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� The beta frequency strongest associated with motor slowing may differ from the individual beta peak at rest or largest movement-modulation frequency.
� The timing of beta bursts and triggering of adaptive deep brain stimulation differ across varying frequencies in the beta range.
� A clinical neurophysiological interrogation step can optimize the feedback signal selection for adaptive deep brain stimulation.
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Objective: Subthalamic nucleus (STN) beta activity (13–30 Hz) is the most accepted biomarker for adap-
tive deep brain stimulation (aDBS) for Parkinson’s disease (PD). We hypothesize that different frequen-
cies within the beta range may exhibit distinct temporal dynamics and, as a consequence, different
relationships to motor slowing and adaptive stimulation patterns. We aim to highlight the need for an
objective method to determine the aDBS feedback signal.
Methods: STN LFPs were recorded in 15 PD patients at rest and while performing a cued motor task. The
impact of beta bursts on motor performance was assessed for different beta candidate frequencies: the
individual frequency strongest associated with motor slowing, the individual beta peak frequency, the
frequency most modulated by movement execution, as well as the entire-, low- and high beta band.
How these candidate frequencies differed in their bursting dynamics and theoretical aDBS stimulation
patterns was further investigated.
Results: The individual motor slowing frequency often differs from the individual beta peak or beta-
related movement-modulation frequency. Minimal deviations from a selected target frequency as feed-
back signal for aDBS leads to a substantial drop in the burst overlapping and in the alignment of the the-
oretical onset of stimulation triggers (to � 75% for 1 Hz, to � 40% for 3 Hz deviation).
Conclusions: Clinical-temporal dynamics within the beta frequency range are highly diverse and deviat-
ing from a reference biomarker frequency can result in altered adaptive stimulation patterns.
Significance: A clinical-neurophysiological interrogation could be helpful to determine the patient-
specific feedback signal for aDBS.
� 2023 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Adaptive deep brain stimulation (aDBS) represents a next gen-
eration precision medicine therapy to optimize symptom control
in patients with movement and neuropsychiatric disorders (di
Biase et al., 2021, Meidahl et al., 2017). This technology should
enable the titration of the stimulation according to the temporal
manifestation of subcortical or cortical electrophysiological
biomarkers (Tinkhauser and Moraud, 2021). Although first experi-
mental clinical trials showed promising results, several questions
still need to be resolved until aDBS becomes sufficiently robust
and user-friendly for clinical use (Tinkhauser, 2022). One crucial
aspect is the best strategy on how to select a patient-specific feed-
back signal to drive aDBS. Basal ganglia beta activity (13–30 Hz) is
the most investigated and established electrophysiological symp-
tom biomarker in Parkinson’s disease (PD) (Brown et al., 2001).
Over recent years, a large body of group-level data linked increased
beta activity to motor symptoms such as bradykinesia and rigidity
(Duchet et al., 2021, Khawaldeh et al., 2022, Kuhn et al., 2006,
Neumann et al., 2016, Tinkhauser et al., 2020). In fact, most of
the aDBS pilot trials so far capitalized on beta activity as biomarker
for the control algorithm (Arlotti et al., 2018, Bocci et al., 2021,
Little et al., 2013, Little et al., 2016b, Pina-Fuentes et al., 2017).
However, beta activity spans a wide spectral frequency range and
the selection of the frequency for the feedback signal has often
been arbitrarily either based on the individual beta peak (±a vari-
able range, 2–7 Hz) obtained at rest or the entire beta band
(Arlotti et al., 2018, Bocci et al., 2021, Herz et al., 2018, Little
et al., 2016a, Little et al., 2013, Petrucci et al., 2020, Pina-Fuentes
et al., 2017, Rosa et al., 2017, Velisar et al., 2019). Yet beta activity
is often divided into two sub-bands (low beta 13–20 Hz and high
beta 21–30 Hz) and preferential functional and anatomical roles
such as dopaminergic responsiveness, cortical-subcortical connec-
tivity as well as limb-specificities have been attributed (Fogelson
et al., 2006, Oswal et al., 2016, Oswal et al., 2021, Priori et al.,
2004, Tinkhauser et al., 2019, Tinkhauser et al., 2018b). Regarding
motor symptom specificity, the existing data have not provided
clear directions as to whether the low or high beta band is more
linked to motor slowing and hence more suitable as biomarker
(Neumann et al., 2016, Sure et al., 2021). In addition to the spectral
range, also the intrinsic temporal dynamics of beta oscillations,
such as the bursting characteristics must be considered. This is par-
ticularly motivated by the link between beta bursts and motor per-
formance (Khawaldeh et al., 2022, Lofredi et al., 2022, Tinkhauser
et al., 2020, Torrecillos et al., 2018), as well as the positive clinical
outcome when stimulation specifically targets these transient neu-
rophysiological states (Little et al., 2016a, Little et al., 2013,
Tinkhauser et al., 2017a).

The goal of this work is to support the translation of a patient-
tailored stimulation therapy. We hypothesize that different spec-
tral activities within the beta range may exhibit a frequency-
dependent relationship to motor slowing and distinct temporal
dynamic leading to different aDBS stimulation patterns. To demon-
strate this, we contrasted for each subject three individualized fre-
quencies (frequency most associated with motor slowing, beta
peak frequency, frequency with the most pronounced
movement-related desynchronization) as well as the low-, high-
and entire beta band. We assessed the frequency-specific relation-
ship to motor slowing in a motor task and the temporal dynamics
were evaluated using the burst overlapping metric and the theo-
retical aDBS trigger timings. With this work, we aim to create
awareness and showcase that a clinical-neurophysiological inter-
rogation may be a critical step to select the individual feedback sig-
nal for aDBS.
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2. Methods

2.1. Subjects and surgery

We studied a cohort of 15 patients with PD who underwent
bilateral STN-DBS surgery and temporary lead externalization. All
subjects have been previously reported (Tinkhauser et al., 2020).
Their clinical details are summarized in Supplementary Table 1.
Subjects were recruited at three different sites, St. Georges Hospital
London (UK), Kings College Hospital London (UK) and Mainz
University Hospital (DE). The study was approved by the local
ethics committees (Mainz University Hospital: 837.208.17
(11042); UK centres: IRAS 46576) and all subjects gave their writ-
ten informed consent. The DBS lead implantation approach was
center-specific: imaging-guided alone (St. Georges Hospital and
Kings College Hospital) or imaging-guided and use of intraopera-
tive electrophysiology (Mainz University Hospital). The implanted
DBS leads were either the directional leads from Boston Scientific
with three segmented contacts on levels 2 and 3 or the Medtronic
3389 DBS lead (Medtronic Neurological Division) with four
platinum-iridium cylindrical surfaces. DBS leads were temporarily
externalised for 3–6 days.

