Supplementary Online Content

Scarpone R, Kimkool P, Ierodiakonou D, et al. Timing of allergenic food introduction and risk of immunoglobulin E–mediated food allergy: a systematic review and meta-analysis. *JAMA Pediatr*. Published online March 27, 2023. doi:10.1001/jamapediatrics.2023.0142

eMethods

eFigure 1. PRISMA Flow Diagram of Study Selection

eFigure 2. Post Hoc Trial Sequential Analysis for Key Study Findings

eFigure 3. Earlier introduction of Allergenic Foods and Allergic Sensitization

eFigure 4. Earlier Introduction of Allergenic Foods and Withdrawal From Study Intervention

eFigure 5. Exploration of Small Study Effects Using Funnel Plots

eFigure 6. Earlier Introduction of Allergenic Foods and Risk of Allergy to Any Food

eTable 1. Characteristics of Included Studies

eTable 2. Characteristics of Ongoing Studies

eTable 3. Summary of Findings for Earlier Introduction of Multiple Allergenic Foods

eTable 4. Summary of Findings for Earlier Introduction of Egg

eTable 5. Summary of Findings for Earlier Introduction of Peanut

eTable 6. Summary of Findings for Earlier Introduction of Cow's Milk

eTable 7. Subgroup Analyses for Earlier Introduction of Multiple Allergenic Foods

eTable 8. Subgroup Analyses for Earlier Introduction of Egg

eTable 9. Subgroup Analyses for Earlier Introduction of Peanut

eTable 10. Subgroup Analyses for Earlier Introduction of Cow's Milk

eTable 11. Sensitivity Analysis of Low Risk of Bias Data

eTable 12. Earlier Introduction of Other Common Allergenic Foods

eReferences

eAppendix. Search Strategies

This supplementary material has been provided by the authors to give readers additional information about their work.

eMethods

This is a targeted update of a systematic review originally commissioned by the UK Food Standards Agency to inform revisions to mother and infant feeding guidance.¹ The previous version of this systematic review was part of a series evaluating the influence of maternal diet during pregnancy and lactation, and infant diet during the first year of life, on risk of allergic or autoimmune disease in the child at any time of life.^{2,3} The previous systematic reviews and this targeted update review were all registered on the International Prospective Register of Systematic Reviews (PROSPERO references for original reviews CRD42013003802, CRD42013004239, CRD42013004252, registered on August 5, 2013; targeted update CRD42013004239, registered on May 28, 2021).

Types of Study Included

We included only randomized controlled trials published from database inception until the search date (May 11, 2021; updated on June 28, 2022 and December 29, 2022). We did not include quasi- or non-randomized controlled trials, observational studies, non-comparative studies, or non-human studies.

Population

Infants between the age of 0 and the end of the 12th postpartum month. Studies where subject eligibility was defined based on a family history of allergy were included, since this applies to a significant proportion of infants. We did not include trials undertaken in specific populations such as very premature infants, infants who all had a specific, uncommon health condition (e.g., affecting less than 1% of general populations), or other populations which were clearly unrepresentative of more general populations.

Intervention

Timing of the introduction of common allergenic foods into the infant diet, namely cow's milk, egg, peanut, tree nuts, wheat, soya, crustaceans, and fish. We did not include trials which evaluated nutritional supplements such as vitamins, probiotics, prebiotics or synbiotics, trials of one mammalian milk versus an immunologically closely related mammalian milk (e.g., cow's milk versus sheep or goat milk), trials of multifaceted interventions where timing of allergenic food introduction to the infant diet was a minor component of the overall intervention (e.g., trials involving maternal dietary interventions and environmental control in addition to infant allergenic food.

Comparator

We included trials which used delayed allergenic food introduction, breastfeeding or human breastmilk, aminoacid formula, other low allergen exposure interventions, or usual care as the comparator. We did not include trials which compared an allergenic food with a partially or extensively hydrolyzed formula, whether or not that formula was derived from the same protein source as the allergenic food. We included studies which compared different doses, forms, or routes of an exposure e.g., high or low allergen intake, single or multiple allergenic food introduction.

Study Outcomes

Allergy to any food was the primary efficacy outcome and withdrawal from study intervention was the primary safety outcome. Secondary outcomes included allergic sensitization to any or single foods, and allergy to specific foods. Age at assessment was the closest reported timepoint to age 3 years. Data outside the age range 1-5 years were extracted and reported, but not included in meta-analysis with 1-5 year data. Where there were multiple assessments, we included our preferred method as stated below, then the closest timepoint to age 3 years, then the outcome with the highest proportion of randomized participants evaluated. Primary outcomes:

1. Food allergy to any food – defined by double-blind placebo-controlled food challenge, open food challenge, medical diagnosis or by self/parent report.

Preferred method of assessment: challenge-proven food allergy to any food, assessed at ~3 years. Where multiple measures were reported, cumulative incidence was analyzed preferentially.

2. Safety outcome – withdrawal from study intervention.

Preferred method of assessment: number of randomized participants in each group who were reported to have withdrawn from treatment or been lost to follow up during the study intervention period, for either unspecified reasons, or for any reason that could potentially be associated with the intervention. Secondary outcomes:

1. Allergic sensitization to any food – defined as positive skin prick test and/or specific immunoglobulin E (IgE) test to at least one food allergen, using recognized methodologies and scoring criteria.

Preferred method of assessment: sensitization to at least one common food allergen, assessed at ~3 years. Where multiple measures were reported, point prevalence was analyzed preferentially.

2. Food allergy to a specific food – defined by double-blind placebo-controlled food challenge, by open food challenge, by medical diagnosis or by self/parent report.

Preferred method of assessment: challenge-proven food allergy to specific foods – cow's milk, egg, wheat, soya, peanut, tree nut, fish, or crustacean – assessed at ~3 years. Where multiple measures were reported, cumulative incidence was analyzed preferentially.

3. Allergic sensitization to a specific food – defined as positive skin prick test and/or specific IgE test to cow's milk, egg, wheat, soya, peanut, tree nut, fish, or crustacean, using recognized methodologies and scoring criteria.

Preferred method of assessment: sensitization to the relevant food allergen, assessed at ~3 years. Where multiple measures were reported, point prevalence was analyzed preferentially.

Search Strategy

The search strategies included both text terms and subject heading terms where appropriate. The search strategies were initially developed for use on the Medline database and then adapted for use on the other databases. We searched for eligible studies in Medline, Embase, Cochrane Library (CENTRAL) with no specified start date. The search was run on May 11, 2021, and included all studies published as either full text, letter, or abstract publications up to that date, and was updated on June 28, 2022 and December 29, 2022. We included peer reviewed publications, and abstract publications if they contained data that had not subsequently been published as a peer reviewed publication. We reviewed the bibliography of eligible studies for possible additional publications, and included all eligible publications, regardless of the language. Where necessary we contacted the authors of eligible or potentially eligible studies to request further details. The search strategies were extensively piloted and refined to optimize sensitivity, comparing search results with those of other high quality published systematic reviews. The final search strategies for this review as run in each database are shown in the Appendix and can also be accessed at

https://www.crd.york.ac.uk/PROSPEROFILES/4239_STRATEGY_20210527.pdf.

Study Selection

Titles, abstracts, and full texts of the identified studies were independently reviewed and assessed for eligibility against the inclusion criteria by two authors (R.S. and P.K.). Any discrepancies were resolved with the help of a third author (R.J.B.). Electronic records were kept regarding included and excluded studies for audit purposes. The reasons for the exclusion of any relevant studies were recorded, however ineligible studies were not analyzed further.

Data Extraction

An Excel data extraction form based on the form used in the previous systematic review was developed, piloted, and refined by three authors (R.S., P.K., and R.J.B.). Data extraction was undertaken by two authors (R.S. and P.K.). Disagreements and uncertainties were discussed in team meetings with a third author (R.J.B.). We extracted all relevant data from included studies, including data that could not be included in meta-analysis (e.g., which were not appropriately reported).

