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REVIEW

Cycling matters: Sex hormone regulation of vascular potassium channels
Samuel N Baldwina, Thomas A Jeppsa, and Iain A Greenwoodb

aVascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; bVascular Biology Research 
Centre, Institute of Molecular and Clinical Sciences, St George’s University of London, London, UK

ABSTRACT
Sex hormones and the reproductive cycle (estrus in rodents and menstrual in humans) have 
a known impact on arterial function. In spite of this, sex hormones and the estrus/menstrual cycle 
are often neglected experimental factors in vascular basic preclinical scientific research. Recent 
research by our own laboratory indicates that cyclical changes in serum concentrations of sex - 
hormones across the rat estrus cycle, primarily estradiol, have significant consequences for the 
subcellular trafficking and function of KV7. Vascular potassium channels, including KV7, are 
essential components of vascular reactivity. Our study represents a small part of a growing field 
of literature aimed at determining the role of sex hormones in regulating arterial ion channel 
function. This review covers key findings describing the current understanding of sex hormone 
regulation of vascular potassium channels, with a focus on KV7 channels. Further, we highlight 
areas of research where the estrus cycle should be considered in future studies to determine the 
consequences of physiological oscillations in concentrations of sex hormones on vascular potas-
sium channel function.

ARTICLE HISTORY
Received 23 March 2023  
Revised 7 May 2023  
Accepted 19 May 2023  

KEYWORDS
ion channels; vascular 
biology; estrus cycle; 
estrogens; progesterone; 
testosterone

Introduction

Cyclical changes in sex hormones driven by the 
human or rodent reproductive cycle coincide with 
changes in vascular function [1]. To date, research 
regarding the impact of sex hormones on vascular 
function has focused on sex-hormone-mediated 
changes in the production of endothelial-derived 
relaxing factors such as nitric oxide (NO), prosta-
glandin I2 (PGI2), or endothelial-derived hyperpo-
larization (EDH) [2–5]. These pathways depend on 
the activation of vascular smooth muscle cell 
(VSMC) potassium (K+) channels to elicit their 
effect. For example, large conductance calcium- 
activated potassium channels (BKCa), voltage-gated 
potassium channels (KV), and inwardly rectifying 
potassium channels are activated in response to 
NO [6,7], PGI2 [8–12], and EDH [13,14], respec-
tively. Yet, comparably little is known about the 
influence of sex hormones on vascular smooth mus-
cle K+ channels. Recently, Baldwin et al. 2022 and 
2023 showed the functional impact of arterial 
KCNQ-encoded voltage-dependent potassium chan-
nels (termed Kv7s) changed considerably across the 

rat estrus cycle [12,15]. These works are in the van-
guard of research identifying estrus-cycle-dependent 
oscillations in smooth muscle functionality outside 
of the sex-dependent differences in arterial respon-
siveness conventionally reported [16]. Alterations in 
smooth muscle ion channel activity driven by sex 
hormone oscillations have potential implications in 
disease manifestations and pharmacological treat-
ments, highlighting why estrus “cycling” matters. 
This review provides an overview of this nascent 
and emerging field of research and draws compar-
isons with known work in other cell types. It focuses 
primarily on Kv7 channels, but also includes aspects 
on how sex and sex hormones regulate other K+ 

channels.

The estrus cycle

Sex hormones, principally estrogens, progesterone, 
and androgens, fluctuate throughout the course of 
the estrus (rodent) and menstrual (human) cycles. 
A direct comparison between rodent and human 
cycles is difficult as the rodent estrus cycle last 
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only 4–5 days and is split into four stages (proes-
trus, estrus, metestrus and diestrus); whereas the 
human cycle lasts roughly 28 days and has three 
phases (follicular, ovulation and luteal), followed 
by menses. Deducing the impact of sex hormones 
on vascular reactivity throughout the menstrual 
cycle is challenging, not least because of additional 
genetic and environmental factors that will also 
drive significant changes in human vascular reac-
tivity. Thus, there is a paucity of human data 
describing arterial function changes throughout 
the menstrual cycle. As such, this review will 
focus primarily on the rodent estrus cycle, which 
is described comprehensively by Nilsson et al. 
(2015) [17]. A brief overview of each hormone 
and their vascular receptors will be given here.

Estrogen

The bioactive form of estrogen, 17-β estradiol 
(E2), is synthesized in the theca and granulosa 
cells of the ovaries, the adrenal glands and 
locally within the vasculature by aromatase 
enzymes. E2 produces both genomic and fast 
acting non-genomic vascular effects through 
nuclear- and membrane-bound estrogen recep-
tors (ERs). ERα/ERβ, which are canonically con-
sidered cytoplasmic nuclear receptors, dimerize 
to form homo/hetromers upon binding E2, 
which translocate to the nucleus. Active nuclear 
ERs bind estrogen response elements within the 
genome and regulate transcription [18,19]. E2 
also exerts rapid non-genomic effects that derive 
from membrane bound ERα/β [20], which evoke 
a myriad of intracellular signaling cascades 
attributed to mitogen activated protein kinase 
(MAPK)/extracellular signal- regulated kinases 
(ERK), serine and threonine kinases, phosphoi-
nositide 3-kinase (PI3K), and cAMP [21–24]. 
ERα/ERβ are ubiquitously expressed across the 
vasculature [19,25]. A G protein-coupled estro-
gen receptor (GPER1), designated GPR30 initi-
ally, is also expressed in the membrane of the 
sarcoplasmic reticulum, the golgi apparatus and 
the plasma membrane of VSMCs and endothelial 
cells (ECs) [19]. GPER1 couples to a complex 
array of signaling cascades via Gαs,i,q/ll and is 
further complicated via receptor cross talk with 

the mineralocorticoid and epidermal growth fac-
tor receptors [26,27].

