BioRender.com.
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damage, a correlation between a biomarker of effect and a biomarker 
of exposure would provide good evidence.

4. Biomarker approaches, which could 
be used for the detection of 
mycotoxin induced AKI and CKD in 
animals

4.1. Molecular mechanisms underlying 
mycotoxin induced nephrotoxicity

The effects of AFs and OTA depend on their accumulation in 
particular organs or tissues. Accumulation of OTA in the kidney was 
higher than AFs, possibly due to their rapid metabolism (Corcuera 
et al., 2015), and its accumulation correlates with kidney injury. Renal 
function in chronic aflatoxicosis was determined in laying hens. AFs 
exposure increases Ca2+, Na+, phosphate fraction excretion, and 
glomerular filtration rate also reduces (Martínez-de-Anda et  al., 
2010). OTA-induced toxicity was investigated in an in vitro model 
using human proximal tubule HK-2 cells. OTA decreased cell viability 
but increased the expression of KIM-1 (Schulz et al., 2018).

OTA treatment increased intracellular reactive oxygen species 
(ROS) and malondialdehyde and decreased glutathione levels. The 
gene expression of aryl hydrocarbon receptor (AhR) and pregnane X 
receptor (PXR) as well as some cytochrome genes (CYP1A1, CYP1A2, 
and CYP3A4) of the phase I xenobiotic transformation were induced 
by OTA exposure. Moreover, the mRNA expression of phase II 
enzymes such as heme oxygenase-1, NAD(P)H quinone 
dehydrogenase 1 (NQO1), and glutamate cysteine ligase were 
upregulated. The response of OTA-orally administered mice also 
showed marked increases in these enzymes and KIM-1. These results 
indicate that OTA induces phase I and II enzymes through the AhR, 
PXR, and Nrf2 signaling pathways in HK-2 cells, which may lead to 
the modulation of proximal tubule injury (Lee et  al., 2018). OTA 
exposure in mice significantly increased the DNA-damage-inducible 
transcript 3 (gadd 45) result in growth arrest and DNA-damage-
inducible 45 alpha (gadd 153) mRNA levels. High dosage of acute 
OTA administration elevated the mRNA expression of annexin2 and 
clusterin but decreased the sulfotransferase 1C2 (sult1c2) mRNA level 
(Ferenczi et al., 2014). Repeated oral dose of OTA induced oxidative 
stress in mice kidneys, which was concluded from increased lipid 
peroxidation parameters (conjugated dienes and trienes, and 
malondialdehyde), downregulation of glutathione S-transferase and, 
upregulation of glutathione peroxidase genes. Expression of the 
transcription factors of the antioxidant genes, Keap1 and Nrf2, 
respond differentially to OTA exposure. The gene expression of Keap1 
decreased, and the gene expression of Nrf2 increased. However, 
protein expression of NRF2 and its Ser40 phosphorylated form did 
not alter (Ferenczi et al., 2020). In a study with porcine kidney cells, 
AFB1 and deoxynivalenol showed synergistic cytotoxic effect, which 
suggests the importance of multiple mycotoxicosis even in farm 
animals as well (Zachariasova et al., 2014). Pigs are the most sensitive 
farm animal to OTA (Tkaczyk et al., 2021). Progressive mycotoxin-
induced porcine nephropathy is seen in pigs with a dietary 
concentration of 1 mg/kg of OTA. Low levels of OTA could induce 
polydipsia or polyuria, while higher levels could even provoke 
vomiting, diarrhea and even death (Tkaczyk et al., 2021). OTA has a 

high affinity for serum albumin and other macromolecules in the 
blood, so its half-life is estimated to be more than 72 h. Consequently, 
it is hard to detect a high concentration of OTA in the urine, even if 
the blood levels are high as well (Kőszegi and Poór, 2016).

