
Circulation

May 23, 2023 Circulation. 2023;147:1622–1633. DOI: 10.1161/CIRCULATIONAHA.122.061924

Circulation is available at www.ahajournals.org/journal/circ

1622

 

The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.

Correspondence to: Elijah R Behr, MA, MD, Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George’s University 
of London, Cranmer Terrace, London, SW17 0RE UK, Email ebehr@sgul.ac.uk; or Ruben Coronel, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ 
Amsterdam, Netherlands, Email r.coronel@amsterdamumc.nl

*R. Coronel and E.R. Behr contributed equally.

For Sources of Funding and Disclosures, see page 1630.
© 2023 The Authors. Circulation is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the 
terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited.

FRONTIERS

Subepicardial Cardiomyopathy: A Disease 
Underlying J-Wave Syndromes and Idiopathic 
Ventricular Fibrillation
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ABSTRACT: Brugada syndrome (BrS), early repolarization syndrome (ERS), and idiopathic ventricular fibrillation (iVF) have 
long been considered primary electrical disorders associated with malignant ventricular arrhythmia and sudden cardiac 
death. However, recent studies have revealed the presence of subtle microstructural abnormalities of the extracellular 
matrix in some cases of BrS, ERS, and iVF, particularly within right ventricular subepicardial myocardium. Substrate-based 
ablation within this region has been shown to ameliorate the electrocardiographic phenotype and to reduce arrhythmia 
frequency in BrS. Patients with ERS and iVF may also exhibit low-voltage and fractionated electrograms in the ventricular 
subepicardial myocardium, which can be treated with ablation. A significant proportion of patients with BrS and ERS, as well 
as some iVF survivors, harbor pathogenic variants in the voltage-gated sodium channel gene, SCN5A, but the majority of 
genetic susceptibility of these disorders is likely to be polygenic. Here, we postulate that BrS, ERS, and iVF may form part 
of a spectrum of subtle subepicardial cardiomyopathy. We propose that impaired sodium current, along with genetic and 
environmental susceptibility, precipitates a reduction in epicardial conduction reserve, facilitating current-to-load mismatch at 
sites of structural discontinuity, giving rise to electrocardiographic changes and the arrhythmogenic substrate.
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Some arrhythmia syndromes appear to occur in the 
absence of overt structural abnormalities. The long 
QT syndrome is one such example.1 The now well-

defined pathophysiological basis of long QT syndrome 
and associated arrhythmias in the absence of structural 
myocardial abnormalities characterizes the syndrome as 
a dominant (if not 100% genetic) ion channel disease, a 
channelopathy. Various other channelopathies have been 
described, including Brugada syndrome (BrS), catechol-
aminergic polymorphic ventricular tachycardia, and short 
QT syndrome. BrS, a leading cause of autopsy-negative 
sudden death,2 is defined by coved J-point (ST-segment) 
elevation in the right precordial leads in association with 
ventricular fibrillation (VF) in the absence of structural 

abnormalities. J-point elevation is also a requisite fea-
ture of the early repolarization syndrome (ERS), which 
refers to the finding of early repolarization pattern in 
patients with idiopathic VF (iVF). BrS and ERS therefore 
constitute a continuous spectrum of J-wave phenotypic 
expression in the ECG, and thus have been designated 
J-wave syndromes.3 Other clinical entities can mimic 
the electrocardiographic pattern observed in BrS, but 
are etiologically distinct and elicited by other factors, 
such as myocardial ischemia, metabolic abnormalities, 
or mechanical compression.4 Early repolarization pattern 
is also more commonly observed in competitive athletes 
compared with the general population.5 In the absence of 
an overt electrical or structural phenotype, iVF exists as a 
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diagnosis of exclusion, referring to the occurrence of VF 
without a pathophysiological explanation.6

Because the 3 disorders, in at least some patients, 
share the presence of subtle changes in the extracel-
lular matrix, a common pathophysiological basis for BrS, 
ERS, and iVF appears plausible (Figure 1). The pres-
ence of a vulnerable electrophysiological substrate, in 
conjunction with triggers commonly arising from the 
Purkinje system or right ventricular (RV) outflow tract 
(RVOT), likely plays an important role in arrhythmogen-
esis, particularly when combined with genetic and envi-
ronmental modifiers. This is consistent with our view 
that syndromic descriptions of BrS and ERS point to 
a different region of the heart and to a different sever-
ity of the microstructural changes, whereas iVF may 

be associated with abnormalities in various regions. In 
contrast to primary cardiomyopathic disorders, in which 
the heart muscle appears both structurally and func-
tionally abnormal, alterations in ion channel interfaces 
and protein architecture have led some to recognize 
cardiac channelopathies as a subgroup of primary car-
diomyopathies rather than purely electrical diseases.7 
We therefore propose that most patients with BrS, 
ERS, or iVF have a common subepicardial cardiomy-
opathy based on nontransmural, subtle microstructural 
changes present within the subepicardial myocardium.8 
Whether these microstructural changes are also pres-
ent in patients with other primary electrical diseases is 
unclear, although a recent study by Pappone et al9 sug-
gests that, in patients with long QT syndrome, cardiac 
structural abnormalities may be present as well. Here, 
we discuss the replacement of the syndromic descrip-
tions of BrS, ERS, and iVF with a common unifying 
pathophysiological definition.