Progesterone

Progesterone is a steroidal hormone produced 
within the adrenal cortex, gonads and the corpus 
luteum of the pregnant rat. Its receptors have 
been found within both ECs and VSMCs of rats, 
mice and humans [28]. Compared to E2, the 
literature on progesterone within the vasculature 
is sparse, though it can be broken down into 
nuclear and non-nuclear signaling. Progesterone 
binds two distinct cytoplasmic nuclear receptors 
termed progesterone receptor (PR) A/B, which 
are derived from a single gene. Upon binding 
progesterone, the receptors dimerize, forming 
homo/heteromers, which translocate to the 
nucleus and bind progesterone response elements 
that subsequently regulate gene transcription 
[29,30]. Moreover, a novel class of membrane- 
bound progesterone receptor (mPR) has been 
discovered and includes three subtypes, α, β and 
γ. The activation of mPR is associated with Gαi 
and subsequent decrease in cAMP, as well as the 
activation of MAPKs, ERK1/2, and c-Jun N-term-
inal kinase (JNK1/2) [31–33].

Testosterone

Testosterone, and its more potent analogue di- 
hydro testosterone, are produced within the 
gonads and adrenal glands of both sexes. Like E2 
and progesterone, testosterone activates both 
nuclear- and membrane-bound androgen recep-
tors (ARs). Classic ARs include two isoforms, A/ 
B, which are cytosolic nuclear transcription factors 
that dimerize and translocate to the nucleus where 
they bind androgen response elements, mediating 
a change in gene transcription [24]. Recently, 
a novel class of testosterone-activated G protein- 
coupled receptor was discovered [34,35], in addi-
tion to membrane-associated nuclear ARs. Upon 
binding testosterone, activated membrane- 
associated nuclear, and membrane-bound 
G protein-coupled ARs undergo a conformational 
change in shape, and can mediated rapid non- 
genomic effects associated with the activation of 
a protein kinase C (PKC), protein kinase A (PKA), 

2 S. N. BALDWIN ET AL.



MAPK, cAMP, ERK, and protein kinase G (PKG) 
[24,34,35]. Testosterone can also be converted to 
E2 locally within the vasculature by aromatase 
activity, which complicates delineation between 
vascular testosterone and E2 signaling.

K+ channels

K+ channels are a fundamental factor in the gen-
eration of VSMC resting membrane potential, 
which is roughly −70 to −55 mV [36]. As K+ chan-
nels open, the cell becomes permeable to K+ ions, 
which move down their electrochemical gradient, 
exiting the cell, thus moving VSMC membrane 
potential (Vm) toward the equilibrium potential 
for K+ (Ek). As Ek within VSMC is roughly −90  
mV, the cell membrane becomes hyperpolarized. 
Despite the known role for K+ channels in VSMC 
reactivity within the male, their role within the 
female vasculature and how their activity is 
affected by hormonal fluctuations is poorly under-
stood. K+ channels are principally comprised of 
homo or heterotetrameric configurations of α- 
subunits that exist within the membrane in asso-
ciated with β-auxiliary subunits. β-auxiliary subu-
nits regulate the biophysical, physiological and 
pharmacological properties of the channel. Both 
the α- and β-subunits are candidate targets for 
sex hormone regulation of ion channel function, 
and will be discussed below. See Table 1 for 
a summary of the effect of sex hormones on vas-
cular and non-vascular K+ channels.

KV7 channels

KV7 channels are a KV channel subfamily encoded 
for by the genes KCNQ1–5, which give rise to 
distinct α-subunit proteins, termed KV7.1–7.5, 
respectively. KV7 channels activate slowly upon 
depolarization with a relatively negative threshold 
compared to other KV channels (~-40 mV) and 
exhibit little inactivation. Every human or rodent 
vascular bed studied expresses KV7 channel tran-
scripts, with Kcnq1, Kcnq4, and Kcnq5 being the 
principally expressed genes [92,93]. There is com-
parably little contribution from Kcnq3 and rarely 
expression of Kcnq2. KV7 channel stoichiometry 
varies between systems. Vascular KV7.1 is com-
monly thought of as exclusively homotetrameric 

[94], although Oliveras et al. (2014) demonstrated 
a KV7.1/7.5 heteromer within coronary artery 
VSMCs from rats [95]. Vascular KV7.4 readily 
forms heterotetrameric channels with Kv7.5, but 
are also found as homotetrameric channels, 
whereas KV7.5 exists predominantly with KV7.4 
in native VSMCs [96,97]. Within rat [98] and 
murine [99] mesenteric VSMCs, KV7.4 and 
Kv7.4/7.5 channels exist in close proximity with 
the KCNE4 β-auxiliary subunit protein, which 
positively regulates channel trafficking and bio-
physical/pharmacological properties [99].