Fumonisins are water soluble and polar, enabling partial urinary 
excretion (Yang et  al., 2022) in monkeys (Shephard et  al., 1994), 
meanwhile providing dose dependent urinary excretion in rats (Cai 
et al., 2007). From a nephrotoxic viewpoint, it’s not the relatively low 
urinary excretion rate is critical (Norred et  al., 1993), but the 
biochemical route/mode of action of FB1. This leads to marked cellular 
disturbances, which are dependent on its molecular structure. As FBs 
are conformational analogs of free sphinganine, competitively 
inhibiting the ceramide-synthase (CerS) enzymes (Loiseau et al., 2015; 
Wang et al., 2015), they demonstrate competitive-like kinetic behavior 
with both sphinganine and stearoyl-CoA, in cell culture (Merrill et al., 
1993). As a consequence, the substrates sphinganine (Sa) and, less 
markedly sphingosine (So) accumulate (Riley and Merrill, 2019) in the 
affected tissue(s); this accretion is so characteristic for FB1 that Sa and 
So (and their ratio, e.g., in the urine) are accepted as interspecific, 
sensitive FB1 biomarkers, e.g., for humans (Schertz et al., 2018; Wangia 
et al., 2019); rat (Schertz et al., 2018); horse and pig (Riley et al., 1994). 
Though FB1 exerts organ-specific toxic effects, and mammals and birds 
are react differently, the Sa/So ratio correlates with liver and kidney 
toxicity as well it often precedes signs of acute toxicity (Tran et al., 
2006). This occurs in in fowl where the kidney is not the primary target 
organ. However, urinary Sa/So ratio is still an important biomarker, 
e.g., in ducks (Tran et al., 2006) and in turkeys (Guerre et al., 2022).

BIOMIN reported 64% contamination rate of FB1 in grain in 2020 
(BIOMIN, 2021) demonstrating how worldwide the problem is. The 
FB1 spoilage/contamination of farm and pet animals’ grain based feed 
sources (primarily corn), leads to a wide spectrum of symptoms based 
on disturbances in multiple organs: liver and kidney toxicity is the 
main characteristic in many species (Riley and Merrill, 2019). Other 
symptoms are also reported, including the development of tumors in 
rodents [increased tumor necrosis factor (TNF)-α secretion; Dugyala 
et  al., 1998], vascular and brain dysfunction and equine 
leukoencephalomalacia (Riley and Merrill, 2019), and porcine 
pulmonary edema syndrome (Haschek et  al., 2001). Meanwhile 
carnivores are less severely exposed to mycotoxins of grain, complete 
feed ratios pose risk even in these species (dogs: Ekici and Yipel, 2022; 
cats: Grandi et al., 2019).

In general, ruminants are treated as less susceptible to fumonisins, 
since the ruminal microbiota provide a natural barrier with a 
substantial degradation capacity (Seeling et al., 2005). In fish, because 
of the sampling uncertainties, urinary biomarkers are not yet been 
published, but FB1 has been tested as a significantly harmful agent 
(Meredith et  al., 1998), and has been found to make intensive 
perturbations in the plasma concentration and relative ratio of free 
sphingoid bases (incl. Sa and So).

4.2. Kidney biomarkers in detecting 
mycotoxin induced nephrotoxicity

Until recently the diagnosis of mycotoxin toxicity was mainly 
based on quantitative determination of mycotoxins in feeds and 
impairment of the production traits (Heyndrickx et al., 2015; Watson 
et  al., 2018; Ali and Degen, 2020). However, the organ or 
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mycotoxin-specific markers are rare in diagnostic processes except 
detection of mycotoxins or their metabolites in blood or urine. 
Noninvasive and specific markers, such as urinary biomarkers, would 
be effective complementary tools for correctly diagnosing kidney 
damage (Vanmassenhove et al., 2013; Wasung et al., 2015). Still, there 
is some limitation to their use due to methodological problems with 
urine sample collection. It would be useful even in farm conditions 
for mammals, such as pigs, ruminants, and horses, but it cannot 
be  used in avian species due to cloaca. In pigs, the noninvasive 
method for urine collection force the pigs to stand up by clapping or 
shouting. A few minutes later, animals spontaneously show 
micturition and urine can be collected. In cattle, a noninvasive plastic 
urine collection device is proposed for females (Lascano et al., 2010), 
which can replace catheters but allow them to collect urine from the 
urethra. In horses, most animals urinate soon after standing or 
shortly after putting them in a freshly bedded stall, and the urine can 
be  collected manually during urination (Schumacher and Moll, 
2011). Another methodical problem is the lack of availability of 
species-specific urinary biomarker as diagnostic kits, except 
pig-specific KIM-1, however, this problem could be easily solved by 
molecular biological approaches.