2.2. Experimental set-up and offline behavioural analysis

In this work, we re-used data from a previous study (Tinkhauser
et al., 2020) that comprised a visually cued joystick task with dif-
ferent task conditions. The visual cue that triggered the joystick
movement either appeared in response to an occurring STN beta
burst in real-time (of a pre-defined frequency) or randomly with-
out any specific temporal relationship to beta bursts (Tinkhauser
et al., 2020). For the present study, we only used the spectral and
behavioural data from the latter condition, in which movements
were triggered randomly. This is in line with our scope of investi-
gating the temporal dynamics of beta bursts and the associated
motor slowing across different beta frequencies, not restricted to
a particular frequency. The details of the experimental set-up
and data acquisition and processing are outlined in the original
publication (Tinkhauser et al., 2020) and in the Supplementary
Material of the present work. All assessments were performed
OFF dopaminergic medication. Brain and motion signals were
recorded using a TMSi-Porti amplifier (TMS International, Nether-
lands), sampled at 2048 Hz and common average referenced. LFPs
were recorded in a bipolar contact arrangement between the four
electrode levels. The bipolar channel further used for the task and
analyses was the one with the highest resting beta activity. This
step was motivated by evidence linking maximal beta band activ-
ity (Shah et al., 2023, Tinkhauser et al., 2018a, Tinkhauser et al.,
2019) to the motor region of the STN. During the task, subjects
sat in front of a computer monitor with their hand, contralateral
to the trigger STN channel, holding a joystick. They were instructed
to move the joystick as fast as possible in the direction of a green
target (GO-cue) as soon as it appeared on the monitor (Fig. 1,
box 2). After initial familiarization with the task, we aimed to
obtain a minimum number of 60 trials. Motor performance was
assessed by the peak velocity of the joystick movement, defined
as the maximum velocity in the direction of the target after move-
ment onset. The median reaction time across subjects was 0.59 s
(see Supplementary Fig. 1).

2.3. Brain signal processing

LFPs were resampled to 200 Hz and decomposed into their fre-
quency components with a frequency resolution of 1 Hz using a



Fig. 1. Method: Beta frequency-specific impact on motor slowing. (1) Illustrates the different beta candidate frequencies determined after withdrawal of dopaminergic
medication either on the power spectral density at rest (entire beta: 13–30 Hz, low beta: 13–20 Hz, high beta: 21–30 Hz, individual beta peak frequency) or during task-
related movements (beta ERD frequency, individual motor slowing frequency). The following steps (2–6) show how the individual motor slowing frequency was determined:
(2) Subjects performed multiple trials of a visually-cued joystick task with the instruction to move as fast as possible toward a randomly occurring green cue. The peak
velocity of the movement was measured in every trial. (3) STN LFPs were recorded in parallel and further decomposed into the 1 Hz resolution frequency components of the
beta frequency range (13–30 Hz). (4) For every trial and beta frequency, beta bursts were derived using the 75th percentile amplitude threshold. For all the bursts occurring in
the pre-movement period (2.5 s prior to movement onset until movement onset), the mean burst amplitude was calculated. For trials in which no beta burst occurred, the
burst amplitude was set to zero. (5) Separately for every beta frequency, the trials were median split into two groups based on their mean burst amplitude. The movement
peak velocity of the two groups of trials were compared and the corresponding t-score (derived from an independent two-sampled t-test) determined, serving as an indicator
of frequency-specific motor slowing. (6) The green dashed line illustrates the t-score at each single frequency. The single beta frequency with the strongest association with
motor slowing, corresponding to the highest t-score, was termed individual motor slowing frequency (individual MSF). MSF = motor slowing frequency; STN = subthalamic
nucleus; aDBS = adaptive Deep Brain Stimulation; ERD = event-related desynchronization.
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Wavelet transformation (ft_specest_wavelet script in Fieldtrip -
Morlet Wavelet, width = 10, gwidth = 5; Donders Institute for
Brain, Cognition and Behaviour, 2010). To investigate the
frequency-specific temporal dynamics of STN beta activity, we
determined the beta burst profile using the previously established
threshold-based method (Tinkhauser et al., 2017a, Tinkhauser
et al., 2017b, Tinkhauser et al., 2018b, Tinkhauser et al., 2020,
Torrecillos et al., 2018). This approach also helps to link the results
to threshold-based aDBS algorithms (Little et al., 2016a, Little et al.,
2013, Velisar et al., 2019). In this work, we focused on a set of dif-
ferent beta candidate frequencies including the entire- (13–30 Hz),
low- (13–20 Hz) and high- (21–30 Hz) beta band, as well as the
individual beta peak frequency, the individual frequency with the
strongest movement-related beta desynchronization and the indi-
vidual frequency with the strongest relationship to motor slowing
(Fig. 1, box 1). For the investigated beta bands, the corresponding
frequency bins have been averaged before the beta burst profile
was determined. For the individual beta peak frequency, the beta
peak was defined as the local power maximumwithin the beta fre-
quency range (13–30 Hz). The suggested peaks were visually re-
evaluated and only adjusted if they did not correspond to the most
evident discrete peak, which was the case in 2 out of 15 subjects.
To determine the frequency with the strongest beta modulation
related to movement, we calculated for each trial the percentage
power change between the movement period (ranging from the
movement onset to 200 ms after the movement onset) and the
common baseline power (averaged across trials) at �3 to �1 sec-
onds before movement onset. The beta frequency with the highest
percent event-related desynchronization (%-beta ERD) was defined
as the individual beta ERD frequency. The approach we applied to
the individual motor slowing frequency is explained in the section
below. Note, the default burst threshold was set as the 75th per-
centile amplitude of the selected signal. Certain analyses were
repeated with the 50th amplitude threshold, which is then speci-
fied in the text. The threshold was calculated separately for the rest
recording and the trial data, the details on how the latter has been
calculated is specified below. Moreover, to avoid the categorization
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of spontaneous amplitude fluctuations due to noise as beta burst,
we excluded bursts shorter than a minimum duration. This was
defined as period equal to the duration of 2 oscillatory cycles of
the frequency considered (e.g. 100 ms for the 20 Hz bin). For the
beta bands (entire, low, high), the minimum burst duration (2
oscillatory cycles) was defined based on the average frequency
value of the corresponding beta band (i.e. entire (13–30 Hz) = 21.
5 Hz, low (13–20 Hz) = 16.5 Hz, high (21–30 Hz) = 25.5 Hz).