KV7 channels regulate arterial smooth muscle 
contractility and are a key component of receptor- 
mediated vasodilations in arteries from male ani-
mals. Application of the pan-KV7 channel block-
ers, linopirdine or XE991, depolarizes rat Vm 
[100,101] and mediates a rise in baseline tension 
in both human and rodent arteries [92,102–105]. 
In contrast, KV7.1-specific blockers like HMR- 
1556 or chromanol 293B do not effect baseline 
tension in rat aorta, mesenteric nor intrapulmon-
ary arteries [106]. Functional vascular KV7 channel 
activity is further evidenced by relaxation of pre- 
contracted arterial tone in response to several KV 
7.2–7.5 channel activators (e.g. retigabine, acryla-
mide S-1, ML213) across a number of rodent 
arteries [93,105,107,108]. Similarly, activators of 
KV7.1, including (R)-L3, Mefenamic acid and 
ML277 [106,108], are effective and reversible 
relaxants of contracted arteries. These data suggest 
that KV7.4/KV7.5 are regulators of resting arterial 
smooth muscle Vm due to their low activation 
threshold and that their activity hyperpolarizes 
the membrane potential reducing the open prob-
ability of voltage-gated calcium channels, thereby 
negating Ca2+ influx. Whereas KV7.1 channels do 
not contribute to resting Vm, but are functionally 
expressed.

Pan-KV7 blockers and molecular knockdown of 
KV7.4/KV7.5 channels also impair receptor- 
mediated vasorelaxation generated by β-adrenore-
ceptor, adenosine, calcitonin-gene related peptide, 
and prostacyclin (IP) receptor agonists (cAMP- 
linked [12,96,104,109,110]), as well as atrial 
natriuretic peptide and nitric oxide-mediated 
responses (cGMP-linked [111–113]) in many 
arteries from male rats. Interestingly, β- 
adrenoreceptor mediated relaxation differentially 
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Table 1. The effect of sex hormones on vascular and non-vascular K+ channels. *= hormone mediator speculated.
Channel function/expression

Upregulated Downregulated No effect

Ion 
channel Hormone Subtype Model Ref Subtype Model Ref Subtype Model Ref

KV7 Estrogen KV7.1 Xenopus Oocytes [37]
HT29cl.19A [38]
Rat: Distal colic 
crypt cells

[38–40]

KV7.1: 
KCNE1

Mouse/Guinea pig: 
Ventricular 
myocytes

[41]

KV7.1: 
KCNE3

Chinese Hamster 
Ovarian cells

[40]

KV7.4 Rat mesenteric/ 
renal VSMC

[12,15]

Progesterone KV7.1/ 
KV7.5/ 
Kcne1

Murine uterus* [42] KV7.2–5 Rat mesenteric 
artery

[12]

Testosterone KV7.1 Rat cardiac myocyte [43]
KCNE4 Mouse cardiac myocyte [44]

KV1 Estrogen KV1.5 Murine ventricular 
myocytes

[41,45]

Progesterone KV1.5 H9C2 cells [46] KV1.1–6 Murine ventricular 
myocytes

[46]

Testosterone KV1.5 Murine 
ventricular 
myocytes

[47,48]

KV1.5 Rat aorta [49]
KV2 Estrogen KV2.1 Human osteoblast- 

like MG63 cells
[50]

Cultured rat 
hippocampal 
neurons

[51]

Guinea pig heat [41]
KV2.1/ 

2.2
Murine Β- 
pancreatic cells

[52]

KV2.2 Cultured rat 
cerebellar granule

[53]

HEK-293 cells [53]
Progesterone KV2.1 H9C2 cells [46] KV2.1 HEK293 cells [54]

KV11.1 Estrogen KV11.1 Murine ventricular 
myocytes

[55] KV11.1 Guinea pig heat [41,56]

Human ECG [57] HEK293B [56,58]
HEK293B [57] Computational [59]

Progesterone KV11.1 Guinea pig ventricular 
myocytes

[60] KV11.1 Rat neonatal 
cardiac myocytes

[61]

Computational [60] Murine uterus* [62]
KV11.1: 
KCNE2

Human uterus* [63]

Testosterone KV11.1 HEK293B [64]
Rabbit ventricular 
myocytes

[65]

(Continued )
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couples to KV7 in a vascular bed specific manner, 
via PKA in renal arteries, and a novel alternate 
signaling cascade mediated by exchange protein 
activated by cAMP (EPAC) in mesenteric arteries 
[109]. KV7.1-specific blockers do not affect an 
array of receptor-mediated vasorelaxations, 
although Baldwin et al. (2022) revealed that relaxa-
tions of rat mesenteric artery induced by activation 
of IP receptors, either with iloprost or MRE-269, 
were attenuated by HMR1556 to the same degree 
as the pan-Kv7 blocker linopirdine.