Risk of Bias Assessment

Review level bias: Publication bias was assessed using funnel plots and Egger's test where at least 10 trials were included in a meta-analysis.⁴ Possible causes for asymmetry other than publication bias were also considered. Study level bias: The risk of bias in included trials was assessed using the revised Cochrane risk-of-bias tool for randomized trials (RoB 2).⁵ Overall risk of bias was considered low, some concerns, or high where the study outcome risk of bias was judged to be low for all domains of the RoB 2, some concerns for one domain, or high for at least one domain or some concerns for more than one, respectively.

Strategy for Data Synthesis

Meta-analysis was undertaken where ≥ 2 studies reported the same outcome for a given intervention. Our approach to meta-analysis was inclusive, however, data were explored for important sources of statistical or clinical heterogeneity.

Data extraction: Data were extracted using the number of events and total number of participants evaluated in each group. We did not plan formal individual patient data analysis but used data from publicly available datasets where necessary and where appropriate we contacted authors to clarify queries and include studies in meta-analysis.

Heterogeneity: Heterogeneity was quantified using I^2 . Where extreme levels of heterogeneity were detected (I^2 >75%), we performed sensitivity analyses to assess the effect of excluding outliers and re-considered whether

quantitative data synthesis was appropriate. Where possible, sensitivity/subgroup analyses were used to explore sources of heterogeneity arising from study characteristics.

Data analysis: Random effect meta-analyses were performed to allow for the anticipated heterogeneity between studies. Data were imported into R version 4.2.0 and analyzed using the "meta" version 5.2-0 and "metafor" version 3.4-0 packages.⁶⁻⁸ The Mantel-Haenszel and DerSimonian and Laird methods were used.^{9,10} Pooled results are presented as relative risks with 95% confidence intervals, and also expressed as risk differences where possible. P<0.05 was considered statistically significant. *Post hoc* trial sequential analysis (TSA) was used to quantify statistical reliability of the key positive review findings – for earlier multiple allergenic food introduction and any food allergy, earlier egg and egg allergy, and earlier peanut and peanut allergy.¹¹ A 2-sided P<0.05 significance level, 80% power, and control event rates pooled from the largest included studies (5% for any food allergy, 4% for egg allergy, and 2.5% for peanut allergy) were used to estimate optimal heterogeneity-adjusted information sizes needed to identify a relative risk reduction of 30%. TSA quantifies statistical reliability of data in a cumulative meta-analysis in a similar way to an interim analysis in a single randomized clinical trial. Statistical analyses were undertaken by three authors (R.S., D.I., and J.L.-B.).

Key findings are presented in Summary of Findings tables. Individual study results which were not appropriate for meta-analysis were reported narratively.

Sensitivity and Subgroup Analyses

Prespecified sensitivity analysis:

1. Low risk of bias – data evaluated as at low risk of bias were analyzed separately, excluding data with some concerns or high risk of bias.

Prespecified subgroup analyses:

1. Single versus multiple allergenic food introduction.

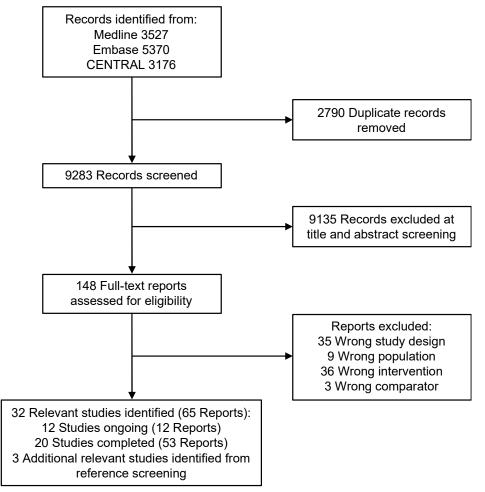
2. High versus low allergen intake, using a cut-off of 2g per week of the relevant individual food protein(s).

3. Milk feeding status at enrolment – exclusively breastmilk, with or without non-milk foods, versus mixed breastmilk/other milk or non-breastmilk fed.

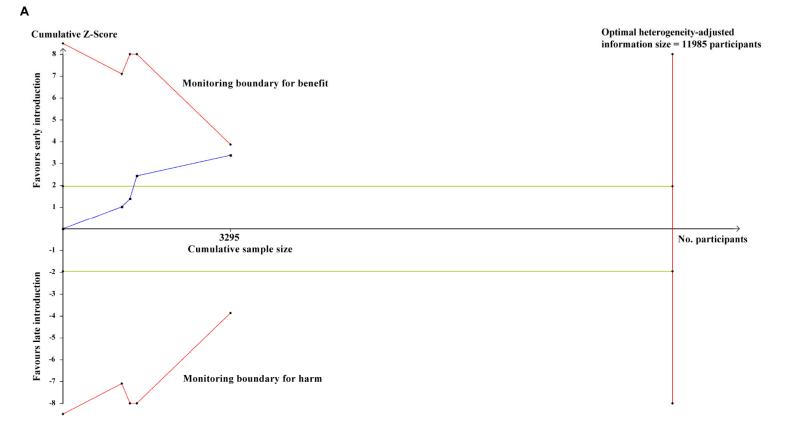
Subgroup analyses were conducted using study-level variables. Additional sensitivity/subgroup analyses were undertaken to explore statistical heterogeneity if this was identified in the meta-analyses.

Review Registration

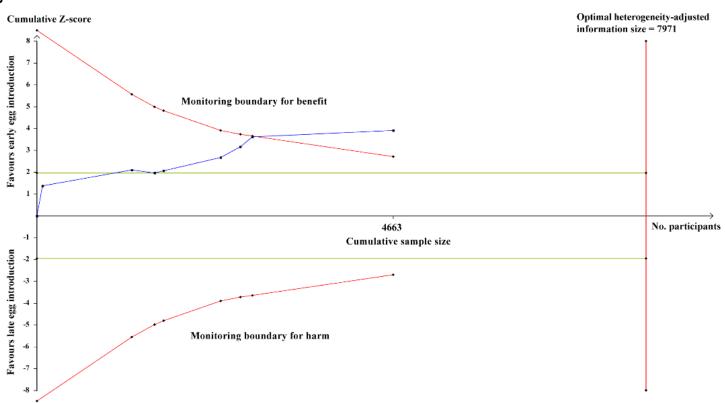
Details of the protocol for this systematic review were registered on PROSPERO on May 28, 2021, prior to title screening or selecting any studies from the search results and can be accessed at https://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42013004239.

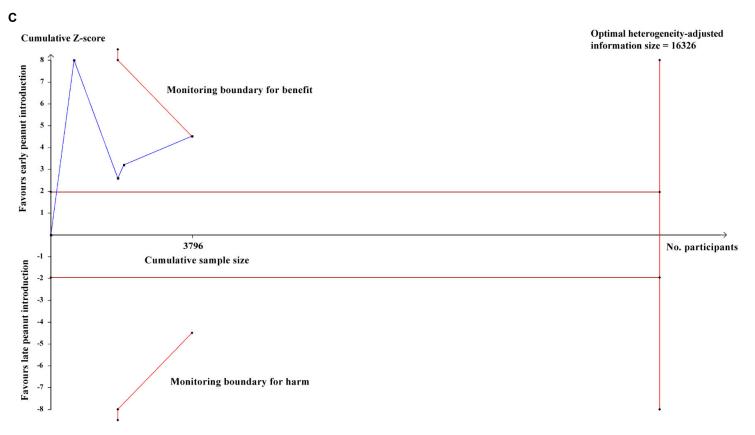

Differences Between the Protocol and the Review

One new author joined the review team (R.S.). We included TSA as an additional statistical measure of confidence in the key positive study findings.