2.4. Beta bursts across frequencies and their impact on motor
performance

A first step of this study was to identify the individual frequency
of the beta range (13 to 30 Hz) that was most strongly associated
with movement slowing. The methodological pipeline for this is
illustrated in Fig. 1 (box 2 to 6). For all beta frequencies and bands
of each single trial, we determined the mean amplitude and the
duration of the bursts that occurred in the 2.5 s prior to the move-
ment onset. We chose this period as the cumulative occurrence of
beta bursts in this epoch was previously linked with movement
velocity (Tinkhauser et al., 2020). Note, the beta burst related
motor slowing was also derived for a range of shorter burst detec-
tion time windows and the resulting movement speed modulation
curves were compared for consistency to each other. The 75th per-
centile threshold was calculated based on the LFP amplitude of the
pre-movement period (-3 s to �1 s prior to movement) averaged
across trials, separately for each subject and frequency. We opted
to use this common threshold over the trial-based threshold to
allow for a better comparability of beta bursts across trials. To cal-
culate the relationship between the peak velocity of the joystick
movements and the pre-movement beta burst properties, we
applied the following method: For each beta frequency and sub-
ject, trials were median split into two groups based on the mean
burst amplitude. For trials without detected beta burst, the burst
amplitude was set to zero. The peak velocities of these two groups
were compared using an independent two-samples t-test and the
resulting t-score of this test was then used as proxy of the
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frequency-specific slowing, meaning a higher positive t-score indi-
cates that a higher mean burst amplitude preceded stronger slow-
ing. Following this, we defined the frequency with the strongest
association to motor slowing (i.e. the frequency with the highest
t-score value) as ‘‘individual motor slowing frequency (individual
MSF)”. While we opted for the frequency-specific relationship to
motor slowing using the t-score on the median-split trials in line
with the original publication (Tinkhauser et al., 2020), the correla-
tive trend between peak velocity and burst amplitude (or
movement-related ERD) quantified as Spearman’s correlation coef-
ficients could have been used as alternative method (see Supple-
mentary Material). Additionally, the entire analysis pipeline was
repeated using burst duration instead of the mean burst amplitude
to determine the relationship between peak velocity and spectral
frequency, which is also presented in the Supplementary Material.
The next methodological steps after having defined the different
beta candidate frequencies is to calculate how they differ in their
temporal dynamics and alignment in their theoretical adaptive
stimulation trigger timings (aDBS Trigger Match) (Fig. 2).

2.5. Temporal dynamics across beta frequencies

To investigate the temporal relationship of the different beta
frequencies, we applied the beta burst overlapping metric on the
signals at rest (Tinkhauser et al., 2018b). The percentage of over-
lapping bursts was calculated pairwise between all different beta
candidate frequencies, as illustrated in the processing pipeline
Fig. 2. Method: Temporal dynamics across beta frequencies. Schematic illustrating th
recorded at rest were decomposed in its beta frequency components ranging from 13-30
signal envelope was transformed into a binary (no burst = 0, burst = 1) burst vector. (
similarities between two beta candidate frequencies (i.e. low-, high-, entire beta band
reference or beta comparison frequency, were quantified as %OVL. (3) Illustration of t
stimulation triggers (stimulation triggered once burst is detected) resulting from the ref
burst vector of the reference frequency. T2: marks the theoretical aDBS trigger timings of
(trigger timing ± 100 ms) defined as trigger period that would still provide clinically
frequency. T5: shows the corresponding aDBS trigger timings of the beta comparison fre
trigger of the beta comparison frequency with the ‘‘Stimulation Trigger Tolerance A
ERD = event-related desynchronization; T = Trace.
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(Fig. 2). To this end, we transformed the signals into a binary burst
vector. Hereby, we attributed the value ‘‘1” to burst periods and the
value ‘‘0” to non-burst periods. The binary burst vectors of two
beta candidate frequencies were added together, with the resulting
value ‘‘2” for periods with burst overlapping. The percentage of
overlapping bursts (%OVL) was then defined as the percentage
duration of overlapping bursts relative to the cumulative burst
duration of the reference frequency. The %OVL was calculated in
both directions, i.e. with both of the two beta candidate frequen-
cies once as the reference, and the two %OVL values were averaged.
Secondly, we determined the change in %OVL with incremental
1 Hz step deviations from the individual beta candidate frequen-
cies (MSF, beta peak and beta ERD). We also contrasted the effec-
tive %OVL with the overlapping by chance calculated according
to a previously established method (Tinkhauser et al., 2018b) by
setting a random break point in the binary burst vector and revers-
ing and joining the two segments together. With this method, we
maintained the integrity of the bursts (i.e. number and duration
of bursts), while their temporal occurrence became random. We
then calculated the %OVL by chance for the different beta
frequency-bins (13–30 Hz) and repeated this procedure for 1000
iterations. The final value of %OVL due to chance was then calcu-
lated by taking the mean across all frequencies and iterations. To
further test whether the frequency resolution of the signal decom-
position impacts upon the %OVL, we contrasted the results of the
resting state signals decomposed using different wavelet widths
(5,10,15).
e pipeline to quantify the % burst overlapping and % aDBS Trigger Match. (1) LFPs
Hz. Beta bursts were defined using the 75th percentile amplitude threshold and the
2) Illustrates how to derive the % burst overlapping metric (%OVL): The temporal
, individual MSF, individual beta peak and beta ERD frequency) either selected as
he method to derive the % aDBS Trigger Match between the theoretical adaptive
erence frequency and the triggering of the beta comparison frequencies. T1: binary
the reference frequency. T3: shows an arbitrary ‘‘Stimulation Trigger Tolerance Area”
beneficial stimulation. T4: shows the binary burst vector of the beta comparison
quencies. T6: shows the ‘‘Stimulation Trigger Match” i.e. the alignment of the aDBS
rea”. MSF = motor slowing frequency; aDBS = adaptive Deep Brain Stimulation;
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2.6. Adaptive DBS trigger match

The stimulation trigger timings during aDBS depend on the
stimulation algorithm used and the temporal dynamics of the
selected feedback signal. Similar as for the %OVL, the percentage
aDBS trigger match (%trigger match) was calculated between all
different beta candidate frequencies as illustrated in Fig. 2. To do
this, we considered the starting points of the bursts at the refer-
ence frequency as the optimal aDBS stimulation trigger time
points. In addition, we considered a stimulation trigger area
around the trigger time point of ± 100 ms. This area reflects an
arbitrary timespan of tolerance for triggering stimulation for which
no pre-existing approximative data exist. Therefore, we empiri-
cally chose a duration corresponding to two beta cycles (of a
20 Hz burst) on both sides of the trigger moment. We then
assessed how often the burst onset of one candidate frequency
coincided with the stimulation trigger area of the reference fre-
quency and reported the result as %trigger match. This was calcu-
lated in both directions, i.e. using both of the two beta frequencies
once as the reference, and the two %trigger match values were
averaged. An additional analysis comprised the change in %trigger
match with incremental 1 Hz step deviations from the individual
beta candidate frequencies (MSF, beta peak, beta ERD). We also
considered the change in %trigger match when the same reference
signals got expanded using an incremental number of neighbour-
ing frequencies (±1 to 7 Hz). Similar as above we contrasted the
effective %trigger match with the trigger match by chance. Exem-
plary analyses were repeated for beta bursts defined by the 50th
percentile amplitude burst thresholds.
2.7. Comparisons and statistical analysis