A growing body of literature indicates sexual 
dimorphisms in vascular KV7 physiology. Abbott 
and Jepps (2015) observed that mesenteric arteries 
from male Kcne4-/- knockout mice showed an 
increased sensitivity to α-1 adrenoreceptor agonist 
methoxamine and decreased sensitivity to KV7.2– 
7.5 activator ML213, which was not observed in 
females [98]. Further, Berg (2018) observed that 
vascular KV7 channel function was preserved in 
female hypertensive animals when compared to 

males [114]. As above, Baldwin et al. (2022) 
demonstrated a novel role for KV7.1 as the down-
stream target of IP receptor evoked relaxation in 
mesenteric arteries from both male and female rats 
[12]. However, the sensitivity of IP receptor- 
mediated relaxation to inhibition of KV7.1 by pre- 
incubation of HMR-1556 (10 µmol-L−1) was 
absent in arteries from animals harvested during 
proestrus or estrus stages of the estrus cycle [12], 
stages associated with an initial spike in serum 
concentration of E2 [17]. This correlated with 
a significant decrease in sensitivity to IP receptor- 
mediated relaxation when compared to mesenteric 
arteries from female animals harvested from dies-
trus/met-estrus, where HMR-1556 still had an 
effect. These findings were the first demonstration 
of an estrus cycle-sensitive regulation of arterial 
KV7 function.

Subsequently, Baldwin et al. (2023) focused on 
responsiveness of several KV7 channel activators 
across the estrus cycle of the rat. These 

Table 1. (Continued). 
Channel function/expression

Upregulated Downregulated No effect

Ion 
channel Hormone Subtype Model Ref Subtype Model Ref Subtype Model Ref

BKCa Estrogen BKCa 

1.1: 
KCaβ1

Rat cerebral arteries [66] BKCa1.1 HUV-EC-C [67]

BKCa1.1 Human coronary 
arteries

[68,69]

Porcine coronary 
arteries

[70]

Cultured human 
coronary/aortic VSMCs

[71]

Ovine uterus arteries [72– 
74]

Progesterone BKCa1.1 Xenopus oocytes [75] BKCa1.1 Ovine uterus 
arteries

[72]

Testosterone BKCa1.1 Porcine coronary 
arteries

[76,77]

Rat mesenteric arteries [78]
KATP Estrogen KATP: 

SUR1, 
mKATP

Murine myocardium [79] KATP Murine β- 
pancreatic cells

[80–82] KATP Human 
coronary artery

[83]

KATP: 
SUR2A

H9c2 [84]

KATP: 
SUR1

Rat brain cortices [85]

KATP Murine gonadotrophin 
releasing neurons

[86,87]

Human myocardium [83]
Testosterone KATP Canine coronary artery [88] KATP Rat aorta [89]

Rat aorta [90]
Human corporal artery [91]
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experiments revealed that during cycle stages asso-
ciated with high E2, proestrus/estrus, KV7.2–5 
channel activator-mediated relaxations were mark-
edly impaired when compared to diestrus/metes-
trus, where serum E2 was low [15]. Similarly, 
thromboxane A2 (TXA2) receptor-mediated vaso-
constriction was enhanced and β adrenoceptor- 
mediated relaxation was impaired during proes-
trus/diestrus when compared to diestrus/metestrus 
[15]. The sensitivity of these responses to KV7 
inhibition during proestrus/estrus was also dimin-
ished [15]. An impairment of vascular function 
during proestrus/estrus was associated with 
a translocation of KV7.4 from the plasma mem-
brane. Both KV7 function and protein membrane 
abundance were impaired by application of exo-
genous E2 and the GPER1 agonist, G1, in arteries 
from females form low serum E2 stages of the 
estrus cycle, diestrus/metestrus, but not proes-
trus/metestrus. These ex vivo manipulations were 
prevented by prior application of the GPER1 
antagonist, G36. The findings of Baldwin et al. 
(2023) were the first to identify a cyclical estrous- 
regulation of an ion channel in the vasculature and 
the functional consequences. This work reinforces 
earlier studies [115–117], indicating that KV7.4 
channel abundance in the plasma membrane is 
labile and at the mercy of the arterial environment.

Whilst the impact of sex hormones on vascular 
Kv7 channels is a nascent field of research, work in 
other cell types also indicates an acute estrogenic 
inhibition of KV7 function and expression. For 
example, supraphysiological concentrations of E2 
(1 µmol-L−1) inhibit KV7.1:KCNE1 channel 
derived currents in an heterologous expression 
system [37] and the E2 receptor antagonist, 
tamoxifen, increased KV7.1 function and expres-
sion in murine and guinea pig ventricular myo-
cytes [41], suggesting a tonic estrogenic 
suppression of the channel. E2-induced inhibition 
of KV7.1 derived currents in rat distal colic crypt 
cells occurs in a PKC-δ-dependent manner, inde-
pendent of the classical estrogen receptors [39], 
and basolateral KV currents responsible for Cl− 

secretion are inhibited by E2 via uncoupling of 
KV7.1:KCNE3 [40]. Moreover, in HT29cl.19A 
cells, E2 abrogated KV7.1 membrane expression 
through PKC-δ-dependent channel endocytosis 
into early endosomes, which is then recycled to 

the membrane [38]. Taken as a collective, the 
aforementioned studies provide strong evidence 
of estrogenic KV7:KCNE channel regulation in 
a complex process of channel recycling. Within 
renal arteries from female rats, VSMC KCNE4 
membrane abundance did not fluctuate across 
the estrus cycle [15]. Consequently, the role of 
KCNE4 in E2 regulation of vascular KV7.4 remains 
to be determined, though a process of E2- 
mediated vascular KV7.4 recycling similar to that 
described in Rapetti-Mauss et al. (2013) is plausi-
ble, in light of the rapid recovery of vascular KV 
7.2–5 function between estrus cycle stages [15].