EVIDENCE OF STRUCTURAL DISEASE IN 
THESE PHENOTYPES
The presence of an apparently abnormal myocardial sub-
strate in BrS has been widely reported in the literature, 
but the histological descriptions vary. Cardiomyopathic 
changes, including myocardial fibrofatty replacement of 
the RV free wall or the presence of inflammatory infil-
trates, have been described in a series of studies.10–13 
Microstructural abnormalities have been reported in an 

Nonstandard Abbreviations and Acronyms

ACM  arrhythmogenic cardiomyopathy
BrS  Brugada syndrome
CMR  cardiac magnetic resonance 
ERS  early repolarization syndrome
iVF  idiopathic ventricular fibrillation
OFT  outflow tract
RV  right ventricular
RVOT  right ventricular outflow tract
VF  ventricular fibrillation

Figure 1. Proposed mechanisms and modulating factors underlying arrhythmogenesis in the subepicardial cardiomyopathy, 
giving rise to BrS, ERS, and idiopathic VF.
ACM indicates arrhythmogenic cardiomyopathy; BrS, Brugada syndrome; ERS, early repolarization syndrome; and VF, ventricular fibrillation.
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earlier case series of 6 individuals with apparent iVF, one 
of whom fulfilled contemporary electrocardiographic cri-
teria for BrS.14 A recent study by Miles et al15 reported 
pathological and clinical characteristics in a group of 28 
decedents with BrS compared with control subjects with-
out cardiac death. Quantitative analysis of cardiac tissue 
components demonstrated a 45% increase in collagen 
content among the BrS group compared with control 
subjects. Increases in collagen were observed across all 
sampled regions of RV and left ventricular myocardium, 
with the highest collagen proportions within the subepi-
cardium of the RVOT. These findings suggest that fibro-
sis predominates in RV subepicardial myocardium but 
also appears to represent an adverse remodeling pro-
cess in both ventricles. However, the syndromic descrip-
tion of BrS classifies patients as having RVOT disease, 
failing to recognize its true extent.16

Although BrS and ERS are often considered distinct 
arrhythmia syndromes, overlapping clinical and patho-
physiological features are increasingly recognized. It has 
been proposed that the electrocardiographic J wave, pre-
viously characterized in experimental studies by accen-
tuation of the notch in the subepicardial action potential 
(caused by the transient outward potassium current [Ito]), 
can also be caused by or related to activation delay,17,18 
underpinning a spectrum of BrS and ERS disease phe-
notypes associated with malignant ventricular arrhyth-
mias and sudden cardiac death.3 The conventional view 
of ERS as an exclusive disorder of enhanced local early 
repolarization in the absence of apparent structural 
cardiac abnormalities has also been challenged.19,20 
Boukens et al20 recently documented the presence of 
fibrosis within regions of inferior RV myocardium colo-
calizing with electrophysiological J waves observed 
during epicardial unipolar mapping. Here, transmural 
myocardial biopsies were obtained from a patient with 
ERS with recurrent VF undergoing epicardial mapping 
and ablation. High-resolution activation mapping iden-
tified the latest moment of electrical activation within 
the inferior RV free wall, in which high-amplitude local 
J waves were present on unipolar recordings occurring 
after the moment of slurring/notching in the QRS com-
plex of the ECG. Extensive subepicardial fibrosis was 
observed histologically, along with fragments of surviv-
ing myocardium.