All statistical analyses were performed using MATLAB (version
R2020b; MathWorks). To test the relationship between
frequency-specific indices of motor slowing (t-score values, see
section 2.4) and power-spectral density (PSD) as well as
movement-related power modulation (beta ERD), we applied a
Spearman correlation. To evaluate the group level statistical signif-
icance of the t-score across the whole beta frequency range (13–
30 Hz) , we used a cluster-based permutation procedure. To this
end, t-scores were compared against zero and p-values were
derived by randomly permuting the sign of the t-scores for a subset
of subjects 5000 times. For each frequency point, the t-statistic of
the actual mean difference was computed based on the distribu-
tion of the 5000 differences resulting from permutation. The
resulting p-values were then corrected for multiple comparison
by determining the supra-threshold clusters (pre-cluster thresh-
old: p < 0.05) for each permutation, and then storing the sum of
the t-statistics within these clusters to form a distribution of the
largest supra-threshold-cluster values. Finally, the 95th percentile
of this distribution served as statistical threshold for the map of the
actual t-statistics of the real difference (Maris and Oostenveld,
2007). Thus, only those significant clusters that exceeded the
threshold survived the cluster-based permutation correction. Fur-
thermore, to test whether the t-score values of selected frequen-
cies significantly differ from chance at the single subject level,
we also calculated permutation statistics. For this comparison,
we randomly shuffled trial indices and recalculated the t-scores
derived by the t-test, which was repeated for 5000 iterations. P-
values of the individual t-scores were then calculated based on
how many of the permutation-distribution t-scores were larger
than the original t-score (Ernst, 2004). To evaluate the changes in
%OVL and %trigger match when deviating from individual beta can-
didate frequencies, we applied a Friedman test followed by pair-
wise Wilcoxon signed rank tests for between group comparison.
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For multiple comparisons, FDR (false discovery rate) corrected p-
values were reported.
3. Results

3.1. Frequency dependent motor performance across the beta range

In this study, we investigated the burst dynamics of the differ-
ent beta frequencies and their impact on motor performance. This
we believe may be a critical aspect for the selection of the optimal
feedback signal for aDBS. We determined the t-score value as indi-
cator of the beta-burst dependent motor slowing (indexed by pos-
itive values) for all frequencies within the beta range and related
this to the corresponding PSD at rest and movement-related ERD.
In Fig. 3A, we contrast the individual PSD curves with the t-score
based movement speed modulation curves. This shows a variable
relationship, with some subjects having an overall alignment
between PSD and movement speed modulation curves (e.g. subject
8), while for other subjects the two curves appear unrelated (e.g.
subject 10). This lack of a consistent trend is further supported
by the wide distribution of the correlation coefficients (median r-
val = 0.07, ranging from �0.69 to 0.86) when correlating the PSD
and the t-score curves within subjects (Fig. 3B). When comparing
movement-related modulation curves with the movement speed
modulation curves, the correlation shows a similar large variation
(Fig. 3C-D). We made similar observations when using burst dura-
tion instead of burst amplitude to determine the frequency-
specific slowing (Supplementary Fig. 2). Note, the spectral-
behavioural relationship (dashed green line) illustrated in
Fig. 3A/C are represented as t-scores, however expressing this rela-
tionship using the correlation coefficients would provide similar
results (Supplementary Fig. 3). Moreover, we contrasted the
single-subject and group level observations. The highest beta
power at rest is found at 22 Hz for the group average (Fig. 4A),
while on a single-subject level, the beta peaks are distributed
across the entire beta frequency range, with 7/15 located in the
low beta band and 8/15 in the high beta band (Fig. 4B). Similar
for the movement-related power modulation, the strongest ERD
in the group average is located at 15 Hz, while 8 of the 15 subjects
show the strongest ERD frequency in the low beta band and 7 in
the high beta band (Fig. 4C-D).
3.2. Akinesia-specific beta frequency

In principle, we could assume that the optimal feedback signal
selected for aDBS should be maximally indicative for the target
symptom state. While the spectral-behavioural link between the
beta band and akinetic-rigid symptoms in PD has been repeatedly
shown, the question remains whether there is an individual pre-
ferred target frequency within the beta range that would help to
increase the temporal precision of aDBS. Following this concept,
we applied a simple joystick motor task to determine the beta fre-
quency which is most associated with motor slowing by relating
the mean burst amplitude with the peak velocity of movements,
indexed as t-score (Fig. 1). The frequency associated with the stron-
gest motor slowing (i.e. highest t-score) we termed as ‘‘individual
motor slowing frequency” (individualMSF). This is conceptually like
the selection process of the patient-specific stimulation settings. On
the group average, the t-score curves show the strongest association
withmotor slowing in the lower beta frequency range, with a signif-
icant cluster ranging from 13-16 Hz (Fig. 4E). This frequency varies
from subject to subject and is distributed across the beta spectral
range, falling into the lowbeta range in9and into thehighbeta range
in 6 out of 15 subjects (Fig. 4F). In fact, only 4 out of 15 subjects had
their individual MSF located in the significant group-level cluster



Fig. 3. Clinical and spectral profile across subjects. A) Illustrates for every subject (n = 15) and beta frequency the PSD of the LFPs recorded at rest (grey line) and the burst
amplitude dependent motor modulation represented as t-score (dashed green line). A high t-score indicates a stronger association between burst amplitude and motor
slowing. In some instances (e.g. sub. 8), both the PSD and t-score curves show a similar magnitude across the beta range, while in others (e.g. sub. 10) even an inverse
relationship can be seen. The vertical lines mark the individual beta peak frequency (grey line) and the individual MSF i.e. frequency strongest associated with the motor
slowing (green line). B) Shows the distribution of the r-values derived from the Spearman’s correlation between the individual PSD curve and t-score curves across subjects.
The median r-value is 0.07, ranging from �0.69 to 0.86. C) Illustrates for every subject and beta frequency the averaged movement-related beta desynchronization, the % beta
ERD (orange line), and the burst amplitude dependent motor modulation represented as t-score (dashed green line, same as above). The vertical lines mark the individual
frequency with the strongest beta ERD (orange line) and the individual MSF (green line). D) Shows the distribution of the r-values derived for each subject from the
Spearman’s correlation between the individual beta ERD curve and t-score curves. The median r-value is 0.12, ranging from �0.70 to 0.61. Note for B) and D): If the curves
would consistently co-fluctuate, i.e. if the peaks and troughs would approximately co-occur, we should only see positive r-values that are close to 1 for B, and only negative r-
values, closer to �1 for D (because in the orange line the trough denotes the beta frequency that would be selected based on movement-related ERD). The fact that the r-
values are both positive and negative, ranging a broad span, summarizes that the peaks (and ERD troughs), and thus the selected aDBS frequency, can be very different. Note,
bursts are defined using the 75th percentile amplitude threshold. Sub. = Subjects; AU = arbitrary unit; LFP = local field potentials; PSD = power spectral density; ERD = event-
related desynchronization.
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(Fig. 4E). Note, the movement speed modulation curves were also
comparable when different burst detection windows were applied
(Supplementary Table 2). Moreover, we saw a positive, but not sig-
nificant trendwhen comparing the individualMSFwith the individ-
ual beta peak frequencies detected at rest (r-val = 0.48, p-val = 0.20)
(Fig. 5A). No clear trend was found between the individual MSF and
thebetaERD frequencies (r-val =0.20, p-val =0.47) (Fig. 5B).Onaver-
age, the absolute difference between the individual MSF and the
individual beta peaks is 3.9Hzwith one overlap, and 5.2Hz between
the individual MSF and the beta ERD frequencies with 2 overlaps
(Fig. 5D-E). Note, subject 4 and 5 are a subset of patients with a
tremor-dominant form of PD, who in contrast to the akinetic-rigid
type PD patients, might require biomarkers other than beta activity
to index the tremor (Hirschmannet al., 2017, Shahet al., 2018).How-
48
ever, with regard to motor slowing, the difference between their
individual MSF and the beta peak frequency is 6 Hz and 4 Hz,
between their individual MSF and the beta ERD frequency 7 Hz
and1Hz,which iswithin the rangeof the remainingcohort. Interest-
ingly, the relationshipbetween the individual betapeak and thebeta
ERD frequencies is not consistent within subjects (r = 0.22, p = 0.47),
yet the average deviation is 4.5 Hz with one overlap (Fig. 5C, F).