In free-range animals it may be easier to use serum rather than 
urine to test for biomarkers. A strong correlation between AFB1 
intake and serum levels has been demonstrated (Turner and Snyder, 
2021). However, in a study of children in Tanzania, only a modest but 
statistically significant correlation was observed with the AF-alb 
biomarker and maize-based AF intake (Turner and Snyder, 2021). The 
same publication reported that “The toxicokinetics of OTA are 
complex; while rapidly absorbed, OTA is non-covalently associated 
with serum albumin, with a suggested <0.2% OTA free fraction in 
serum” indicating that the measure of serum OTA is complex and may 
be  species specific (Turner and Snyder, 2021). Serum levels may 
be used as markers of exposure but give little data on organ damage. 
Serum levels of biomarkers of kidney damage are relatively insensitive. 
Urinary KIM-1 and NGAL have been shown to be markers of kidney 
damage, however in serum both may indicate non-kidney damage. 
KIM-1 was first known as TIM-1, T-cell immunoglobulin and mucin-
containing molecule. Neutrophil gelatinase-associated lipocalin 
(NGAL), is an inflammatory marker associated with the 
pathophysiology of heart failure (HF), the psychopathology of 
depression and the co-existing symptoms of depression in HF patients 
(Naudé et  al., 2015). Consequently, neither offer much specificity 
regarding kidney damage.

AFs and OTA toxicity are global problems in agriculture because 
they contaminate cereal grains which are basic components of animal 
feed selective biomarkers would therefore provide important tools for 
diagnosing kidney damage caused by mycotoxins. Urinary parameters, 
such as polyuria, glucosuria, proteinuria, and osmolality, are generally 
used as markers of kidney damage in farm animal practice (Elling 
et al., 1975) but lack specificity. A good correlation has been observed 
between the amount of mycotoxins ingested and the amount of 
relevant biomarkers, excreted in urine of pigs (Gambacorta et al., 
2013). The nontoxic metabolite of OTA, ochratoxin α, was also 
detected in pig urine (Tkaczyk et al., 2021). However, the excretion of 
mycotoxin metabolites is not specific to the kidney and requires 
specific analytical tools for analyzing, including LC-MS/MS. As the 
availability of these techniques requires specific laboratories, routine 
veterinary practice is not available in rural areas. Even in recently 

published research, a group analyzed the effects of OTA and FB1 on 
mice, however just BUN and sCr were applied to monitor kidney 
damage (Li et al., 2023). Other, more specific urinary biomarkers, such 
as KIM-1 and NGAL, were proposed by Chade et al. (2018). These 
markers are used to detect kidney disease, and have the potential to 
somehow monitor mycotoxin exposure to, e.g., AFs or OTA. KIM-1 
is a sensitive noninvasive urinary biomarker because its gene 
expression is low in normal kidneys but increases dramatically after 
proximal tubular cell damage and repair. It can be determined in urine 
(Ichimura et  al., 2004; Hoffmann et  al., 2010a). Several other 
biomarkers were proposed for detecting kidney damage caused by 
OTA, such as lipocalin-2, tissue inhibitor of metalloproteinases-1 
(Timp-1), clusterin, osteopontin, and vimentin, although KIM-1 was 
the most promising one. However, in in vitro studies, these markers 
were not so suitable for the detection the nephrotoxic effects of OTA 
(Rached et al., 2008). On the contrary, OTA treatment was applied to 
mice where KIM-1 and NGAL were used to monitor the 
nephrotoxicity of the xenobiotics (Hassan et al., 2022). Studies have 
also been carried out using serum or blood samples collected to 
determine biochemical parameters which reflect kidney function 
(Mohd Redzwan et al., 2014). Recently, a pilot study found a good 
correlation among AFB1 intake and kidney function using urinary 
KIM-1, and Cystatin-C, in human samples (Díaz de León-Martínez 
et al., 2019). These markers are sensitive and specific for renal damage, 
but not specific for the mycotoxin exposure alone. Combining these 
markers with secreted metabolites in urine or blood could increase 
their specificity toward mycotoxins.