In patients with iVF, microstructural changes with 
potentials similar to those observed in BrS can also 
occur. More than two-thirds of 50 patients with iVF 
who underwent comprehensive exclusion of underly-
ing cardiac causes showed evidence of low-amplitude 
and fractionated electrograms detected during electro-
physiological catheter mapping procedures, indicative of 
abnormal conduction and arrhythmogenicity.21 Abnormal 
conduction was found predominantly in RV (65%) sub-
epicardial myocardium, whereas Purkinje premature ven-
tricular contractions were the dominant cause in patients 

with iVF without conduction alterations. Concordant with 
biventricular fibrotic involvement in BrS,15 microstructural 
alterations of the left ventricular myocardium with or with-
out the RV myocardium were identified in a significant 
minority (35%). Localized abnormal electrograms within 
both ventricles were also commonly reported in a series 
of patients with iVF subjected to endocardial and epi-
cardial mapping.22 Here, Haïssaguerre et al22 identified 
sites of abnormal ECGs among 15 of 24 patients with 
iVF. Furthermore, abnormal areas were found to colocate 
with VF drivers; clinical recurrences were reduced after 
substrate-based ablation. The presence of myocardial 
fibrosis and fatty infiltration in cardiac tissue has also 
been associated with the distribution of J waves on the 
12-lead ECG.23

A COMMON UNDERLYING 
PATHOPHYSIOLOGY?
The underlying pathophysiology of BrS has been a mat-
ter of much debate.24 The 2 main electrophysiological 
hypotheses are the repolarization and depolarization 
theories.25 The repolarization theory is based on ex-
periments in perfused canine RV wedge preparations 
and refers to transmural dispersion of repolarization in 
the absence of structural abnormalities.26 According to 
this hypothesis, the notch of the action potential is ac-
centuated due to reduction of net inward Na+ current 
(NaV1.5), along with nonuniform increases in the Ito 
within the subepicardial myocardium. In the depolariza-
tion theory, ST-segment elevation observed in the right 
precordial leads is explained by severely compromised 
conduction, including slow or asynchronous conduc-
tion, localized block, and absence of activation within the 
RVOT, creating a large potential difference with respect 
to the body of the RV.27–30 Reduction of sodium current 
by sodium channel blockade, the presence of a SCN5A 
pathogenic variant, high-rate pacing, or extrasystoles 
can unmask the substrate.27,29 Experimental models 
also provide a mechanistic basis for the association be-
tween fibrosis and BrS. For example, a study using a 
haploinsufficient SCN5A+/− mouse model demonstrated 
fibrotic changes within both ventricles; epicardial acti-
vation analysis also showed increased late conducting 
components.31 Conduction deficits and myocardial fibro-
sis have been elegantly described in a porcine model of 
SCN5A deficiency, underscoring the pleotropic nature of 
sodium channel disease.32

It has been proposed that a reduction of sodium cur-
rent is caused by current-to-load mismatch and localized 
conduction block, resulting in excitation failure within 
fibrotic myocardium in the RV epicardium.28 In a porcine 
model and in computer simulations, Hoogendijk et al29 
showed that localized excitation failure by current-to-load 
mismatch can cause ST-segment elevation  modulated 
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by the balance of sodium current, Ito, and calcium current. 
In the presence of structural discontinuities, a decrease 
in depolarizing (or an increase in the repolarizing) cur-
rent may result in unidirectional conduction block. These 
findings are concordant with clinical data demonstrating 
excitation failure and localized RV epicardial activation 
delay in BrS myocardium.33,34

The most compelling data in favor of the depolariza-
tion hypothesis were put forward by Nademanee et al,30 
who studied 9 patients with BrS with recurrent VF and 
frequent implantable cardioverter defibrillator discharges. 
Electroanatomic mapping showed low-voltage fragmented 
electrograms of prolonged duration over the epicardial 
aspect of the RVOT. Catheter ablation resulted in normal-
ization of the type 1 Brugada electrocardiographic pattern, 
and no further arrhythmia was inducible, a phenomenon 
also observed by others.35 In our view, these findings sug-
gested that localized J-point and ST-segment elevation is 
a consequence of delayed depolarization of the RVOT with 
current-to-load mismatch at areas of cardiac tissue discon-
tinuity. This was made plausible by recording of delayed 
monophasic unipolar electrograms after sodium channel 
blocker administration in patients with BrS with or without 
early repolarization pattern.36 A monophasic morphology of 
a unipolar electrogram is commonly accepted as a sign of 
absence of local activation.37,38 These monophasic poten-
tials are visible in lead V1 as a J-point elevation.39

Similar observations have been made in patients with 
ERS.19,20 In an electroanatomic study of 58 patients with 
inferolateral J waves/ERS, 2 distinct electrical subtypes 
were identified. The majority was made up of those with 
depolarization abnormalities located predominantly at the 
inferior part of RV epicardium. A smaller group included 
individuals with no apparent depolarization abnormality 
but early repolarization unipolar signals (pure ERS) in 
which Purkinje-related VF triggers likely predominate.19 
Mechanisms underlying iVF often relate to the presence 
of premature ventricular contraction triggers arising from 
the distal Purkinje system, and this classification should 
be considered after careful exclusion of covert structural 
or molecular cardiac causes.