Note, the same pipeline has been replicated for using the mean
burst duration instead of mean burst amplitude to determine the
individual MSF, which provided similar results (Supplementary
Figs. 4, 5).

Next, we compared the distribution of t-scores of the different
beta candidate frequencies (Fig. 6A). The mean t-score for the indi-
vidual MSF outperforms the other beta comparison frequencies by



Fig. 4. Beta activity spectral characteristics and impact on motor slowing across beta frequencies. A) Shows the resting state PSD (13–30 Hz) averaged across patients
(n = 15), with a beta peak at 22 Hz. Values are represented as mean ± SEM. B) Illustrates the distribution of the visually defined individual beta peaks. Seven of 15 subjects
have the beta peak in the low beta band (13–20 Hz) and 8 of 15 subjects have the beta peak in the high beta band (21–30 Hz) C) Shows the movement related beta modulation
(%-beta ERD) averaged across subjects (n = 15), with the strongest ERD present at 15 Hz (-31.95% ± 3.19%). Values are represented as mean ± SEM. D) Illustrates the
distribution of the individual maximal ERD frequencies across the beta range. In 8 out of 15 subject the strongest ERD is falling in the low beta band and in 7 out of 15 subjects
it is falling in the high beta band. E) Shows the t-scores as indicator of motor slowing across the beta frequency range and averaged across subjects (n = 15). Values are
represented as mean ± SEM. The strongest spectral association with motor slowing at the group level is found in the lower beta frequency range, with a significant cluster
ranging from 13 to 16 Hz. F) Illustrates the distribution of the individual MSFs, i.e. the individual beta frequency strongest associated with motor slowing. In 9 of 15 subjects
the individual MSF is in the low beta range and in 6 out of 15 cases in the high beta range. In 4 out of 15 subjects it is located in the significant cluster area. PSD = power
spectral density; ERD = event-related desynchronization; SEM = standard error of the mean.
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design. To further investigate how robust this frequency-
dependent motor slowing is, we tested whether the frequency-
specific t-scores of the different beta candidate frequencies are sig-
nificantly different when tested against a surrogate distribution at
the single subject level (Fig. 6B). This is important because random
variability in our data might result in positive t-scores, which
might not necessarily reflect a true, reproducible difference in
movement speed based on preceding beta activity. To test how
likely the t-scores reflect a reproducible difference, we took all
velocity values and randomly permuted them across trials, result-
ing in a distribution of t-scores of which half are positive and neg-
ative for each subject. Only if the original t-score would be at the
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very outer edge of this distribution (�5% of the permutation t-
scores are more extreme than the original one), it would be consid-
ered significant. This revealed a significant p-value in 9 out of 15
subjects for the individual MSF (also including the two tremor-
dominant patients), while the number of subjects with significant
frequency-specific t-score values were 3 for the individual beta
peak and 1 for the individual beta ERD frequency, 2 for the entire
beta, 2 for the low, and 0 for the high beta band. Finally, Fig. 6C
shows the rank distribution of the motor slowing for the 5 beta
comparison frequencies after ranking their t-scores within each
subject (rank 1 = strongest, rank 5 = lowest association to motor
slowing). In cases in which the individual beta peak and individual



Fig. 5. Spectral relationship between individual MSF, beta peak and beta ERD frequencies. A) Spearman’s correlation between the individual MSFs and the individual beta
peak frequencies (r = 0.48, p = 0.20). B) Spearman’s correlation between the individual MSF and the frequencies with strongest beta ERD (r = 0.20, p = 0.47). C) Spearman’s
correlation between the individual beta peak frequencies and the frequencies with strongest beta ERD (r = 0.22, p = 0.47). D) Illustrates for every subject the absolute
difference between the individual MSF and the individual beta peak frequency, which on average corresponds to 3.9 Hz (dashed line). E) Shows the absolute difference
between the individual MSF and the individual beta ERD frequency, which is 5.2 Hz on average. F) Shows the absolute difference between the individual beta peak frequency
and the individual beta ERD frequency, that on average corresponds to 4.5 Hz. MSF = motor slowing frequency; ERD = event-related desynchronization; SEM = standard error
of the mean.

Fig. 6. Motor slowing related to the beta candidate frequencies. A) Illustrates the distribution of the t-score based motor slowing for the different beta candidate
frequencies (individual MSF, individual beta peak, individual beta ERD, as well as the entire (13–30 Hz), low (13–20 Hz) and high (21–30 Hz) beta band) across subjects
(n = 15). The mean t-score value ± SD is 2.41 ± 0.90 for the individual MSF, 0.75 ± 1.54 for the individual peak frequency, 0.46 ± 1.10 for the individual beta ERD frequency,
0.41 ± 1.43 for the entire beta band, 0.67 ± 1.28 for the low beta band, and 0.15 ± 1.14 for the high beta band. B) Quantifies the number of subjects in whom the frequency-
specific t-scores are significantly different from a within-subject permutation distribution, separately for all of the beta candidate frequencies. Nine of 15 subjects show a
significant slowing for the individual MSF, 3/15 for the beta peak frequency at rest, 1/15 for the beta ERD frequency, 2/15 for the entire beta band, 2/15 for the low beta band,
and 0/15 for the high beta band (red circles mark the significant p-values < 0.05). C) Shows the rank distribution of the frequency-specific motor slowing for the 5 beta
comparison frequencies when ranking their t-scores within each subject. Rank 1 (R1) corresponds to the highest t-score (strongest association to motor slowing) while R5
represents the candidate frequency with the weakest association to motor slowing. MSF = motor slowing frequency; ERD = event-related desynchronization.
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beta ERD frequency correspond to the same frequency bin, the
same rank was attributed. The individual MSF has been excluded
from this analysis, as it would show the highest rank by design.
Descriptively, we observe a slight tendency of low beta being
skewed towards better ranks, while the beta ERD often appears
lowest ranked. The remaining candidate frequencies are rather
similarly distributed across the ranks.
3.3. Beta envelope dynamics