In contrast to E2, short-term supplemental pro-
gesterone incubation on ex vivo mesenteric 
arteries from female rats had no effect on the 
vasorelaxation elicited by KV7.2–7.5 channel acti-
vators across the estrus cycle [15]. These data 
cannot conclusively rule out a role for progester-
one on KV7 channel function or expression, as 
KV7 channel modulator sensitivity and membrane 
abundance of KV7.4 was enhanced during metes-
trus/diestrus, where serum progesterone was high-
est [15]. Similarly, in mouse myometrial tissue, the 
total copy number for Kcnq1, Kcnq5 and Kcne1 
increases during metestrus [42]. Future experi-
ments with antiprogestogens, and long-term incu-
bation of arteries (+24hrs) are required to 
determine the impact of progesterone on vascular 
KV7 channel function.

Within male rodents, testosterone increases the 
relative expression of Kcnq1 in cardiomyocytes 
[43]. This has been postulated to underpin testos-
terone mediated QT interval shortening [43]. The 
impact of testosterone signaling on vascular KV7 
channels has yet to be investigated, however, tes-
tosterone upregulates Kcne4 [44] expression in 
ventricular myocytes from male mice. Kcne4 tran-
script is more abundantly expressed in mesenteric 
arteries from male mice when compared to 
females, but Kv7.4 protein expression is lower; 
however, the responses to ML213 were the same 
[98]. These data potentially suggest that females 
have more KV7.4 channels but the testosterone- 
mediated upregulation of Kcne4 increases the 
channel function in the males. Though this 
remains to be determined.

KV7 channels are being considered as a novel 
therapeutic target in the treatment of hypertension 
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and other diseases [118]. Though the gross impact 
of “estrus cycling” vascular KV7 channel function 
on blood pressure and health has yet to be estab-
lished, current understanding indicates that the 
pharmacology required to target the channel con-
ventionally, through activators for example, would 
change dramatically across the menstrual cycle, 
thereby excluding these channels as convenient 
targets in pre-menopausal women.

KV1 channels

Several studies have found transcript and pro-
tein expression of different KV1 channel sub-
types across various vascular beds from 
multiple animal models, with Kv1.5 predomi-
nating [119–126]. KV1.5 channels are impli-
cated in regulating myogenic tone [124,125] 
and receptor-mediated contraction [127] and 
relaxation [128–132]. Interestingly, KV1.3 has 
been implicated in the phenotypic switch to 
contractile from proliferative VSMCs via 
PLCγ, independent of K+ influx [133,134], pro-
spectively through their c-terminal 
domain [135].

Within murine mesenteric arteries, no differ-
ence in the abundance of KV1.5 was detected 
between males and females [136], however whole 
cell KV currents were greater in mesenteric arteries 
from female mice [136] and rats [66]. Though 
estrus cycle regulation of vascular KV1 channels 
has yet to be investigated, Saito et al. (2009) 
observed diminished KV1.5 currents and protein 
in murine ventricular myocytes harvested from 
females in estrus when compared to di-estrus 
[45]. Further, supplemental E2 inhibited ventricu-
lar KV1.5 currents and protein expression in ovar-
iectomized mice [45] and tamoxifen increased the 
relative abundance of KV1.5 [41]. Some evidence 
indicates that levels of progesterone seen during 
pregnancy can impair KV1.3/1.5 transcript expres-
sion in native cardiac myocytes and heterologous 
expression systems [46]. Within the vasculature, 
testosterone deprivation impairs KV current and 
KV1.5 expression in aortic VSMCs [49]. Similarly, 
within ventricular myocytes, castration diminished 
and testosterone replacement enhanced KV1.5 

expression and function [47,48]. Evidence there-
fore exists for estrus cycle dependent regulation of 
KV1 channels [45], with E2 impairing and testos-
terone promoting KV1 function, though this 
remains to be investigated within the vasculature.

KV2 channels

Several studies have identified KCNB-encoded 
KV2.1 and KV2.2 in whole lysates of arteries 
[137,138]. Of note, KV2.2 is minimally expressed 
compared to KV2.1 in rat middle cerebral artery 
[139] and aorta [140]. As KV2.1 and KV2.2 form 
heterotetramers [141], the effects of KV2.2 can 
be difficult to delineate. Consequently, the cur-
rent literature has focused predominantly on KV 
2.1 by comparison to KV2.2. KV2.1 contributes 
to KV currents in rat pulmonary [142], mesen-
teric [143] and aortic [144,145] VSMCs. 
Functionally, KV2.1 regulates resting Vm in rat 
middle cerebral artery and opposes myogenic 
tone in a pressure-sensitive process [146] in 
heteromultimeric configurations of KV2.1/KV9.3 
[139]. KV2.1 is also upregulated in response 
atrial natriuretic peptide- and NO-dependent 
signaling within the rat aorta [140].