Others have questioned the role of delayed conduction 
in BrS. The canine wedge model demonstrated fraction-
ated electrograms and late potentials as a consequence 
of perturbations in epicardial repolarization (reactivation of 
calcium current) and action potential duration,40 although 
these electrograms show different characteristics in tim-
ing and continuity compared with those in human patients 
with BrS.39 Radiofrequency ablation of myocardium 
showing fractionated potentials mitigated the BrS elec-
trocardiographic phenotype.41 Furthermore, important 
differences have also been described in the electrocar-
diographic response of BrS and ERS to sodium channel 
blockade,42 which appears to accentuate J-wave ampli-
tude in BrS while causing a reduction in ERS. Although 
this suggests that distinct mechanisms may underlie both 

conditions, computer simulation data indicate that dif-
ferences in J-wave manifestation occur due to regional 
patterns of delayed activation and reduction in sodium 
current. Additional conduction slowing in the entire heart 
(eg, by sodium channel blockade) may attenuate J waves 
and J-point elevations on the ECG because of mask-
ing due to global QRS widening.18 In humans with BrS, 
the presence of late potentials on the signal-averaged 
ECG has been associated with a positive response to the 
sodium channel blocker provocation test.43

UNDERLYING GENETIC CAUSES
Since the landmark discovery of pathogenic variants in 
the first gene linked to BrS,44 SCN5A remains the only 
gene consistently associated with the clinical phenotype. 
To date, >300 mutations in SCN5A have been associ-
ated with BrS that underlie ≈20% of patients meeting 
diagnostic criteria.45 Pathogenic SCN5A variants in BrS 
cause loss of function due to reduction in the amplitude 
of the sodium channel current by reduced expression or 
altered voltage-gating properties. SCN5A variants have 
been described in various other cardiac pathologies, in-
cluding long QT syndrome, premature cardiac conduction 
defect, and dilated cardiomyopathy. However, it should be 
noted that not all SCN5A variants are pathogenic, ac-
cording to the Koch or Bradford Hill criteria.46,47 In fact, 
Probst et al48 found that within families with hereditary 
BrS and a pathogenic SCN5A variant, the genetic variant 
can be absent in symptomatic patients who comply with 
the syndromic criteria. Furthermore, given the relatively 
modest monogenic contribution of SCN5A to the BrS 
phenotype, it is clear that inheritance patterns are more 
complex than previously thought.49

Bezzina and et al50 provided initial support for this idea 
through a genome-wide association study exploring the 
role of common genetic variation in BrS. They identified 3 
loci associated with BrS: rs10428132 and rs11708996, 
both at SCN5A/SCN10A, and rs9388451 near HEY2. 
These common variants were thought to account for 
≈7% of variance in BrS susceptibility. Furthermore, dis-
ease risk increased consistently with increasing numbers 
of carried risk alleles. A follow-up study suggested that 
the weighted contribution of these variants may allow an 
individualized approach to diagnosis along with estab-
lished clinical factors.51 A strong polygenic susceptibility 
was underscored by a further, much larger genome-wide 
association study implicating 21 common variants at 12 
loci in BrS.52

The presence of SCN5A variants has also been 
reported in ERS, albeit at a lower diagnostic yield.53,54 In 
a study of 262 probands with BrS and 104 with ERS, 
Zhang et al54 identified a 10% yield of pathogenic SCN5A 
variants in the ERS group compared with 23% for BrS. 
This is further supported by patients with ERS under-
going ablation being more likely to harbor an SCN5A 
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 variant.19 This suggests that overlapping genetic features 
may underlie a significant minority of J-wave syndromes, 
ultimately contributing to reduced conduction reserve 
within RV epicardium.55 Furthermore, previous studies 
have shown that NaV1.5 may also have a role in the 
maintenance of normal cardiac structural integrity. Loss 
of NaV1.5 in heterozygous SCN5A+/− murine models 
has resulted in conduction defects, in keeping with pre-
mature cardiac conduction defect, and the occurrence 
of age-dependent fibrotic cardiac remodeling, which 
appears to be triggered by activation of a transforming 
growth factor-β signaling pathway.31,56,57