Next, we set out to understand the temporal dynamics of the
different beta candidate frequencies. To elaborate on this, we cal-
culated the percentage burst overlapping (%OVL) between the beta
candidate frequencies across each other (Fig. 7A). A ‘‘100% matched
bursting dynamic” (i.e. 100% burst overlap) would result from
identical temporal dynamics of two candidate frequencies. The
overall level by chance corresponds to 25.54% (SD: ±2.50%). The
highest %OVL was found between the entire beta and the high beta
band (70.9%) and the lowest %OVL between the high beta and low
beta band (35.4%). We further investigated the bin-wise change in
%OVL with incremental deviation from the individual beta candi-
date frequencies (MSF, beta peak, beta ERD) when used as refer-
ence signal (Fig. 7B). We found that a deviation of 1 Hz from the
individual MSF leads to a drop in %OVL of 79.15%, which further
decreases to 47.86% when deviating 3 Hz. This same trend was
seen when the beta peak frequency was used as reference, with a
reduction to 80.10% and 48.60% after 1 Hz and 3 Hz deviation
respectively. Similar, for the beta ERD as reference signal, the
Fig. 7. Burst Overlapping. A) The matrix (left) illustrates the average % burst overlapping
entire beta (13–30 Hz), low beta (13–20 Hz) and high beta band (21–30 Hz)), averaged
dynamic of both beta candidate frequencies. The chance level ± 1 SD corresponded to 25.5
(below entire beta – high beta). The matrix (right) illustrates the corresponding standard
with incremental deviation from the individual reference frequencies: the individual M
frequency (orange). Note, the % changes derived from the deviations to both the left a
horizontal red lines. Friedman’s test revealed a significant decrease in %OVL when devi
without significant differences in the group-comparisons. Values are represented as
MSF = motor slowing frequency; ERD = event-related desynchronization; OVL = overlap
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reduction of %OVL was 78.17% after 1 Hz and 45.26% after 3 Hz
deviation. A Friedman’s test was carried out to evaluate the
decrease in OVL when deviating from the individual beta candidate
frequencies (X = 255.29; df = 7; p < 0.001). A within-group compar-
ison between different beta candidate frequencies revealed no sig-
nificant differences after correcting for multiple comparisons
(Supplementary Table 3). Note, the % change derived from the
deviations to both the left and right side of the individual MSF have
been averaged since the difference between both sides was small
(see Supplementary Fig. 6). As the frequency bin-wise decay in %
OVL could further depend on the spectral resolution of the fre-
quency decomposition, we replicated the same analyses using a
set of different wavelet parameters. This revealed a steeper %OVL
slope for higher frequency resolution and a flattening of the slope
for lower frequency resolution (Supplementary Fig. 7).
3.4. Frequency-dependent aDBS stimulation triggering

Here we propose that the selection of the feedback signal might
be critical for the optimal outcome of aDBS since the precise timing
of the stimulation trigger depends on the temporal bursting
dynamics. This is of particular importance for ‘‘fast control” algo-
rithms, such as threshold-based control policies (Little et al.,
2013, Velisar et al., 2019). To demonstrate the impact of the beta
burst dynamics on aDBS trigger timings, we computed the %trigger
match between all possible pairs of beta candidate frequencies
(Fig. 2). In contrast to the burst overlapping metric, this approach
is intentionally focused on the critical starting period of the burst,
(%OVL) between the different beta candidate frequencies (MSF, beta peak, beta ERD,
across subjects (n = 15). Note that a 100% OVL corresponds to identical beta burst
4% ± 2.50%. The %OVL ranges from 35.4% (between low beta and high beta) to 70.9%
deviation values. B) Illustrates the frequency-bin wise change in mean %OVL (±SD)
SF (green), the individual beta peak frequency (grey), and the individual beta ERD
nd right side have been averaged. The %OVL by chance ± 1 SD is depicted by the
ating from the individual beta candidate frequency (X = 255.29; df = 7; p < 0.001),
mean ± SD. Bursts are defined using the 75th percentile amplitude threshold.
ping; SD = standard deviation.
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because once stimulation is triggered, the further evolution of the
burst (considered in the burst OVL) is likely modulated by the
stimulation itself (Tinkhauser et al., 2017a). The overall chance
level was 22.07% (SD: ±12.63%). Of all the combinations of the beta
candidate frequencies, the highest %trigger match was found
between the entire beta and the high beta band (64.77%) and the
lowest %trigger match between the low beta and high beta band
(28.99%) (Fig. 8A). Similar as for the %OVL, we further investigated
the frequency bin-wise change in %trigger match with incremental
deviation from the individual beta candidate frequencies (MSF,
beta peak, beta ERD) used as reference signals (Fig. 8B). We found
that a deviation of 1 Hz from the individual MSF leads to a drop in
%trigger match to 75.34%, which further decreases to 40.29% when
deviating 3 Hz. This same trend was seen when the beta peak fre-
quency was used as reference instead, with a reduction to 77.26%
Fig. 8. Adaptive DBS Trigger Match. A) The matrix (left) illustrates the average % aDBS t
ERD, entire beta (13–30 Hz), low beta (13–20 Hz) and high beta band (21–30 Hz)), aver
onset (stimulation trigger) of one candidate frequency coincides with the stimulation trig
SD corresponded to 22.07% ± 12.63%. The %trigger match ranges from 29% (low beta
corresponding standard deviation values. B) Illustrates the frequency-bin wise change in
reference frequencies: the individual MSF (green), the individual beta peak frequency (g
from the deviations to both the left and right side have been averaged. The horizontal
significant decrease in %trigger match when deviating from the individual beta candidate
significant difference between the groups. C) Illustrates the mean %change (±SD) in trigge
ERD) with a same reference signal but combined with an incremental number of neighbou
trigger match when combining the target frequency with an incremental number of ne
showed a significant difference between the beta peak and beta ERD group at position 1,
75th percentile amplitude threshold. MSF = motor slowing frequency; ERD = event-rela
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and 45.08 % after 1 Hz and 3 Hz deviation respectively. Similar,
for the beta ERD as reference signal, the reduction of %trigger
match was 73.51% after 1 Hz and 37.88% after 3 Hz deviation. A
Friedman’s test was performed to evaluate the decrease in trigger
match when deviating from the individual beta candidate fre-
quency (X = 226.11; df = 7; p < 0.001). A within-group comparison
between different beta frequency candidates revealed no signifi-
cant differences after correcting for multiple comparisons (Supple-
mentary Table 4). Note, the mean trigger match falls below chance
level (±1 SD) after deviation of 4 Hz from the individual MSF and
beta ERD frequency and at 5 Hz deviation from the individual beta
peak. To increase the comparability of these results to previous
aDBS clinical trials in which the 50th percentile amplitude thresh-
old was applied (Little et al., 2016a, Little et al., 2013, Pina-Fuentes
et al., 2017), we repeated the analyses for that threshold level as
rigger match between the different beta candidate frequencies (MSF, beta peak, beta
aged across subjects (n = 15). The %trigger match is defined by how often the burst
ger tolerance area of the comparison frequency (and vice versa). The chance level ± 1
– high beta) to 64.8% (entire beta – high beta). The matrix (right) illustrates the
mean % aDBS trigger match (±SD) with incremental deviation from the individual
rey), and the individual beta ERD frequency (orange). Note, the % changes derived
red lines depict the %trigger match by chance ± 1 SD. Friedman’s test revealed a
frequency (X = 226.11; df = 7; p < 0.001), while the post hoc comparison showed no
r-match comparing the single individual reference frequencies (MSF, beta peak, beta
ring frequency bins (±1 to 7 Hz). Friedman’s test revealed a significant decrease in %
ighbouring frequency bins (X = 223.6; df = 6; p < 0.001). The post hoc comparison
3, 4, 5, 6 and 7 Hz. Values are represented as mean ± SD. Bursts are defined using the
ted desynchronization; SD = standard deviation.
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well (Supplementary Fig. 8). Finally, as mentioned above, the selec-
tion of the aDBS feedback signal frequency does often include a
variable range of neighbouring frequencies. We therefore com-
puted the %change in trigger match comparing the single individ-
ualized frequencies with a set of frequencies entailing an
incremental number of neighbouring frequency bins (Fig. 8C). For
the individual MSF as single reference frequency, the %trigger
match decrease to 96.62% with 1 Hz bin, to 76.17% with 3 Hz bins
and to 52.98% with 7 Hz bins. With the individual beta peak as sin-
gle reference frequency, the %trigger match decrease to 97.80%
with 1 Hz bin, to 82.46% with 3 Hz bins and to 60.92% with 7 Hz
bins. Lastly, when using the individual beta ERD as reference sig-
nal, the %trigger match decreases to 96.51% with 1 Hz bin, to
74.63% with 3 Hz bins and to 51.82% with 7 Hz bins. A Friedman’s
test was conducted to evaluate the decrease in trigger match when
comparing the single individualized frequencies with a set of fre-
quencies entailing an incremental number of neighbouring fre-
quency bins (X = 223.6; df = 6; p < 0.001). A within-group
comparison between different beta frequency candidates and after
correcting for multiple comparisons, revealed significant differ-
ences between the beta peak and beta ERD for the %trigger match
difference at the individual frequency ± the following range of
neighbouring frequencies: 1, 3, 4, 5, 6 and 7 Hz (Supplementary
Table 5).
4. Discussion