The only study to consider sex-differences in 
vascular KV2 channels to date found that mesen-
teric VSMCs from female C57BL/6J mice 
expressed greater KV2.1 protein and current 
when compared to males [136]. Paradoxically, 
these findings were observed in conjunction with 
enhanced CaV1.2 open probability, greater pres-
sure mediated [Ca2+]i increase and pressure 
induced tone within arteries from female mice 
[136]. To explain these contrasting findings, 
O’Dwyer et al. (2020) argue for a novel role for 
non-conductive KV2.1 channels in regulating 
VSMC plasmalemmal CaV1.2 channel clustering 
and function [136]. Thus, in their model, 
a greater ratio of KV2.1:CaV1.2 in arteries from 
female animals leads to enhanced Ca2+ influx and 
constriction [136].

Though the estrus cycle was not considered in 
the previous study, some evidence exists for the 
regulation of KV2 by sex hormones. 
Supplemental E2 diminishes both native KV2.1 
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currents in osteocytes, in a process speculated to 
be non-genomic [50], and over-expressed KV2.1 
in cultured hippocampal neurons [51]. Further, 
ER inhibition with tamoxifen increases KV2.1 
expression in guinea pig heart [41], ERβ signal-
ing impairs KV2.1/2.2 currents in β-pancreatic 
cells [52] and GPER1 activation inhibits KV2.2 
expression in a PKC-sensitive signaling cascade 
[53]. Though in murine ventricular myocytes, no 
estrus cycle-sensitive change in KV2.1 current or 
protein expression was observed, which calls 
into question whether Kv2 channels are regu-
lated by estrous/menstrual cycle-dependent 
changes in E2 levels [45]. The role of progester-
one in regulating KV2 is even less clear. 
Progesterone (1 µmol-L−1) diminished KV2.1 
expression in murine cardiac myocytes via 
mPR, which reportedly underpins prolonged 
QT intervals and action potential duration [46]. 
Though progesterone (10 µmol-L−1) had no 
effect on KV2.1-encoded currents in HEK 293 
cells [54]. The reason for this discrepancy is 
currently unclear, however, a serum concentra-
tion of 1 µmol-L−1 progesterone is not achieved 
during pregnancy [147]. As such, estrus cycle 
regulation of vascular KV2 channels remains 
speculative; however, sex differences in vascular 
KV2 expression and function is indicated and 
merits further investigation.

KV11.1 channels

Isoforms of KCNH2 encode KV11.1, commonly 
known as ether-a-go-go (ERG)-related channels, 
including ERG1a and ERG1b, contribute to the 
fast-component of the delayed rectifying current 
(QT interval) of the cardiac action potential 
[148,149]. Within the vasculature, currents sensi-
tive to the ERG1 blocker, E-4031, were demon-
strated in murine portal vein [150,151], and KV11 
protein and transcript were identified within iso-
lated murine aortic, carotid and femoral arterial 
smooth muscle cells [152], though no ERG cur-
rents were detectable. Modulation of KV11.1 did 
however alter VSMC proliferation [152]. 
Additionally, KV11.1 inhibitor dofetilide had no 
functional effect in quiescent vessels, including 
rat aorta, mesenteric and intralobar arteries 
[153]. The current consensus is that KV11.1 

functionally contributes to repolarization kinetics 
of spontaneously contractile smooth muscle, 
including portal vein [62,151,152], esophageal 
[154], jejunum [155], myometrial [62], and blad-
der [156], as well as playing a role in VSMC 
proliferation.

No papers to date have investigated the role of 
KV11.1 within the vasculature of the female; how-
ever, a host of literature has investigated the role of 
sex hormones in regulating cardiac ERG channels. 
Ablation of E2 production by aromatase knockout 
in a mouse model impaired QT interval sensitivity 
to E-4031 [55]. Furthermore, E2 drives KV11.1 
forward trafficking in cardiomyocytes by enhanced 
interaction with HSP90, thereby increasing ventri-
cular repolarization [57]. However, the E2 receptor 
inhibitor tamoxifen increased KV11.1 protein 
expression [41] and physiological concentrations 
of E2 reduce KV11.1 currents in guinea pig hearts 
[56] and HEK cells [58]. Additionally, mutagenesis 
[56], pharmacological [58], and computational 
[59] studies indicate that E2 binds to the KV11.1 
pore in a manner similar to KV11.1 inhibitor dofe-
tilide [59].