GRADE Evaluation of Evidence

The certainty of evidence in this report was rated using the GRADE approach, which has four levels of certainty: high, moderate, low, and very low.^{12,13} Evidence can be downgraded by one or two levels if there is serious or very serious risk of bias, inconsistency of results, indirectness of evidence, imprecision, or likely or very likely publication bias. The interpretation of GRADE certainty ratings is that for high certainty evidence further research is very unlikely to change our confidence in the estimate of effect; for moderate certainty evidence further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate; for low certainty evidence further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate; and for very low certainty evidence any estimate of effect is very uncertain.




Search results and study selection procedure. Searches were run on May 11, 2021, and updated on June 28, 2022 and December 29, 2022.

eFigure 2. Post Hoc Trial Sequential Analysis for Key Study Findings

В

Trial sequential analysis is shown for earlier introduction of multiple allergenic foods and allergy to any food (A), earlier introduction of egg and egg allergy (B) and earlier introduction of peanut and peanut allergy (C). Horizontal lines are z scores of +1.96 or -1.96, equal to two-sided P=0.05. Datapoints on the blue (Z-statistic) and monitoring boundary lines represent individual studies in date and alphabetical order. The cumulative Z-statistic (blue line) approaches the trial sequential monitoring boundary for benefit in parts A and C, indicating that the optimal information size has not yet been reached for determining whether earlier introduction of multiple allergenic foods or peanut reduce risk of any food allergy or peanut allergy respectively, by \geq 30%. For earlier egg introduction and egg allergy (B), the cumulative Z-statistic (blue line) crosses the trial sequential monitoring boundary for benefit, indicating that there is sufficient evidence to determine that earlier egg introduction reduces risk of egg allergy by \geq 30%.

eFigure 3. Earlier introduction of Allergenic Foods and Allergic Sensitization

Α								
	Ear	lier	La	ter				Risk of Bias
Study	Events	Total I	Events	Total	Weight	RR [95% CI]		D1 D2 D3 D4 D5
Nishimura 2022 (29)	65	76	68	74	45.5%	0.93 [0.83, 1.04]	•	
Perkin 2016 (32)	51	572	61	601	32.5%	0.88 [0.62, 1.25]		$\bullet \bullet \bullet \bullet \bullet$
Skjerven 2022 (35)	17	765	39	739	22.0%	0.42 [0.24, 0.74]		$\bullet \bullet \bullet \bullet \bullet$
Overall	133	1413	168	1414	100.0%	0.77 [0.54, 1.10]	•	
Heterogeneity: $Tau^2 = 0.0$)7; Chi ² = 7.4	0, df = 2	2 (P = 0	.02); I ²	= 73%		0.1 0.5 2 10	

Decreased Risk of Increased Risk of Any Food Sensitization Any Food Sensitization

В

	Earl	lier	La	ter				Risk of Bias
Study	Events	Total	Events	Total	Weight	RR [95% CI]		D1 D2 D3 D4 D5
Bellach 2017 (14)	8	142	4	156	2.0%	2.20 [0.68, 7.14]		- • • • ? • ?
Makrides 2002 (25)	7	91	7	46	2.8%	0.51 [0.19, 1.35]		🙂 ? 🖨 🕈 ?
Nishimura 2022 (29)	62	76	66	74	47.2%	0.91 [0.80, 1.04]		
Palmer 2013 (30)	19	42	22	35	12.9%	0.72 [0.47, 1.09]		
Palmer 2017 (31)	40	371	57	377	15.2%	0.71 [0.49, 1.04]		
Perkin 2016 (32)	29	568	37	599	10.6%	0.83 [0.52, 1.33]		
Skjerven 2022 (35)	8	765	9	739	3.0%	0.86 [0.33, 2.21]		
Tan 2017 (37)	13	122	25	122	6.5%	0.52 [0.28, 0.97]		• • • • ?
Overall	186	2177	227	2148	100.0%	0.81 [0.69, 0.96]	•	
Heterogeneity: $Tau^2 = 0.01$	I; Chi ² = 8.5	5, df = 1	7 (P = 0	.29); I ² :	= 18%		· · · · · · ·	
							0.1 0.5 2	10
						Decreased	Risk of	Increased Risk of

Decreased Risk of
Egg Sensitization

С						
	Earlier	Later				Risk of Bias
Study	Events Tota	I Events Total	Weight	RR [95% CI]		D1 D2 D3 D4 D5
Du Toit 2018 (18)	89 308	8 83 309	30.8%	1.08 [0.83, 1.39]	-	• • • ? •
Nishimura 2022 (29)	24 74	22 71	25.3%	1.05 [0.65, 1.69]	-+-	$\bullet \bullet \bullet \bullet \bullet$
Perkin 2016 (32)	22 569	34 599	24.1%	0.68 [0.40, 1.15]	-=+	$\bullet \bullet \bullet \bullet \bullet$
Skjerven 2022 (35)	10 765	5 33 739	19.7%	0.29 [0.15, 0.59]		$\bullet \bullet \bullet \bullet \bullet \bullet$
Overall	145 1716	6 172 1718	100.0%	0.74 [0.46, 1.20]	•	
Heterogeneity: $Tau^2 = 0.1$	8; Chi ² = 13.24, df	= 3 (P = 0.00); I	² = 77%		0.1 0.5 2 1	י 0
				Decreased Peanut Se		ncreased Risk of inut Sensitization

	Earl	ier	La	ter				Risk of Bias
Study	Events	Total E	Events	Total	Weight	RR [95% CI]		D1 D2 D3 D4 D5
Du Toit 2018 (18)	124	313	131	316	32.2%	0.96 [0.79, 1.15]		• • • ? ?
Nishimura 2022 (29)	65	76	68	74	39.9%	0.93 [0.83, 1.04]		$\bullet \bullet \bullet \bullet \bullet$
Perkin 2016 (32)	51	572	61	601	18.3%	0.88 [0.62, 1.25]	-	$\bullet \bullet \bullet \bullet \bullet$
Skjerven 2022 (35)	17	765	39	739	9.6%	0.42 [0.24, 0.74]		• • • • •
Overall	257	1726	299	1730	100.0%	0.86 [0.71, 1.05]	•	
Heterogeneity: $Tau^2 = 0.0$	2; Chi ² = 7.7	0, df = 3	3 (P = 0	.05); I ² =	= 61%		· · · · · ·	
							0.1 0.5 2	10
						Decreased	Risk of	Increased Risk of

Any Food Sensitization Any Food Sensitization

Е

	Earlier	Later				Risk of Bias
Study	Events Total	Events Total	Weight	RR [95% CI]		D1 D2 D3 D4 D5
De Jong 1998 (16)	41 702	30 732	22.1%	1.43 [0.90, 2.26]	-	• • • • ?
Kjellman 1979 (23)	4 25	4 23	5.8%	0.92 [0.26, 3.26]	_	? 🕈 🕈 ? ?
Lowe 2011 (24)	6 158	8 145	8.0%	0.69 [0.24, 1.94]	_ _	? 🖨 ? 🖶 ?
Nishimura 2022 (29)	44 74	44 71	31.1%	0.96 [0.74, 1.25]		
Perkin 2016 (32)	6 568	11 599	8.6%	0.58 [0.21, 1.55]	_ _	$\bullet \bullet \bullet \bullet \bullet$
Skjerven 2022 (35)	1 765	1 739	1.4%	0.97 [0.06, 15.42]		- •••••
Urashima 2019 (38)	46 143	24 143	23.1%	1.92 [1.24, 2.96]		$\bullet \bullet \bullet \bullet \bullet$
Overall	148 2435	122 2452	100.0%	1.14 [0.82, 1.59]	•	
Heterogeneity: $Tau^2 = 0.07$	'; Chi ² = 10.91, df	= 6 (P = 0.09); l	² = 45%		ľ	
					0.1 0.5 2	10
				Decreased Milk Sensit		Increased Risk of Milk Sensitization