EVIDENCE FOR GENETIC OVERLAP WITH 
ARRHYTHMOGENIC CARDIOMYOPATHY
Genetic variants in the desmosomal gene PKP2 have 
been associated with clinically affected patients with 
BrS, and, conversely, SCN5A has been implicated in 
the pathogenesis of arrhythmogenic cardiomyopathy 
(ACM).58,59 The majority of annotated ACM pathogenic 
PKP2 variants are radical alternations (frameshift or 
nonsense mutations), but nonsynonymous variants have 
also been associated with additional cardiac phenotypes 
such as BrS.60 This suggests a pleotropic role of the pla-
kophilin-2 protein, which may have additional functions 
besides linking cadherins to intermediate filaments in the 
cytoskeleton.61 These findings are emphasized by experi-
mental models detailing a molecular interaction between 
desmosomal proteins and the sodium channel, suggest-
ing that both disease states may exist on a continuum, 
manifesting variable degrees of electrical and structural 
dysfunction.62,63 For example, biochemical, patch clamp, 
and optical mapping experiments have reported impor-
tant associations between plakophilin-2 and NaV1.5 at a 
cellular level while also demonstrating adverse effects of 
PKP2 knockdown on sodium current function.64 Similarly, 
PKP2 variants were functionally detrimental to sodium 
channel current in a series of patients with SCN5A-neg-
ative BrS, all of whom failed to exhibit structural features 
of cardiomyopathy.65 Functional in vitro evaluation result-
ed in decreased sodium current at sites of cell-to-cell 
contact. This was reversed after transfection of wild-type 
PKP2 in cellular models but not in mutant forms associ-
ated with BrS.

Additional studies have shown deleterious interac-
tions between pathogenic variants in other desmosomal 
genes and sodium current, as in the cases of DSG2,66 
DSP,67 and JUP.68 The clinical phenotype of BrS has 
also been observed in a patient with a pathogenic LMNA 
variant.69 However, such genes currently have insuffi-
cient evidence for their inclusion in genetic testing pan-
els for BrS.70 Survivors of unexplained cardiac arrest, 
including patients with iVF, may also harbor pathogenic 
variants in SCN5A in a small proportion, but more sig-
nificantly, disease-causing variants in cardiomyopathy-

related genes, including ACM, have been implicated in 
10%.71 Indeed, interaction between pathogenic desmo-
somal variants and calcium current may also represent 
an important arrhythmia mechanism in the absence of 
overt structural defects. The concept of a desmosome-
dyad axis has been proposed whereby disruption of the 
desmosome can lead to downregulation of the calcium 
handling protein integrin β1D, which precipitates hyper-
phosphorylation of RYR2 (Ser-2030) and predisposes 
to catecholaminergic polymorphic ventricular tachycar-
dia–like ventricular arrhythmias.72,73 Moreover, disruption 
of calcium current homeostasis has also been reported 
in PKP2-deficient mice, in which an RV-predominant 
arrhythmogenic substrate was observed in advance of 
any overt cardiomyopathic changes.74 However, we pre-
sume that much of the remaining heritability in ERS and 
iVF could also have a polygenic basis.

CLINICAL OVERLAP WITH 
CARDIOMYOPATHY
Over recent years, several studies have reported over-
lapping clinical features between ACM and BrS in some 
patients, suggesting that a common disease pathway 
may underlie such cases.75,76 Several investigators have 
postulated that such changes may relate to changes in 
the connexome,77–79 a network at the intercalated disk 
that integrates mechanical junctions, gap junctions, and 
the voltage-gated sodium channel.

Case series have documented RV electromechani-
cal abnormalities (including epsilon waves) in BrS and 
the presence of a provocable type 1 Brugada ECG in 
patients meeting task force criteria for ACM.76,80–82 Fur-
thermore, the association between BrS and morpho-
logical abnormalities of the RV has been explored83–87 
(Table 1). Gray et al91 compared cardiac magnetic reso-
nance (CMR) imaging data among patients with BrS, 
patients with ACM, and control subjects. The BrS cohort 
was characterized by increased volumes and abnormal 
function of the RVOT compared with controls, but, unlike 
the ACM group, the BrS group did not show global RV 
dilatation or systolic impairment. Some patients with 
BrS also demonstrate left ventricular late gadolinium 
enhancement on CMR,83 suggesting a degree of phe-
notypic overlap with cardiomyopathies such as ACM. 
One CMR study showed emergence of focal septal 
late gadolinium enhancement in 4 patients with BrS 
during follow-up, suggesting that a progressive evolu-
tion of imaging abnormalities occurs in some patients 
(Figure 2).93 Despite these reports, not all CMR stud-
ies have shown such changes.90 Moreover, there are a 
lack of data indicating evolving myocardial impairment 
in patients with BrS. This is in line with our view that 
microstructural changes are minor, undetectable by con-
ventional imaging, and unlikely to cause overt myocar-
dial dysfunction (Figure 3). Nonetheless, in one study, 
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Table 1. Studies Detailing Electrophysiological and CMR Features of Subjects With BrS, ERS, and iVF