In contrast to E2, the role of progesterone and 
testosterone derivatives in regulating KV11.1 is 
clearer. Physiological levels of progesterone seen 
during the follicular phase upregulate cardiac KV 
11.1 currents in guinea pig ventricular myocytes 
[60]. Though progesterone, as seen during preg-
nancy, impairs KV11.1 forward trafficking in rat 
neonatal cardiac myocytes [61]. Similarly, the con-
siderable impact of KV11.1 blockers on myometrial 
contractility is lost in pregnant mice and humans 
as they progress through pregnancy [62,63]. This 
effect is associated with an increase in KCNE2 
proteins as labor develops [62,63], reinforcing the 
crucial role for auxiliary subunit proteins in K+ 

channel regulation and as the site of hormone 
based regulation. Similarly to progesterone, testos-
terone improves native KV11.1 function in HEK 
cells [64] and rabbit ventricular myocytes in 
a non-genomic post-transcriptional mechanism 
which enhances KV11.1 current density and vol-
tage sensitivity [65].

These findings implicate a cyclical regulation of 
E2 suppression and progesterone promotion of KV 
11.1 function across the estrus cycle, either 
through channel block or through auxiliary 
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subunit regulation, respectively. As no ERG cur-
rents have been demonstrated in KV11.1 expres-
sing quiescent systemic vascular beds [152], the 
functional consequence for sex hormones in med-
iating sex-differences in KV11.1 regulation may be 
slight. Though in light of the role of ERG in 
mediating VSMC proliferation, there is 
a potential role for androgenic regulation of KV 
11.1 in sex-differences in vessel size [157], angio-
genesis [158], vascularization [159], and angiogen-
esis [160].

BKCa channels

KCNMA1 encodes for the pore-forming α subunit 
KCa1.1, which in turn gives rise to homotetrameric 
channels within the membrane termed BKCa. 
Unique amongst KCa, BKCa are both Ca2+ and 
voltage activated [161–163]. Within the vascula-
ture, BKCa expression is predominantly restricted 
to VSMCs, though some expression may be pre-
sent within the endothelium [164,165]. Vascular 
BKCa channels primarily couple with the KCaβ1 
auxiliary subunit, which improves [Ca2+]i and vol-
tage sensitivity when compared to KCa1.1 alone 
[166–168]. In a vascular bed specific manner, inhi-
bitors of BKCa channels increase basal and pres-
sure-induced tone [11,169–173]. These 
descriptions provide only a brief insight into the 
role of BKCa channels within the vasculature, for 
more detail see [174].

BKCa channels have been identified in male 
and female human mesenteric [175] and coronary 
[176] arteries, though data was not separated 
dependent on sex. Functional BKCa channels 
have also been demonstrated in omental and 
myometrial arteries from women [177,178]. 
Within rodents, BKCa-derived currents are 
greater within middle cerebral artery VSMCs iso-
lated from adult female rats when compared to 
age-matched males, though this phenotype dissi-
pates with age, due to a decrease in KCaβ1 expres-
sion [66]. Though the estrus cycle was not 
factored into this study, ovariectomy diminished 
BKCa channel expression and enhanced pressure- 
mediated increases in vessel tone [66] and BKCa 
expression and vessel function was ameliorated 
by supplemental E2 dietary pellets [66].

Mechanistic insight into E2-mediated changes 
in BKCa function indicate that E2 (0.02–5 µmol- 
L−1)-GPER1 signaling upregulated vascular BKCa 
currents in human [68,69] and porcine [70] cor-
onary artery VSMCs, via PKC. Further, ERα- 
derived PI3K signaling increased BKCa1.1 tran-
script expression in cultured human coronary 
and aortic VSMCs [71] and E2 (0.3 nmol-L−1) 
treatment increased BKCa currents in ovine uterine 
arteries via KCaβ1 modulation [72–74]. The 
importance of the discrepancies in the receptor 
responsible for E2-mediated increases in vascular 
BKCa activity is debatable, as E2 has similar affi-
nities for both ERα/β and GPER1 [179]. These data 
strongly support an upregulation of BKCa channels 
in VSMCs by E2, although it should be noted that 
outside VSMCs, including in cultured human 
endothelial cells [67], BKCa channel expression 
and function is negatively regulated by E2 [180].

Investigations regarding the effect of progester-
one on vascular BKCa are sparse. In heterologous 
expression systems, progesterone (10 µmol-L−1) 
inhibits BKCa derived currents [75], in a process 
speculated to be due to an increase in intracellular 
pH, and a decrease in cytosolic Ca2+/cAMP. 
Though progesterone (0.1 µmol-L−1) has no effect 
on native BKCa currents in uterine artery VSMCs 
from sheep [72].

Conversely, testosterone can enhance BKCa- 
mediated relaxations through activation of the NO- 
PKG cascade in porcine coronary [76,77] and rat 
mesenteric arteries [78]. As both serum testosterone 
and E2 are raised significantly during proestrus 
[17], current literature would indicate an increase 
in vascular responsiveness during proestrus. In con-
trast to this hypothesis, we observed no change in 
relaxation response to the BKCa channel activator 
NS11021 in mesenteric nor renal arteries harvested 
from female animals across the estrus cycle [15]. 
The reason for this discrepancy remains to be deter-
mined and requires further investigation.