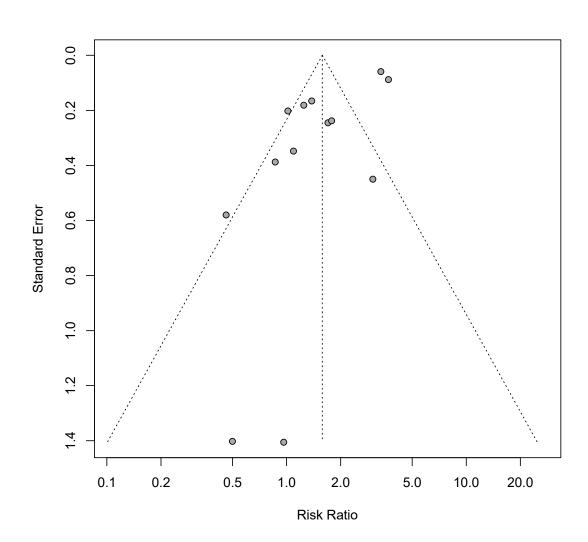
Data shown are for earlier introduction of multiple allergenic foods and allergic sensitization to any food (A), earlier introduction of egg and allergic sensitization to egg (B), earlier introduction of peanut and allergic sensitization to peanut (C) or to any food (D) and earlier introduction of cow's milk and allergic sensitization to cow's milk (E). There was no information for sensitization to any food from trials of earlier egg or milk introduction without multiple allergenic food introduction. Risk of bias D1, randomization process; D2, deviations from the intended intervention; D3, missing outcome data; D4, measurement of the outcome; D5, selection of the reported result; (+), low risk of bias; (?), some concerns; (-), high risk of bias; RR, risk ratio; CI, confidence interval.

eFigure 4. Earlier Introduction of Allergenic Foods and Withdrawal From Study Intervention

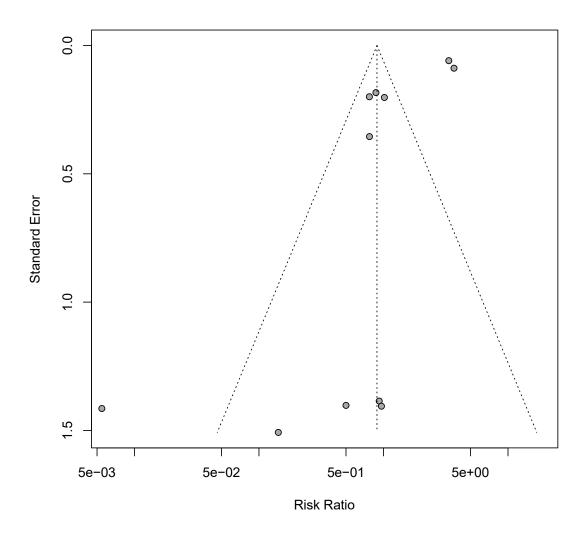
Α

	Earl	ier	La	ter				Risk of Bias
Study	Events	Total	Events	Total	Weight	RR [95% CI]		D1 D2 D3 D4 D5
Bellach 2017 (14)	60	184	47	199	10.2%	1.38 [1.00, 1.91]		••••
Holl 2020 (20)	45	366	41	339	9.8%	1.02 [0.68, 1.51]	-	? 🕈 🕈 🕈 ?
lannotti 2017 (21)	4	80	9	83	5.0%	0.46 [0.15, 1.44]		🕈 🕈 🕈 🖨 ?
Makrides 2002 (25)	15	106	9	55	7.3%	0.86 [0.40, 1.85]		• • • • • ?
Natsume 2017 (28)	14	73	13	74	7.8%	1.09 [0.55, 2.16]		? 🕈 🕈 🕈 🕈
Nishimura 2022 (29)	1	83	1	80	1.4%	0.96 [0.06, 15.15]		$\bullet \bullet \bullet \bullet \bullet$
Palmer 2013 (30)	20	49	5	37	6.5%	3.02 [1.25, 7.30]	_ 	
Palmer 2017 (31)	59	407	48	413	10.0%	1.25 [0.87, 1.78]	-	$\bullet \bullet \bullet \bullet \bullet$
Perkin 2016 (32)	432	652	117	651	10.9%	3.69 [3.10, 4.38]		• • • • •
Quake 2022 (33)	1	90	1	45	1.4%	0.50 [0.03, 7.81]		? 🕈 🕈 ? ?
Skjerven 2022 (35)	871	1225	249	1172	11.1%	3.35 [2.98, 3.76]		• • • • •
Stewart 2019 (36)	41	331	24	329	9.2%	1.70 [1.05, 2.74]	₽	• • • • •
Tan 2017 (37)	42	165	22	154	9.3%	1.78 [1.12, 2.84]	-	$\bullet \bullet \bullet \bullet \bullet$
Overall	1605	3811	586	3631	100.0%	1.58 [1.12, 2.22]	•	
Heterogeneity: $Tau^2 = 0.2$	27; Chi ² = 116	6.73, di	f = 12 (P	= 0.00)	; I ² = 90%		0.1 0.5 2 10	

Withdrawal


Decreased Risk of Increased Risk of Withdrawa Withdrawal

В


	Earlier	r La	ter				Risk of Bias
Study	Events T	otal Events	Total	Weight	RR [95% CI]		D1 D2 D3 D4 D5
Du Toit 2015 (17)	25	319 26	321	19.9%	0.97 [0.57, 1.64]	-	• • • • •
Holl 2020 (20)	45	366 41	339	22.3%	1.02 [0.68, 1.51]		? 🕈 🕈 🕈 ?
Nishimura 2022 (29)	1	83 1	80	2.6%	0.96 [0.06, 15.15]		- • • • • •
Perkin 2016 (32)	432	652 117	651	25.6%	3.69 [3.10, 4.38]		• • • • •
Quake 2022 (33)	2	90 1	45	3.4%	1.00 [0.09, 10.74]		- ? 🕈 🕈 ? ?
Skjerven 2022 (35)	871 1	1225 249	1172	26.1%	3.35 [2.98, 3.76]		• • • • •
Overall	1376 2	2735 435	2608	100.0%	1.91 [1.19, 3.05]	•	
Heterogeneity: Tau ² = 0.2	2; Chi ² = 56.24	4, df = 5 (P =	0.00); I ²	= 91%		0.1 0.5 2	ר 10
					Decrease Withdraw		ncreased Risk of Withdrawal

	Earl	ier	La	ter				Risk of Bias
Study	Events	Total	Events	Total	Weight	RR [95%	CI]	D1 D2 D3 D4 D5
Brown 1969 (15)	0	196	85	183	3.1%	0.01 [0.00, 0.	09] —	? 🔹 🔹 😜 ?
De Jong 1998 (16)	51	758	60	775	14.3%	0.87 [0.61, 1.	25] -	• • • • ?
Holl 2020 (20)	45	366	41	339	14.1%	1.02 [0.68, 1.	51] 🗕	? 🕈 🕈 🕈 ?
Kjellman 1979 (23)	1	26	1	24	3.2%	0.92 [0.06, 13.	95]	- ? 🕈 🕈 🖨 ?
Lowe 2011 (24)	13	206	17	208	12.2%	0.77 [0.38, 1.	55]	? 🕈 🕈 🕈 ?
Nishimura 2022 (29)	1	83	1	80	3.1%	0.96 [0.06, 15.	15]	
Perkin 2016 (32)	432	652	117	651	15.0%	3.69 [3.10, 4.	38]	
Quake 2022 (33)	1	90	1	45	3.1%	0.50 [0.03, 7.	81]	- ? 🕈 🕈 ? ?
Sakihara 2021 (34)	37	252	48	252	14.1%	0.77 [0.52, 1.	14] -	• • • • ?
Skjerven 2022 (35)	871	1225	249	1172	15.1%	3.35 [2.98, 3.	76]	
Urashima 2019 (38)	0	156	3	156	2.8%	0.14 [0.01, 2.	74] -	- • • • • •
Overall	1452	4010	623	3885	100.0%	1.05 [0.61, 1.3	82]	
Heterogeneity: $Tau^2 = 0.5^{\circ}$	I; Chi ² = 164	l.50, di	f = 10 (P	= 0.00)	; I ² = 94%		· · · · · ·	
							0.1 0.5 2	10
							creased Risk of hdrawal	Increased Risk of Withdrawal