Study type and cohort(s) Main findings Reference 

Electrophysiological and voltage mapping

  Comparative study: patients with 
BrS, n=22 (36% SCN5A+); control 
subjects, n=12

Fractionation of electrograms (defined as the presence of ≥2 intrinsic deflections with a dV/dt ≤−0.04 
V/s, separated by ≥10 ms, in the unipolar signal with corresponding deflections in the bipolar electro-
gram) higher in patients with BrS than in control subjects (data on 28 subjects)
Electrogram duration higher in patients with BrS compared with control subjects (data on 28 subjects)
Conduction slowing in subjects with spontaneous BrS pattern compared with those with drug-induced 
BrS or control subjects, with longer paced activation time and longer paced QRS at basic cycle length 
(data on 19 subjects)
No differences in repolarization parameters (mean activation recovery interval, mean repolarization time, 
and dispersion parameters) between patients with BrS and control subjects (data on 28 subjects)

88

  Comparative study: patients with 
BrS, n=18 (6% SCN5A+); control 
subjects, n=20

Significant prolongation of the sinus rhythm electrograms in the RVOT vs apex in patients with BrS, not 
evident in control subjects
Electrograms significantly more prolonged and complex in the RVOT segments of patients with BrS vs 
control subjects
Electrograms in the RVOT segments more polyphasic than RV body and apex in patients with BrS, not 
evident in control subjects
Significant differences in activation recovery time in the midportion of the restitution curve between pa-
tients with BrS and control subjects
Significant differences in the activation recovery time at apex and base in patients with BrS at both long 
and short diastolic intervals, not evident in control subjects

89

  Observational study: patients with 
BrS, n=14 (29% SCN5A+)

Abnormal epicardial electroanatomic voltage maps, characterized by low-voltage (<1.5 mV) areas, pres-
ent at baseline and increasing after class I drug challenge, with no endocardial abnormalities
Substrate elimination by epicardial ablation

35

  Observational study: patients with 
BrS, n=6 (33% SCN5A+)

Abnormal (fractionated and delayed) epicardial electrograms in RVOT, defined as: (1) low voltage (≤1 
mV); (2) split or fractionated with multiple potentials; and (3) wide duration (≥70 ms) or late potentials 
with distinct potentials extending beyond the end of the QRS complex
Ameliorative effect of epicardial radiofrequency ablation (100%)

13

  Observational study: patients with 
BrS with ER pattern, n=33 (27% 
SCN5A+)

Abnormal epicardial electrograms defined as: (1) low voltage (≤1 mV); (2) split or fractionated with mul-
tiple potentials; and (3) wide duration (≥70 ms) localized at the anterior RVOT/RV epicardium (100%), 
inferior RV epicardium (91%), or posterolateral LV (3%)
Ameliorative effect of epicardial radiofrequency ablation (90%; data on 32 subjects)

19

  Observational study: patients with 
ERS, n=18 (0 SCN5A+)

Abnormal epicardial electrograms defined as: (1) low voltage (≤1 mV); (2) split or fractionated with mul-
tiple potentials; and (3) wide duration (≥70 ms) in 7/18 subjects (39%) localized at the inferior RV epicar-
dium (100%), anterior RVOT/RV epicardium (60%), or apical and posterior LV epicardium (20%)
Ameliorative effect of epicardial radiofrequency ablation in 100% of patients with ERS with elimination of 
prominent J wave (data on 4 subjects)

  Case report: 1 subject with ERS 
(genetics NA)

Fractionated unipolar epicardial electrograms identified in RV inferior wall and ablated with long-term nor-
malization of the cardiac rhythm and the QRS complex

20

  Observational study: patients with 
iVF, n=50 (genetics NA)

Low amplitude and fractionated electrograms were found in 34/50 patients (68%)
Isolated Purkinje abnormalities in 20% of patients
No abnormalities in 12% of patients

21

CMR imaging

  Comparative study: patients with 
BrS, n=20 (0 SCN5A+); matched 
control subjects, n=20

RVOT area enlarged in patients with BrS compared with control subjects
High intramyocardial T1 signal similar to fat signal in 20% of patients with BrS, not present in control 
subjects
No LGE data

85

  Comparative study: patients 
with BrS, n=30 (30% SCN5A+); 
matched control subjects, n=30

Presence of RV contractility abnormalities in 50% of BrS patients (especially in the anterior-apical seg-
ment and in the RVOT)
Significant enlargement of the right ventricular inflow tract in BrS compared with controls
No LGE in patients with BrS or control subjects

84

  Comparative study: patients with 
BrS, n=29 (genetics NA); matched 
control subjects, n=29