KATP channels

ATP-sensitive K+ channels (KATP) are a member 
of the inwardly rectifying K+ channel (KIR) sub-
family and are derived from KIR6.x proteins. KATP 
however express poor inward rectification by 
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comparison to other KIR channels [181,182]. 
Expression of KIR6.x alone does not form func-
tional K+ channels, but requires the co-expression 
of sulphonylurea receptors (SURs) [183–187], 
including SUR1, SUR2A and SUR2B [188]. KATP 
are now recognized as intracellular sensors that 
convey changes in metabolic states to electrical 
signals across the membrane. KATP inhibitors con-
tract coronary [189,190] and renal arteries [191] in 
normotensive animals, implicating KATP in the 
regulation of basal arterial tone. KATP is the target 
of myriad receptor-mediated signaling cascades, 
for more detail, see [174].

Functional KATP channels are an essential com-
ponents of human chorionic plate, umbilical and 
myometrial artery reactivity [178,192–195]. KATP 
channels have been demonstrated in middle cere-
bral, meningeal, superficial temporal and cuta-
neous arteries within male and female humans 
[196–200]. Reports of sexual dimorphisms in vas-
cular KATP function are contradicting. For exam-
ple, there are no apparent sex-dependent 
differences in sensitivity to KATP channel modula-
tors in rodent cerebral [201,202] nor mesenteric 
[203] arteries from normotensive rats, though 
a later study found impaired KATP activator 
mediated relaxation within arteries from male 
hypertensive rats when compared to females 
[203]. Similarly, inhibition of KATP had greater 
impact on skeletal muscle tissue oxygenation in 
female rats when compared to males [204], report-
edly as a result of increased VSMC KATP activity in 
female rats [204].

As regards to the role of sex hormones in 
regulating KATP, E2 protects against ischemic 
reperfusion injury within myocardium [79] and 
neurons [85] by enhanced mitochondrial-KATP 
(mKATP) and KIR6.2/SUR1 function, respec-
tively. mKATP channels when activated prevent 
apoptosis, enhance respiration and reduce 
matrix Ca2+ accumulation [205]. E2-mediated 
upregulation of KATP function is reported as 
both a genomic and non-genomic process, for 
example, E2 upregulates SUR expression within 
myocardial and neuronal cells [79,84,85] and 
also gives rise to a PKA-PKC-mediated increases 
in KATP activity in neuronal cells [86,87]. 
Similarly within humans, following angioplasty, 
E2 protects against myocardial ischemia by 

increasing myocardial KATP activity and through 
enhanced coronary artery vasodilation [83], 
however, increased coronary artery vasodilation 
in response to E2 was insensitive to KATP inhibi-
tion [83]. In contrast to neuronal and myocar-
dial cells, E2 rapidly inhibited KATP function 
within murine β-pancreatic cells via ERβ 
[80,81] in a cGMP-PKG-sensitive signaling cas-
cade [82]. Consequently, the role of E2 in reg-
ulating vascular KATP expression or activity 
remains speculative, and may be either positive 
or negative.

A comprehensive study on the effect of proges-
terone on KATP is yet to be undertaken. Within 
our own study, we observed an estrus cycle- 
dependent shift in sensitivity to relaxations elicited 
by a KATP activator within mesenteric, but not 
renal, arteries from female rats within proestrus/ 
estrus, when compared to arteries from female rats 
within diestrus/metestrus [15]. When comparing 
serum sex hormone concentration between these 
groups we observed raised E2 in the former and 
raised progesterone in the later [15]. 
Consequently, it is unclear if mesenteric vascular 
KATP channel function is impaired by E2 or 
enhanced by progesterone [15]; however, pinacidil 
sensitivity was comparable between arteries from 
females of a low-serum estradiol stage of the estrus 
cycle and arteries from male animals (data not 
published), indicative of E2 inhibition of vascular 
KATP function. Further, the cause of the vascular 
bed specific estrus cycle regulation of KATP chan-
nel function was also unclear.

Finally, conflicting reports indicate testosterone 
as either a KATP-dependent or KATP-independent 
vasodilator [206]. For example, testosterone med-
iates KATP sensitive vasorelaxation in canine cor-
onary [88], rat aortic [90] and human corporal 
[91] arteries, either via release of endothelial 
derived relaxant factors [88,90] or via direct inter-
action with the channel [91]. Conversely, the KATP 
inhibitor Glibenclamide had no effect on testoster-
one-mediated relaxation in rat aorta [89]. The 
reason for the discrepancy between Honda et al. 
(1999) and Ding and Stallone (2001), may be 
accounted for by differences in rat models. Both 
studies employ similar concentrations of both tes-
tosterone and Glibenclamide yielding conflicting 
results, warranting further investigation.
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Conclusion

This brief review demonstrates a range of extra-
vascular and vascular studies, which detail sexual 
dimorphisms in ion channel function. These dif-
ferences are further complicated by genomic and 
non-genomic sex hormone regulation of ion chan-
nels. However, fluctuations in sex hormone levels 
across the estrus cycle is rarely taken into consid-
eration and studies commonly favor supraphysio-
logical concentrations of sex hormones to 
investigate their role. Our lack of understanding 
of female biology from a basic preclinical science 
perspective has culminated in a greater prevalence 
in adverse drug reactions within women when 
compared with age-matched men [207]. This 
review highlights the need to revisit basic princi-
ples of ion channels within the vasculature of the 
female, with keen consideration of the estrus cycle.
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