Data shown are for the outcome withdrawal from study intervention, in trials of earlier egg (A), peanut (B) or cow's milk (C) introduction. Risk of bias D1, randomization process; D2, deviations from the intended intervention; D3, missing outcome data; D4, measurement of the outcome; D5, selection of the reported result; (+), low risk of bias; (?), some concerns; (-), high risk of bias; RR, risk ratio; CI, confidence interval.

eFigure 5. Exploration of Small Study Effects Using Funnel Plots

Funnel plots are shown for the outcome withdrawal from study intervention, in trials of earlier egg (A) or cow's milk (B) introduction. Funnel plots were only undertaken for meta-analyses including data from at least 10 trials. No other meta-analysis included 10 or more trials. Data show evidence of asymmetry for both egg (Egger's test, P=0.004) and cow's milk (Egger's test, P=0.01).

eFigure 6. Earlier Introduction of Allergenic Foods and Risk of Allergy to Any Food

Α								
	Earl	lier	La	ter				Risk of Bias
Study	Events	Total E	Events	Total	Weight	RR [95% CI]		D1 D2 D3 D4 D5
Nishimura 2022 (29)	7	82	19	79	16.6%	0.35 [0.16, 0.80]	_	
Perkin 2016 (32)	32	567	42	595	32.5%	0.80 [0.51, 1.25]	-	••••
Quake 2022 (33)	18	89	21	44	28.5%	0.42 [0.25, 0.71]		? 🕈 🕈 ? ?
Skjerven 2022 (35)	13	924	31	915	22.5%	0.42 [0.22, 0.79]		• • • • •
Overall	70	1662	113	1633	100.0%	0.50 [0.34, 0.75]	•	
Heterogeneity: $Tau^2 = 0.0$	07; Chi ² = 5.5	0, df = 3	8 (P = 0	.14); I ²	= 45%		0.1 0.5 2	
						Decreased Any Food		Increased Risk of Any Food Allergy

В								
	Ear	lier	La	ter				Risk of Bias
Study	Events	Total I	Events	Total	Weight	RR [95% CI]		D1 D2 D3 D4 D5
Du Toit 2018 (18)	180	316	179	317	26.5%	1.01 [0.88, 1.16]	F	• • • • ?
Nishimura 2022 (29)	7	82	19	79	14.4%	0.35 [0.16, 0.80]		$\bullet \bullet \bullet \bullet \bullet$
Perkin 2016 (32)	32	567	42	595	21.4%	0.80 [0.51, 1.25]		• • • ? •
Quake 2022 (33)	19	88	21	44	20.2%	0.45 [0.27, 0.75]	-=-	? 🕈 🕈 ? ?
Skjerven 2022 (35)	13	924	31	915	17.5%	0.42 [0.22, 0.79]		$\bullet \bullet \bullet \bullet \bullet$
Overall	251	1977	292	1950	100.0%	0.60 [0.38, 0.94]	•	
Heterogeneity: Tau ² = 0.19	9; Chi ² = 20.	78, df =	4 (P =	0.00); l ²	² = 81%		0.1 0.5 2	10
						Decreased	d Risk of	Increased Risk of

Any Food Allergy

Increased Risk of Any Food Allergy

Earlier **Risk of Bias** Later Events Total Events Total Weight RR [95% CI] Study D1 D2 D3 D4 D5 0.70 [0.44, 1.10] Lowe 2011 (24) 26 193 37 191 17.7% 2 Nishimura 2022 (29) 7 82 79 13.8% 0.35 [0.16, 0.80] 19 Perkin 2016 (32) 32 567 42 595 17.9% 0.80 [0.51, 1.25] Quake 2022 (33) 18 89 21 44 17.1% 0.42 [0.25, 0.71] Skjerven 2022 (35) 13 924 31 915 15.7% 0.42 [0.22, 0.79] Urashima 2019 (38) 45 151 22 151 17.7% 2.05 [1.29, 3.23] Overall 141 2006 172 1975 100.0% 0.67 [0.39, 1.13] Heterogeneity: Tau² = 0.36; Chi² = 29.93, df = 5 (P = 0.00); I^2 = 83% 0.1 0.5 2 10 Increased Risk of Decreased Risk of Any Food Allergy Any Food Allergy

Data shown are for the outcome "allergy to any food", in trials of earlier egg (A), peanut (B) and cow's milk (C) introduction. Risk of bias D1, randomization process; D2, deviations from the intended intervention; D3, missing outcome data; D4, measurement of the outcome; D5, selection of the reported result; (+), low risk of bias; (?), some concerns; (-), high risk of bias; RR, risk ratio; CI, confidence interval.

С

Study	Population	Intervention	Outcome assessment	Funding source and any relevant author conflicts of interest	
Bellach et al, ¹⁴ 2017	Information and a data	Pasteurized egg white powder	Egg allergy: single-dose OFC (egg group) and graded DBPCFC (placebo	Food Allergy & Anaphylaxis	
Hen's Egg Allergy Prevention (HEAP) Germany	Infants aged 4 to 6 months with egg-sIgE <0.35kU/L	(n=184) vs rice powder (n=199) 3 times a week up to 12 months. 2.5g (week 1), 5g (week 2), and 7.5g (from week 3) egg protein per week.	group) in sensitized children at 12 months. Egg sensitization: egg-slgE ≥0.35kU/L at 12 months Withdrawal: participants not evaluated in per-protocol analysis.	Network and Prevention and Information Network for Allergy/Asthma, Germany. Authors reported payments from formula milk companies.	
Brown et al, ¹⁵ 1969 USA	Infants from birth at standard risk for atopic disease	Cow's milk (n=196) vs milk-free diet with a soya formula as required (n=183) until weaning	Withdrawal: participants who did not accept milk-free diet	National Institute of Child Health and Human Development	
De Jong et al, ¹⁶ 1998	Infants from birth whose mothers	Cow's milk formula (11.1g protein/100g powder) ≥3 times in the first 3 days of life (n=758) vs protein-free placebo formula	Milk sensitization: milk-slgE ≥2+RAST at 12 months	Nutricia Nederland BV,	
BOKAAL	intended to breastfeed for ≥6	(n=775). One sachet of formula powder	Withdrawal: participants who did not adhere to the protocol	Zoetermeer, the Netherlands	
Netherlands	weeks	mixed with 60ml of water. Median 120ml in the first week.	·- ··· F· ····		

eTable 1. Characteristics of Included Studies

Study	Population	Intervention	Outcome assessment	Funding source and any relevant author conflicts of interest
Du Toit et al, ¹⁷ 2015 Du Toit et al, ¹⁸ 2018 Learning Early About Peanut Allergy (LEAP) UK	Infants aged 4 to 10 months with severe eczema and/or egg allergy and peanut-SPT <4mm	≥6g peanut protein per week (peanut snack or peanut butter), divided between ≥3 meals, up to 5 years of age (n=319) vs peanut avoidance (n=321)	Peanut allergy: single-dose OFC (if peanut allergy unlikely) or graded DBPCFC (other participants) or diagnostic algorithm (11 participants) at 60 months Any food allergy: reported allergic reaction to any food in or outside clinic up to 60 months Peanut sensitization: peanut-slgE ≥0.35kU/L or peanut-SPT ≥3mm at 30 months Any food sensitization: SPT ≥5mm at 60 months Withdrawal: participants not evaluated in per-protocol analysis	National Institute of Allergy and Infectious Diseases, Food Allergy Research and Education, Medical Research Council and Asthma UK, UK Department of Health, National Peanut Board, and UK Food Standards Agency.
Halpern et al, ¹⁹ 1973 USA	Infants from birth at standard risk for atopic disease	Egg yolk given before 3 weeks vs after 6 months (n=1753, precise number per group not clear) Egg allergy: participants with "symptoms", but precise outcor definition was not available		Borden, Inc, New York, NY
Holl et al, ²⁰ 2020 USA	Infants aged 5 to 11 months without parent- reported severe eczema or food allergy diagnosis	Daily, single-dose, powdered food supplement containing 30mg of protein from each of peanut, soya, almond, cashew, hazelnut, pecan, pistachio, walnut, wheat, oat, milk, egg, cod, shrimp, salmon, and sesame (n=366) vs powdered placebo (n=339) for 28 days	Withdrawal: participants who were non-compliant with recording doses in the daily diary	Before Brands, Inc
lannotti et al, ²¹ 2017 Lulun Project Ecuador	Project 9 month's without egg allergy. One medium-sized egg (≈50g) per tagg consumption at baseline 40% intervention (n=83) and (orgg group) and		Egg allergy: observed or reported allergenic reaction to egg during the intervention period Withdrawal: participants not analyzed at end point, excluding those who "moved permanently"	The Mathile Institute for the Advancement of Human Nutrition