No differences in LV and RV dimensions and ejection fraction
RV wall motion abnormalities (especially hypokinesia, and mostly in the RV inferior wall) in 66% of pa-
tients with BrS and 76% of control subjects
No LGE in patients with BrS or control subjects

90

  Comparative study: patients 
with BrS, n=81 (20% SCN5A+); 
matched control subjects, n=30

Larger RV volumes and lower RV ejection fraction in patients with BrS with SCN5A pathogenic/likely 
pathogenic variants compared with noncarriers and control subjects
No LGE in patients with BrS or control subjects (1 attributed to myocarditis)

87

  Comparative study: patients 
with BrS, n=78 (33% SCN5A+); 
matched control subjects, n=78

Lower RV ejection fraction and higher end-systolic volume in patients with BrS compared with control 
subjects
LGE in 8% of patients with BrS (localized in the left ventricular midwall in 5%), not present in control 
subjects

83

(Continued )
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structural RVOT abnormalities appeared to confer a 
worse prognosis in BrS, representing a potential marker 
for arrhythmic risk.95 The Table 1 summarizes previously 
published electrophysiological and imaging data on the 
apparent microstructural substrate present in BrS, ERS, 
and iVF. To the best of our knowledge, CMR imaging 
has not been studied in ERS or iVF.

Figure 3 shows the relationship between these dis-
orders and the severity of the microstructural changes 
with respect to their detectability by various diagnostic 
methods. Depending on the resolution of the imaging 
or diagnostic method used, the syndromes are defined 
as structural heart disease or progressive or not. How-
ever, gadolinium enhancement  lacks sensitivity for dif-
fuse patterns of interstitial fibrosis, which may be better 
served by novel imaging techniques such as T1 mapping.

PREDILECTION OF LOCATION
There is a potentially shared predilection of location of 
the microstructural abnormalities and VF origin in the 
subepicardial (right) ventricular myocardium in at least 
a subset of patients with 1 of the 3 syndromes. This 
raises the question of the cause for this predilection. A 
possible explanation may be found in cardiac develop-
ment. The progenitor cells of the left ventricular and RV 
compartments have a different developmental history 
and have been exposed to different signals and gene 
programs before their differentiation.96 Studies in chick-
ens have revealed that the RVOT is derived from the 
outflow tract (OFT) of the embryonic and fetal heart.97 
The electrophysiological properties and gene expression 
in the cardiomyocytes of the prenatal OFT differ from 

Study type and cohort(s) Main findings Reference 

Electrophysiological and voltage mapping

  Comparative study: patients 
with BrS, n=42 (17% SCN5A+), 
matched control subjects, n=42

Abnormal RVOT morphology in 67% of patients with BrS 
Larger RVOT volumes and wall motion abnormality in patients with BrS compared with control subjects
RV volume and function similar between patients with BrS and control subjects
No LGE in patients with patients with BrS or control subjects

91

  Comparative study: patients with 
BrS, n=106 (21% SCN5A+); con-
trol subjects, n=25

Lower RV ejection fraction and cardiac index in patients with BrS compared with control subjects
RVOT area enlarged in patients with BrS compared with control subjects
No LGE in patients with BrS or control subjects

92

  Observational study: patients with 
BrS, n=18 (19% SCN5A+)

Four of 18 subjects (22%) developed LGE on follow-up, typically localized to the RV side of the basal 
septum
Increase in RV end-systolic volume over time
Four of 18 subjects (22%) showed a reduction in RV ejection fraction >10% over time

93

BrS indicates Brugada syndrome; CMR, cardiac magnetic resonance; ER, early repolarization; ERS, early repolarization syndrome; iVF, idiopathic ventricular fibril-
lation; LGE, late gadolinium enhancement; LV, left ventricle; NA, not available; RV, right ventricle; and RVOT, right ventricular outflow tract.

Table 1. Continued

Figure 2. Development of LGE on CMR imaging during follow-up in patients with BrS.
Four (22%) patients (ATT1, BPS1, BPU1, and BXI1) developed focal septal late gadolinium enhancement (LGE) during assessment with serial 
cardiac magnetic resonance (CMR). Average time between follow-up imaging was 5.0±1.7 years. BrS indicates Brugada syndrome. Reproduced 
with permission from Isbister et al.93 Copyright © 2023 Elsevier.
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those of the ventricles. The prenatal OFT conducts the 
cardiac impulse slowly, and the main protein responsible 
for intercellular electrical communication, connexin43, is 
not expressed in the OFT. Some remnants of these phe-
notypic differences may be maintained in the OFT, when 
it matures to form the RVOT. This may explain why the 
RVOT may form the basis for reentrant arrhythmias that 
are facilitated by slow conduction and uncoupling.98