The most accepted and used urinary biomarkers for FB1 among a 
wide variety of vertebrate species is the free sphinganine and 
sphingosine ratio, more recently further possible candidate molecules 
have been suggested. Using LC-TOF (time of flight approach; 
ceramide-C42 compounds) were found to be of diagnostic value in 
fibrotic kidneys of mice and humans (Eckes et al., 2021), as well as FB1 
fed piglets’ liver (Loiseau et al., 2015). However they have not yet been 
tested as a direct FB1 urinary biomarker. Similarly, Loiseau et al. (2015) 
reported that sphingomyelins (SPM), specifically SPM-d18:1/16:0, 
SPM-d18:0/18:0, SPM-d18:1/18:0, and SPM-d18:1/24:1 decreased 
significantly in porcine liver with FB1 feeding, while Marczak et al. 
(2021) found SPM-C39:1 to be indicative of CKD (chronic kidney 
disease). This requires further testing, to determine whether SPM and 
possibly ceramide molecules will become alternative biomarkers, 
besides the most widely accepted Sa/So ratio in pet and farm animals, 
like in pigs (Marczak et  al., 2021). The most sensitive fumonisin 
toxicity biomarker in pigs (and most mammals) is the free 
sphinganine/sphingosine ratio in the serum as well (Kim et al., 2006; 
Burel et al., 2013).

It is important to note that sphingosine and sphinganine analysis 
needs liquid chromatographic techniques (LC/MS, LC/MS-MS), and 
further possible candidate compounds need much more sensitive 
detection (LC-TOF or LC-qTOF). These tests are unsuitable for point 
of care testing but would be of value as confirmatory laboratory-based 
tests. So far, just limited data is available in connection with FB1 and 
the emerging kidney biomarkers (NAG, KIM-1, NGAL), but a dose–
response experiment on HK-2 kidney cells showed an increased 
expression of Kim-1 correlated with the mRNA level after FB1 
treatment (Hou et al., 2021). Anyway, other animal studies are still 
needed to be carried out to analyze the exact correlation among these 
biomarkers and FB1.
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4.3. Potential assay procedures for testing 
mycotoxin induced nephrotoxicity

As mentioned above, the most widely used biomarkers in other 
fields, are KIM-1, NAG, NGAL, Cystatin-C and β2-MG (Table 1). 
There is an increasing demand for KIM-1 assays, as this has been 
shown to be a suitable marker for nephrotoxicity testing of drugs 
(Wasung et  al., 2015; Song et  al., 2019). Enzyme-linked 
immunosorbent assay (ELISA) or microparticle Luminex xMAP 
Technology assay could be used to measure KIM-1 levels (Vaidya 
et al., 2009). Different types of assays are available for use in animals, 
however, some of these procedures have not been modified for the 
specific determination of mycotoxins. As an example, Pig HAVCR1/

KIM-1 Sandwich Elisa KIT is available for the detection of porcine 
KIM-1 in plasma and serum and other biological fluids (e.g., FineTest 

® EP0102 or LSBio Biotechnology ® LS-F36323). A good KIM-1 assay 
should be specific for the cleaved extracellular domain of the protein. 
In a mentioned Sandwich Elisa kit, the detection range is between 
0.15–10 ng/mL, and the sensitivity is 0.094 ng/mL, in serum or blood 
samples. A KIM-1 assay has been developed for mouse, with a 
sensitivity of 2 pg/mL, in which has potential for use in urine 
(Sabbisetti et al., 2013).

Different procedures exist detecting and quantifying urinary NAG 
activity, either spectrofluorimetrically or spectrophotometrically using 
a wide-selection of substrates. There are available a pig N-acetyl-β-D-
glucosaminidase (NAG) ELISA Kit, with a detection range of 
0.156  –10 mU/mL (e.g., Cusabio ® CSB-E16198p). ELISA or a 
chemiluminescent microparticle immunoassay (CMIA) kits are also 
available for the measurement of NGAL. This biomarker is sensitive 
biomarker for renal damage to the proximal tubular segment of the 
nephron of man as well as animals. Pig NGAL ELISA Kits also exists 
with a detection range of 4–400 pg/mL (e.g., Biporto ® Cat: KIT 044).