Study	Study Population Interventi		tervention Outcome assessment	
Johnstone and Dutton, ²² 1966 USA	Infants from birth with a family history of atopic disease	Cow's milk (formula) as required and wheat avoidance (n=120) vs soya formula and avoidance of cow products, chicken, egg, and wheat (n=115) for 9 months	Any food allergy: precise allergy definition was not available	United States Atomic Energy Commission at the University of Rochester Atomic Energy Project
Kjellman and Johansson, ²³ 1979 Sweden	Infants from birth with a family history of atopic disease	Cow's milk formula (n=26) vs soya formula (n=24) as required and fish, egg, chocolate, and strawberry avoidance for 9 months	Milk allergy: observed symptoms to milk up to 48 months Milk and soya sensitization: sIgE ≥0.2PRU at 36 months Withdrawal: participants who refused further participation or developed symptoms	Förenade Liv, Stockholm, Semper Fund for Nutritional Research, Stockholm, King Gustaf V 80- Years-Anniversary Fund, the Medical Faculty, Linköping University and the Swedish Medical Research Council
Lowe et al, ²⁴ 2011 Melbourne Atopy Cohort Study (MACS) Australia	Infants from birth with a family history of atopic disease	Cow's milk formula (n=206) vs soya formula (n=208) as required. Dairy products, egg, fish, peanut, and nuts were avoided until 12 months.	Milk and any food allergy: reported reactions up to 24 months Milk sensitization: milk-SPT ≥3mm at 24 months Withdrawal: participants lost to follow- up at 24 months	Nestec Ltd. Author conflicts of interest declared related to infant nutrition and dairy industries.
Makrides et al, ²⁵ 2002 Australia	Infants aged 6 months without protein intolerances or allergies	Four regular or n-3 fatty acid- enriched egg yolks per week until 12 months (n=106) vs no dietary intervention (n=55)	Egg sensitization: egg-sIgE ≥0.35kU/L at 12 months Withdrawal: participants withdrawn for reasons possibly related to the intervention	Rural Industries Research and Development Corporation, National Health & Medical Research Council, and the MS McLeod Research Trust
Miskelly et al, ²⁶ 1988 Hand et al, ²⁷ 2021 Merthyr Allergy Prevention Study (MAPS)	Infants from birth with a family history of atopic disease	Cow's milk (n≈238) vs milk-free diet with a soya formula as required (n≈249) for ≥4 months. Mothers to restrict milk intake during pregnancy and lactation in the milk avoidance group.	Withdrawal: participants who received the wrong type of milk, but numbers were inconsistent between study publications and denominators were not clear	Welsh Scheme for the Development of Health and Social Research and Wyeth Laboratories
UK				

Study	Population	Intervention	Outcome assessment	Funding source and any relevant author conflicts of interest	
Natsume et al,282017Prevention of Egg allergy with Tiny amount InTake (PETIT)Japan		Heated egg powder (50mg containing 25mg egg protein daily from 6 to 9 months; 250mg containing 125mg egg protein daily from 9 to 12 months; n=73) vs placebo (pumpkin powder) from 6 to 12 months (n=74).		Ministry of Health, Labour and Welfare and National Centre for Child Health and Development, Japan	
Nishimura et al, ²⁹ 2022 Japan	Infants aged 3 to 4 months with atopic dermatitis	Daily mixed powder containing 2.5, 7.5, 20mg of each food (mg protein): pasteurized egg (2.2, 6.6, 17.6), milk (0.3, 0.9, 2.4), wheat (0.2, 0.6, 1.6), soya (0.9, 2.7, 7.2), buckwheat (0.3, 0.9, 2.4), and peanut (0.6, 1.8, 4.8; n=83) vs increasing amounts of placebo powder (n=80) up to week 2, 4, 12. Egg, milk, wheat, soya, buckwheat, and peanut avoidance to week 12.	Any food, egg, peanut, milk, wheat, and soya allergy: parental report or OFC in sensitized children from end of intervention to 18 months Any food, egg, peanut, milk, wheat, and soya sensitization: sIgE >0.1kU/L at 11 to 13 months Withdrawal: participants who refused to continue intervention or dropped out during follow-up	No funding received and no declared conflicts of interest	
Palmer et al, ³⁰ 2013 Solids Timing for Allergy Reduction (STAR) Australia	Infants aged 4 months with moderate-to- severe eczema (SCORAD score of ≥15)	One teaspoon of pasteurized raw whole egg powder (0.9g egg protein; n=49) vs rice flour powder (n=37) daily until 8 months. Introduction of cooked egg in both groups at 8 months.	Egg allergy: if no obvious prior reaction, single-dose (if low-risk) or graded (if high-risk) pasteurized raw egg challenge in sensitized children at 12 months Egg sensitization: egg-SPT ≥3mm at 12 months Withdrawal: participants who withdrew from study for a reason other than "moving overseas", or who ceased powder due to an allergic reaction	Women's and Children's Hospital Foundation and Ilhan Food Allergy Foundation. Senior author reported being on the Boards for Nestlé, Danone, and ALK-Abelló.	

Study	Population	Intervention	Outcome assessment	Funding source and any relevant author conflicts of interest
Palmer et al,31 2017Infants aged 4 to 6 months with atopic mothers, 		Pasteurized raw whole egg powder (0.4g egg protein; n=407) vs rice powder (n=413) daily until 10 months.	Egg allergy: single-dose (if low-risk) or graded (if high-risk) pasteurized raw egg challenge in sensitized children at 12 months Egg sensitization: egg-SPT ≥3mm at 12 months Withdrawal: participants with missing outcome data, who "did not take any powder", and who "had a confirmed reaction to study powder"	Australian National Health and Medical Research Council. First author reported payments from Nestlé Nutrition and Danone. Senior author reported serving on the board for Fonterra, and as a consultant for Nestlé and True Origins.
Perkin et al, ³² 2016 Enquiring About Tolerance (EAT) UK	Infants aged 3 months, exclusively breastfed	Sequential introduction of cow's milk (first), peanut, egg, sesame, fish (in random order), and wheat (last), 2g of the allergen protein twice weekly (n=652) vs exclusive breastfeeding to ≥6 months (n=651)	Any food, egg, peanut, milk, wheat, and fish allergy: mostly graded DBPCFC or reported reaction in sensitized children up to 36 months Any food, egg, peanut, milk, wheat, and fish sensitization: SPT ≥0 at 36 months Withdrawal: participants not evaluated in per-protocol analysis except if due to "emigration"	Food Standards Agency, Medical Research Council, NIHR Biomedical Research Centre, and National Peanut Board, Atlanta.
Quake et al, ³³ 2022 USA	Infants aged 2 to 12 months with or without a family history of atopic disease, without known food allergy	Flours and powders of egg, milk, or peanut (each 300mg protein), or peanut and milk, peanut and egg, or milk and egg (each 150mg protein, 300mg per pair), or a 10- allergen mixture (almond, cashew, egg, hazelnut, milk, peanut, salmon, shrimp, walnut, and wheat, each 30, 90, or 300mg protein, 300, 900, or 3000mg per mixture) daily (n=135) vs control group which avoided all allergenic foods for 12 months (n=45).	Any food allergy: graded DBPCFC 24 to 48 months after the start of the study Withdrawal: participants missing in the food allergy analysis	Sean N. Parker Center for Allergy and Asthma Research at Stanford University Patent associated with the work "Special Oral Formula for Decreasing Food Allergy Risk and Treatment for Food Allergy"