A role for cardiac development in disease susceptibil-
ity is further supported by the genome-wide association 
study that associated BrS with several common variants 
in or near genes encoding transcription factors crucial for 
electrophysiological patterning of the ventricular myocar-
dium during development, such as TBX5, HEY2, IRX3, 
and IRX5.52 These transcription factors directly or indi-
rectly modulate the expression of SCN5A and could be 
causally related to reentry by slowing conduction.50,99,100 
TBX5 and IRX3 are expressed predominantly in the ven-
tricular conduction system and have been associated 
with atrioventricular conduction disturbance and iVF, 
respectively.101,102 HEY2 and IRX5 are expressed in the 
ventricular myocardium and dictate the transmural gradi-
ent in Ito.

103,104 In mice, Irx5 is expressed in an endocar-
dial-to-epicardial gradient and represses the expression 
of Kcnd2, a potassium channel carrying Ito, leading to low 

Ito magnitude in the subendocardium. On the other hand, 
Hey2 is expressed in an epicardial-to-endocardial gradi-
ent. Mice heterozygous for Hey2 show reduced Kcnd2 
expression and lower Ito magnitude in the subepicardium 
compared with controls, indicating that Hey2 is required 
for high magnitude of Ito in the subepicardium.104 Com-
puter simulation experiments have shown that large Ito 
reduces sodium current, contributes to a slower con-
duction in the subepicardium than the subendocardium 
(especially in the presence of sodium channel blockers), 
and, in the presence of subtle structural discontinuities, 
facilitates conduction block.29,105

CLINICAL IMPLICATIONS
Microstructural defects within the cardiac architecture of 
patients with BrS, ERS, and iVF or their electrophysiolog-
ical manifestations are increasingly recognized. From our 
previous hypothesis of impaired epicardial conduction 
reserve in the RVOT underlying the BrS,55 we postulate 
that impaired conduction, along with genetic and envi-
ronmental susceptibility, within sites of microstructural 
discontinuity in patients with BrS and a large proportion 
of patients with ERS and iVF, precipitates a reduction 
in epicardial conduction reserve, which, in turn, leads to 

Figure 3. Detectability and severity of structural abnormalities in BrS, ERS, and ACM with respect to cardiac diagnostic 
modalities.
ACM indicates arrhythmogenic cardiomyopathy; BrS, Brugada syndrome; ERS, early repolarization syndrome; iVF, idiopathic ventricular fibrillation; 
and MRI, magnetic resonance imaging. Adapted from Boukens et al94 with permission. Copyright © 2020 Elsevier.
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the arrhythmogenic substrate and can give rise to the 
electrocardiographic phenotype in BrS and inferolateral 
J waves in ERS (Figure 1).

There are currently major deficiencies in our abil-
ity to diagnose the underlying cause in cases of initially 
unexplained cardiac arrest with no apparent structural 
cardiac abnormality. The rapidly expanding use of high-
density electroanatomic mapping and digital analysis 
software may facilitate digital quantification of tissue 
and cellular components in which histological changes 
are subtle or localize to particular regions of myocardium. 
When combined with machine learning algorithms, this 
may allow artificial intelligence–led diagnostics and a 
reduced reliance on current qualitative and descriptive 
techniques used in cardiac pathology. Future studies 
may also consider mRNA sequencing of tissue speci-
mens to enable transcriptome-wide analysis of molecular 
pathways implicated in collagen synthesis, which could 
enable the development of metabolically targeted thera-
pies. Furthermore, modern imaging modalities such as 
CMR T1 mapping or photon-counting computed tomog-
raphy have provided an invaluable opportunity to visualize 
fibrosis patterns in vivo. This could potentially facilitate 
objective comparisons of such phenotypes and may have 
implications for clinical practice, particularly early detec-
tion of these pathologies. For example, high-resolution 
imaging techniques used to detect and longitudinally 
assess myocardial fibrosis could form the basis of future 
investigations into its role in arrhythmic risk stratification 
and local therapy. Understanding the histological and 
electrophysiological substrate may also help in develop-
ing morphometric diagnostic criteria for a subepicardial 
cardiomyopathy.

CONCLUSIONS
BrS, ERS, and iVF potentially form part of a spectrum 
of a common disease defined by subtle subepicardial 
microstructural abnormalities: a subepicardial cardiomy-
opathy. Although genetic susceptibility is uncertain and 
variable, these microstructural abnormalities are consis-
tent with the electrocardiographic characteristics of each 
of the syndromes, the mechanism of arrhythmogenesis, 
and the relationship with modulating genetic and envi-
ronmental factors.
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