Without readily available suitable methods to measure kidney 
biomarkers, their utility can be limited. Moreover, a wide array of 
kidney parameters, including novel biomarkers should be analyzed in 
parallel with mycotoxin metabolites. Quantification of mycotoxins in 
urine could be achieved by combining with specific KIM-1 tests. This 
would provide a point of care test for detecting nephrotoxicity caused 
by mycotoxins in farm animals. Urinary NAG is the predominant 
enzyme assay used in screening programs and is well suited for 
screening in low GDP countries. KIM-1 lateral-flow strip tests can 
be also used for screening programs (see Table 2; Wasung et al., 2015; 
Ráduly et al., 2021; Pócsi et al., 2022).

Rapid lateral flow tests are urgently needed for predicting AKI 
easily and as early as possible. For example rapid tests have been 
developed for human KIM-1 although the sensitivity may not 
be sufficient yet to predict AKI (Stojanović et al., 2015). There are 
some other reports in connection with KIM-1, lateral flow assays have 
been developed and are under trials (Vaidya et al., 2009). However, 
lateral flow tests need to be at least semi-quantitative, which correlates 
to the kidney damage caused by a toxicant (Vaidya et al., 2009).

Concluding remarks

Mycotoxins in animal feed is an increasing problem worldwide 
and their deleterious effects are currently underestimated. They cause 
potentially severe toxicological problems, affecting both man and 
animals. Pigs are slaughtered at the age of 6 months and develop 
kidney disease only very rarely. Feed testing is the routine way to 
control mycotoxin uptake. Kidney and liver are particularly sensitive 
to mycotoxin toxins and any problems in these organs compromise 
overall animal health status and as well meat production. Urinary 
kidney biomarkers are not generally analyzed in connection with 
mycotoxin exposure, however, this is recommended as it could help 
in treating as well as identifying affected animals. The mycotoxins 
OTA, AFB1, FB1 and CIT are of particular concern and their 
metabolites supplemented by KIM-1 would initially be a good choice 
for testing for mycotoxin induced nephropathy. Parallel studies with 
NAG and NGAL should be carried out to determine their value as 
screening tests. The availability of these tests would help to alleviate 

TABLE 1 A brief summary of the suggested techniques, what biomarkers 
might be used for detection of mycotoxin induced nephrotoxicity.

Mycotoxin Biomarker Suggested 
technique

References

AFB1 KIM-1, Cystatin 

C, NGAL

Lateral flow strip 

Immunoassays 

ELISA

Vaidya et al. 

(2009) and Díaz 

de León-Martínez 

et al. (2019)

OTA KIM-1, NGAL, 

NAG, β2-MG

Lateral flow strip 

Immunoassays 

ELISA

Rached et al. 

(2008), Vaidya 

et al. (2009), 

Yordanova et al. 

(2010), Hoffmann 

et al. (2010b), and 

Hassan et al. 

(2022)

Fumonisins Sphinganine and 

sphingosine ratio

HPLC LC–MS 

(from blood spot) 

LC-ESI-MS, LC/

MS–MS LC-FD

Merrill (1988), 

Seefelder et al. 

(2002), Schmidt 

et al. (2006), Silva 

et al. (2009), and 

Riley et al. (2015)

TABLE 2 Kidney biomarkers after mycotoxin exposure: a possible way to 
detect mycotoxin exposure.

Mycotoxin Used 
Biomarker for 
detecting 
nephropathy

Sample 
type

References

OTA NGAL, KIM-1 (urine) Mouse Hassan et al. 

(2022)

OTA KIM-1 (urine) Rat Rached et al. 

(2008)

FB1 + OTA BUN, Cr, MDA 

(serum)

Mouse Li et al. (2023)

AFB1 AFB1-

lysine(serum) + KIM-

1, Cystatin C (urine)

Human Díaz de León-

Martínez et al. 

(2019)

FB1 Sa/So ratio (urine) Mouse, pig Kim et al. (2006) 

and Burel et al. 

(2013)
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the increasing problem of mycotoxin contamination, but based on 
those tests the particular mycotoxin cannot be identified. Mycotoxin 
toxicity is a growing global health problem and the decrease in the 
amount of animal losses caused by mycotoxin exposure would have 
ecological as well as economic benefits. On the other hand, urinary 
kidney biomarkers are specific for kidney damage, but not for 
mycotoxin induced nephropathy alone. As a consequence, the 
recommended approach could be useful as a detection method when 
used in combination with the biomarkers of the mycotoxin 
metabolism excreted into the urine or blood.
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