This work highlights the potential utility of a patient-specific
and data-driven feedback signal selection approach to translate
clinical aDBS regimes. We present several findings that suggest a
one-size-fits-all beta activity biomarker for aDBS might not be
optimal in all cases. First, we confirm the individual resting beta
peak frequency and the frequency with the strongest movement
related modulation can be highly variable across subjects. Sec-
ondly, the beta frequency that was strongest associated with motor
slowing could not simply be predicted from these spectral proper-
ties. Third, different frequencies within the beta range may exhibit
distinct temporal dynamics with a frequency-dependent relation-
ship to motor slowing. Fourth, variations in temporal dynamics
across beta frequencies also lead to substantial variations in aDBS
trigger timings. Consequently, deviating from a reference biomar-
ker frequency can result in altered adaptive stimulation patterns
that potentially lead to less beneficial stimulation. We believe that
aDBS could benefit from a standardized clinical-neurophysiological
interrogation step to determine the individually most beneficial
feedback signal as part of the aDBS programming procedure and
that studies specifically testing this hypothesis are warranted.
4.1. Frequency-specificity of clinical effects

Beta bursts have been shown to impact motor performance and
were associated with slowing and movement decrements in PD
(He et al., 2020, Lofredi et al., 2019, Tinkhauser et al., 2020,
Torrecillos et al., 2018, Yeh et al., 2020). The present results further
highlight that spectro-behavioural associations depend on the
exact beta frequency or range of frequencies used to derive beta
bursts, as this gives rise to different temporal dynamics relative
to movements. Group-level data demonstrating functional segre-
gation within the beta band revealed a stronger modulation to
the dopaminergic tone for the low beta range (13 to 20 Hz)
(Priori et al., 2004), while the high beta range (21 to 30 Hz) is more
involved in cortical-subcortical coupling (Fogelson et al., 2006,
Oswal et al., 2016, Tinkhauser et al., 2018b). With regard to motor
impairment, the functional distinction is less clear, as studies
either linked increased amplitude in the low (Neumann et al.,
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2016) or the high beta band (Sure et al., 2021) to reduced motor
performance. This functional segregation is also supported by the
diverse temporal dynamics between low and high beta, with only
35.4% of concordance seen in the current study. With regard to
motor slowing, our group-level analyses showed a significant rela-
tionship between motor slowing and burst amplitude for the fre-
quency range spanning from 13-16 Hz, which overlaps with
results described in (Neumann et al., 2016). However, on a subject
level, the frequency strongest associated with motor slowing coin-
cided with this significant group-level cluster in only 4 out of 15
cases, while for the remaining cases it spread across the entire beta
band. Moreover, although previous data demonstrated that both
the beta peak frequency as well as the beta ERD frequency are
associated with motor slowing (Devos et al., 2006, Doyle et al.,
2005, Shah et al., 2023, Tinkhauser et al., 2020, Torrecillos et al.,
2018), these spectral properties may not necessarily index the fre-
quency with the individual strongest association to motor slowing.
Thus, to determine the patient- and symptom-specific frequency
(or range), a dedicated assessment might be required.