Study	Population	Intervention	Outcome assessment	Funding source and any relevant author conflicts of interest
Sakihara et al, ³⁴ 2021 Infants aged 1 month with a negative OFC to cow's milk formula (20ml at once) who used cow's milk formula before 1 month Japan		≥10ml cow's milk formula (150mg protein) daily for ≥20 days per month with a maximum interruption of 1 week (n=252) vs cow's milk formula avoidance (<10 days per month) with soya formula as required (n=252) until 3 months while continuing breastfeeding. Avoidance of other dairy products, but cow's milk formula as required in both groups from 3 to 6 months.	Milk allergy: single-dose or if sensitized graded OFC at 6 months Milk sensitization: milk-SPT ≥3mm at 6 months Withdrawal: participants who declined or did not adhere to treatment or who withdrew except if they "moved"	Meiji Holdings Co, Ltd and Asahi Group Foods Ltd
Skjerven et al, ³⁵ 2022 Preventing Atopic Dermatitis and ALLergies in Children (PreventADALL) Norway, Sweden	Infants aged 3 to 4 months at standard risk for atopic disease	Sequential introduction of peanut, cow's milk, wheat, and egg (dose not specified) until ≥6 months with or without a skincare intervention (factorial design) from week 2 through 8 months (n=1225) vs no intervention or skincare intervention only (n=1172)	Any food, egg, peanut, milk, and wheat allergy: parental report and/or SPT result and/or graded OFC up to 36 months Any food, egg, peanut, milk, and wheat sensitization: SPT ≥3mm at 36 months Withdrawal: participants not evaluated in per-protocol analysis	Funded by several public and charitable funding bodies
Stewart et al, ³⁶ 2019 Mazira Project Malawi	Infants aged 6 to 9 months without egg allergy or severe allergic reaction to any substance, and no reaction to egg during a test feed. Baseline egg consumption≈4%	One egg per day for 6 months (n=331) vs control group that did not receive eggs (n=329)	Withdrawal: participants who withdrew or were absent	Bill and Melinda Gates Foundation

Study	Population	Intervention	Outcome assessment	Funding source and any relevant author conflicts of interest
Tan et al,37 2017Beating EggAllergy Trial (BEAT)Beating EggAllergy Trial (BEAT)Australia		Pasteurized whole egg powder (350mg protein; n=165) vs rice powder (n=154) daily from weaning until 8 months. Egg avoidance until 8 months in both groups.	Egg allergy: reported reaction in sensitized children or graded OFC or egg-SPT ≥5mm at 12 months Egg sensitization: egg-SPT ≥3mm at 12 months Withdrawal: participants who withdrew or were lost to follow-up	Ilhan Food Allergy Foundation and Children's Hospital at Westmead Allergy and Immunology research fund
Urashima et al, ³⁸ 2019 Atopy Induced by Breastfeeding or Cow's Milk Formula (ABC) Japan	Australia Covin the interval of		Any food allergy and milk allergy: parental report or graded OFC in sensitized children up to 24 months Milk sensitization: milk-slgE ≥0.35kU/L at 24 months Withdrawal: participants who did not adhere to the protocol or who were lost to follow-up	Funded by several public funding bodies, including the Dairy Products Health Science Council; and the Japan Dairy Association

Abbreviations: sIgE, specific immunoglobulin E; DBPCFC, double-blind placebo-controlled food challenge; OFC, open food challenge; RAST, radioallergosorbent test; PRU, Phadebas RAST units; SCORAD, SCORing Atopic Dermatitis.

Study	Population	Intervention	Outcomes	Funding source/ sponsor
Study on the Induction of Food Tolerance in Babies (INTO) ³⁹ Registered Jul 7, 2016, at <u>https://clinicaltrials.gov</u> NCT02825069 Finland	Infants aged ≤1 month attending local Child Health Clinics Target No. of participants: 1380	Introduction of solid foods (vegetables and fruits, wheat and other grains, meat, fish, egg, dairy products) from 4 to 6 months vs official Finnish Nutrition Recommendations, including exclusive breastfeeding until the age of 6 months	Doctor-diagnosed and parent-reported food allergies by the age of 1 year	University of Oulu
Prevention of infants' milk allergy (PIMA study) ⁴⁰ Registered Dec 1, 2017, at <u>https://center6.umin.ac.jp</u> UMIN000030214 Japan	Infants aged 6 to 11 months sensitized to milk and with a food allergy other than milk with no history of immediate symptoms with milk, no regular intake of >3ml milk, no non-IgE mediated gastrointestinal milk allergy and no severe, uncontrolled atopic dermatitis Target No. of participants: 128	Perform a 3ml heated milk oral food challenge and if tolerated, take 3ml milk at home regularly; vs milk avoidance to 18 months and introduction of 3ml daily milk in the same way at that stage.	Milk allergy assessed by food challenge by the age of 2 years	Japanese national hospital organization
Introducing cashew nuts during infancy – The Cashew Study ⁴¹ Registered Feb 12, 2018, at <u>https://anzctr.org.au</u> ACTRN12618000228280 Australia	Infants aged 6 to 8 months Target No. of participants: 192	One teaspoon vs increasing amounts (1 teaspoon from 6 to 7 months, 2 teaspoons from 8 to 9 months and 3 teaspoons from 10 months of age) of cashew nut spread three times per week until 12 months of age.	Allergy to cashew assessed by food challenge and sensitization to cashew measured by SPT and sIgE at 1 year of age	Australian Food Allergy Foundation

Study	Population	Intervention	Outcomes	Funding source/ sponsor
Prevention study of hen's Egg Allergy with Low- allergenicity Egg powder (PEALE) ⁴² Registered Nov 27, 2019, at <u>https://jrct.niph.go.jp</u> jRCTs041190089 Japan	Infants aged 4 to 5 months with atopic dermatitis and ovomucoid sIgE <2.0UA/mI Target No. of participants: 200	Heated egg powder vs ovomucoid reduced egg powder from 6 months of age	Egg allergy at 1 year of age and egg-slgE	Kieikai Research Foundation and Japan Society for Promotion of Science Grants-in-Aid for Research
Tolerance induction through early feeding to prevent food allergy in infants with eczema (TEFFA) ⁴³ Registered Jan 9, 2020, at <u>https://www.drks.de</u> DRKS00016770 Germany	Infants aged 4 to 8 months with eczema and with no previous consumption of egg, peanut, or hazelnut and no wheat allergy Target No. of participants: 150	Daily rusk-like biscuit powder with vs without egg, cow's milk, peanut, and hazelnut (2mg of each food protein; the amount will be increased every 6 weeks) until 12 months of age	Food allergy to egg, cow's milk, peanut, or hazelnut in sensitized participants confirmed by an oral food challenge at around 1 year of age	Deutsche Forschungsgemeinschaft (German Research Foundation)
The Effects of Complementary Feeding of Eggs on Infant Development and Growth in Guatemala: The Saqmolo Study ⁴⁴ Registered Mar 20, 2020, at <u>https://clinicaltrials.gov</u> NCT04316221 Guatemala	Infants aged 6 to 9 months with no known egg allergy, no recalcitrant, moderate-to- severe atopic dermatitis, and no history of anaphylaxis Target No. of participants: 1200	One egg per day for 6 months vs standard care	No relevant allergy outcomes specified in clinical trial registry record	Academy of Nutrition and Dietetics; Wuqu' Kawoq, Maya Health Alliance; Think Healthy Group, Inc
Intervention to Reduce Early (Peanut) Allergy in Children (iREACH) ⁴⁵ Registered Oct 27, 2020, at <u>https://clinicaltrials.gov</u> NCT04604431 USA	Infants seen for 4- and 6- month well childcare visit Target No. of participants: 10500	Pediatric clinicians to receive the iREACH electronic health record integrated Clinical Decision Support tool together with educational modules on the 2017 National Institute of Allergy and Infectious Diseases Prevention of Peanut Allergy guidelines to assist in implementing the guidelines vs no intervention	Adherence to the Prevention of Peanut Allergy guidelines and peanut allergy incidence by age 2.5 years	Ann & Robert H Lurie Children's Hospital of Chicago; National Institute of Allergy and Infectious Diseases