4.2. Temporal dynamics of beta activity and impact upon adaptive DBS

It has previously been observed that temporal matching of the
stimulation periods with the occurrence of beta bursts is critical
to interfere with pathological burst synchronisation and to obtain
a clinical improvement, while intermittent but randomly delivered
stimulation is not clinically beneficial (Little et al., 2013,
Tinkhauser et al., 2017a). In many of the previous aDBS pilot trials,
the individual beta peak ± an arbitrary range (from 2 to 7 Hz) or the
entire beta band were chosen as feedback signal. The present work
shows that there is a substantial mismatch between the trigger
time points between the different beta candidate frequencies.
Moreover, regardless of which frequency would be chosen as target
feedback signal (individual motor slowing frequency, beta peak or
beta ERD frequency), there is relevant increase in stimulation trig-
ger error when deviating from this target frequency, that reaches
the chance level after 4 Hz of deviation. Thus, the configuration
of aDBS without prior knowledge of the symptom-specificity of
the frequency range might result in suboptimal clinical efficacy.
In fact, the clinical improvement reported in previous aDBS studies
(Little et al., 2016a, Little et al., 2013, Velisar et al., 2019) may not
necessarily be the best that could have been achieved, assuming
potential stimulation trigger errors as the ground truth feedback
signal frequency was not objectively assessed. However, selecting
the symptom-specific frequency is only one procedural step
toward the configuration of the feedback signal. Further parame-
ters such as the frequency resolution of the signal decomposition,
the smoothing of the feedback signal, as well as the width of the
frequency range (target frequency ± arbitrary number of neigh-
bouring frequencies) all impact upon the feedback signal proper-
ties. For example, lowering the frequency resolution by selecting
a wider frequency range as feedback signal could potentially be
advantageous in case minor frequency shifts occur during stimula-
tion itself and levodopa ON/OFF transitions (Iskhakova et al., 2021).
In summary, troubleshooting strategies for clinically non-
beneficial aDBS should include neurophysiological testing to iden-
tify the optimal beta frequency to avoid ineffective stimulation
regimes.

4.3. Clinical-neurophysiological interrogation

It has to be emphasized that deploying aDBS regimes is complex
and as opposed to conventional DBS, it requires many additional
procedural steps (Tinkhauser, 2022). We can expect that in the
coming years, the setup of aDBS will require many more hours
per patient than currently necessary for conventional DBS. The
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selection of the feedback signal to drive the aDBS algorithm is one
of them. While different symptom biomarkers could be embedded
in aDBS control policies (Ding et al., 2022, Swann et al., 2018,
Tinkhauser and Moraud, 2021, Wiest et al., 2020, Wiest et al.,
2021), the use of beta activity is currently closest to clinical imple-
mentation. However, as illustrated here, the temporal dynamics of
beta bursting and the clinical-spectral link varies across the beta
frequency range and the selection of the feedback frequency solely
based on the power spectrum at rest or beta ERD may potentially
not suffice. To avoid a time-consuming trial-and-error approach
for choosing the individual symptom-specific biomarkers, a stan-
dardized data-driven method may quicken this process. A compre-
hensive neurophysiological setup for PD patients may consider LFP
recordings at rest, the modulation of the spectrum OFF/ON levo-
dopa as aDBS control algorithms need to be capable of handling
both states and its transitions (Duchet et al., 2021, Lofredi et al.,
2018, Tinkhauser et al., 2017b), OFF/ON stimulation (Feldmann
et al., 2022, Muthuraman et al., 2020, Tinkhauser et al., 2017a,
Wiest et al., 2020), motion (Shah et al., 2023), as well as neuropsy-
chiatric assessments (Ricciardi et al., 2021). In addition, we pro-
pose that a dedicated task could serve as interrogative procedure
to assess the spectral-clinical link qualitatively and quantitatively.
Such an approach also needs to consider different assessments to
account for the varying clinical phenomenologies of patients
(Tinkhauser and Moraud, 2021). Tremor-dominant PD patients
likely require a different set of feedback signals than akinetic-
rigid type PD patients (Hirschmann et al., 2017, Shah et al.,
2018). In addition to any short-term in-hospital assessment, future
devices will provide the option of long-term neurophysiological
and behavioural measurements executed in the ambulatory set-
ting. This will allow clinicians to better quantify and contextualize
oscillatory biomarkers during medication and circadian changes as
well as various physical activities (Gilron et al., 2021a, Gilron et al.,
2021b, Tinkhauser and Moraud, 2021, van Rheede et al., 2022).
Moreover, patients’ clinical and spectral profiles are highly hetero-
geneous and a single biomarker such as beta activity will unlikely
be able to comprehensively address all symptoms. Hence, machine
learning-based optimization strategies may additionally be
required in the future (He et al., 2021, Merk et al., 2022, Shah
et al., 2023, Tinkhauser and Moraud, 2021). Despite recent techno-
logical advances, a sustainable and user-friendly method to set-up
and recalibrate aDBS can only evolve in synergy between clini-
cians, scientists, engineers and industry partners and much more
work is needed to implement the technology in routine clinical
care.
5. Limitations

The present work represents a framework toward a standard-
ized clinical-neurophysiological interrogation to program aDBS.
We would like to reemphasize that the design of such an assess-
ment has yet to be established, validated and translated in one
simple and accessible clinical tool. Note, it remains speculative
whether the individual motor slowing frequency, as presented
here, is indeed superior when used as feedback signal for aDBS.
Thus, the validation also needs to include a comprehensive eval-
uation of the clinical efficacy of aDBS using different frequencies
as control signal. The task used in the present study entailed rel-
atively small-distance and visually cued joystick rather than
spontaneous movements. Repetitive uncued movements with a
larger range of motion might be better suited in identifying a
bradykinesia-related frequency since PD patients generally are
more impaired in self-initiated movements than externally trig-
gered ones (Currà et al., 1997). It also remains to be tested to
which extent the movement speed related beta peak frequencies
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differ from the resting beta peak when patients are in the ON
medication state. Differences in movement speed based on the
individual motor slowing frequency were only significant in
9/15 subjects, but not for the remaining subjects. This may be
because the joystick movement is not a sensitive enough measure
or might point towards limited explanatory power of beta band
activity for some patients. The current work has focused on the
detection of a symptom-specific frequency within the beta fre-
quency range for movement slowing. Similar principles could be
translated to other spectral ranges and clinical signs such as tre-
mor (Hirschmann et al., 2017, Shah et al., 2018), dystonia (Pina-
Fuentes et al., 2019) or neuropsychiatric symptoms (Ricciardi
et al., 2021). Indeed, our cohort comprised two tremor-
dominant PD patients, who optimally should have been assessed
using a tremor-specific assessment. Moreover, the present work
focused on the fast oscillatory dynamics for beta burst-triggered
aDBS, but frequency-specific dynamics may also be relevant for
envelopes processed with longer smoothing time constants and
proportional control algorithms (Arlotti et al., 2018, Bocci et al.,
2021). Finally, our observations were made in a cohort with only
recently implanted electrodes, hence the postoperative stun effect
may have reduced the signal-to-noise ratio of LFP beta activity
(Chen et al., 2006).
5.1. Outlook

In summary, this work emphasizes the potential of a data-
driven selection of the feedback signal for optimizing aDBS, as
opposed to simply rely on the PSD at rest. What is exemplarily
shown here for movement velocity and PD can conceptually be
translated to other clinical symptoms, DBS indications and electro-
physiological biomarkers. Future work needs to be done to investi-
gate and design an informative and user-friendly clinical-
neurophysiological interrogation standard to select the optimal
aDBS feedback signal. The recent introduction of neurostimulators
with brain sensing capabilities will facilitate a systematic transla-
tion of both in-hospital and ambulatory neurophysiological assess-
ment standards. This will not only leverage the clinical exploitation
of aDBS but also enable comparability and interpretation of future
aDBS clinical trials.
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