Study	Population	Intervention	Outcomes	Funding source/ sponsor
Grandi Byen: Supporting Child Growth and Development Through Integrated, Responsive Parenting, Nutrition and Hygiene ⁴⁶ Registered Mar 5, 2021, at <u>https://clinicaltrials.gov</u> NCT04785352 Haiti	Infants aged 6 to 8 months with no allergy to animal-source foods (specifically eggs, milk, or fish) Target No. of participants: 600	One egg per day for 6 months ± multicomponent intervention on responsive parenting, nutrition, and hygiene vs standard care	No relevant allergy outcomes specified in clinical trial registry record	Washington University School of Medicine; Hôpital Universitaire Justinien; Université Publique du Nord au Cap-Haïtien; Konbit Sante
Can Early Introduction of Tree Nuts Prevent Tree Nut Allergy in Infants at High Risk of Tree Nut Allergy: The TreEat Study ⁴⁷ Registered Mar 17, 2021, at <u>https://clinicaltrials.gov</u> NCT04801823 Australia	Infants aged 4 to 11 months with peanut allergy and no anaphylaxis, tree nut allergy, tree nut allergy tests or tree nut consumption Target No. of participants: 200	Supervised hospital based multi-tree nut (almond, cashew, hazelnut, and walnut) oral food challenge, then home introduction of the remaining tree nuts vs standard care (gradual, sequential home introduction of 8 tree nuts)	Clinical confirmed tree nut allergy at 1.5 years	Murdoch Children's Research Institute
Infancy to Toddlerhood: Early Nutrition & Tolerance (INTENT) ⁴⁸ Registered Mar 18, 2021, at <u>https://clinicaltrials.gov</u> NCT04803981 USA	Infants aged 4 to 6 months with no known allergy to any of the ingredients in the study intervention Target No. of participants: 1500	One SpoonfulONE product daily (mix-ins, puffs, or crackers containing 30mg of peanut, milk, shrimp, almond, cashew, hazelnut, pecan, pistachio, walnut, egg, cod, salmon, wheat, oat, soya, and sesame) vs standard diet	No relevant allergy outcomes specified in clinical trial registry record	Before Brands, Inc Duke Clinical Research Institute
Research on the effect and mechanism about early introduction of multi- allergen food on the risk of allergy Registered Nov 24, 2021, at <u>https://www.chictr.org.cn</u> ChiCTR2100053552 China	Infants aged 4 to 6 months who have been formula fed for at least one month with no solid food introduction and no previous food allergy diagnosis Target No. of participants: 60	Multiple food protein supplement vs no intervention	No relevant allergy outcomes specified in clinical trial registry record	Nestlé Health Science China

Study	Population	Intervention	Outcomes	Funding source/ sponsor
Randomised Controlled Trial to Test and Build Evidence Base for Providing Eggs as an Early Complementary Food to Promote Child Growth: Eggcel-growth Study ⁴⁹ Registered Dec 23, 2021, at <u>https://clinicaltrials.gov</u> NCT05168085 South Africa	Infants aged 6 to 9 months with no known allergy, intolerance, or sensitization to egg No. of participants randomized: 655	One egg per day for six months vs no intervention	No relevant allergy outcomes specified in clinical trial registry record	North-West University South Africa

Abbreviations: sIgE, specific immunoglobulin E; SPT, skin prick test.

	GRADE of evid	GRADE of evidence assessment					
Outcome	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	RR (95% CI)	GRADE of evidence
Allergy to any food ^a	Not serious ^b	Serious ^c	Not serious ^d	Not serious ^e	la confficience d	0.49 (0.33-0.74)	Moderate
Withdrawal from study intervention ^f	Serious ^g	Not serious ^h	Not serious ^d	Not serious ^e	 Insufficient studies to undertake formal 	2.29 (1.45-3.63)	Moderate
Allergic sensitization to any food ⁱ	Not serious ^j	Serious ^k	Not serious ^d	Serious ⁱ	 testing of publication bias 	0.77 (0.54-1.10)	Low

CI, confidence interval; GRADE, Grading of Recommendations Assessment, Development, and Evaluation; RR, risk ratio.

^aIntervention foods were egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 161 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1162 participants); milk and egg, or egg and peanut, or milk and peanut, or milk, egg, peanut, cashew, almond, shrimp, walnut, wheat, salmon, and hazelnut (1 trial; 133 participants); peanut, milk, wheat, and egg (1 trial; 1839 participants).

^bMost information is from studies at low risk of bias or some concerns for one domain only.

e12=49%; relatively small difference in RR in one large study (Perkin et al, 2016) appears to explain heterogeneity, but the reason for the different findings in this study is not clear.

^dPopulations and interventions are similar to those which might be targeted outside of trial settings. Some studies used food powder, and some used normal foods. One study included infants with eczema. ^eThe 95% CI excludes a RR of no effect or effect sizes that are not clinically meaningful.

^fIntervention foods were peanut, soya, almond, cashew, hazelnut, pecan, pistachio, walnut, wheat, oat, milk, egg, cod, shrimp, salmon, and sesame (1 trial; 705 participants); egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 163 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1303 participants); milk and egg, or egg and peanut, or milk and peanut, or milk, egg, peanut, cashew, almond, shrimp, walnut, wheat, salmon, and hazelnut (1 trial; 135 participants); peanut, milk, wheat, and egg (1 trial; 2397 participants).

^gMost information is from studies at high risk of bias for one domain or some concerns for multiple domains. The main reason for risk of bias is that withdrawal could have been influenced by knowledge of intervention received.

h12=89%; heterogeneity appears to be explained by lower compliance in two largest studies (both high allergen intake for multiple allergenic foods, using normal foods rather than powders).

¹Intervention foods were egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 150 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1173 participants); peanut, milk, wheat, and egg (1 trial; 1504 participants).

^jAll information is from studies at low risk of bias.

 $k^{2}=73\%$; one study (Skjerven et al, 2022) which used skin prick test (SPT) \geq 3mm showed reduced sensitization and two studies which used SPT >0mm and specific immunoglobulin E test showed no effect. ¹Although the estimate indicates reduced allergic sensitization, the 95% CI includes the possibility of no effect.

eTable 4. Summary of Findings for Earlier Introduction of Egg

	GRADE of evid	lence assessment	Summary of find	ings			
Outcome	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	RR (95% CI)	GRADE of evidence
Allergy to any foodª	Not serious ^b	Serious°	Very serious ^d	Not serious ^e	Insufficient studies to undertake formal testing of publication bias	0.50 (0.34-0.75)	Very Low
Withdrawal from study intervention ^f	Not serious ^g	Serious ^h	Not serious ⁱ	Serious ^j	Not likely ^k	1.58 (1.12-2.22)	Low
Allergic sensitization to any food	Results as for "e was identified.	earlier introduction of	multiple allergenic	foods"; no study of	egg introduction witho	ut other foods, repo	orting this outcor
Allergy to egg ⁱ	Not serious ^b	Not serious ^m	Not serious ⁱ	Not serious ^e	Insufficient	0.60 (0.46-0.77)	High ⁿ
Allergic sensitization to egg ^o	Not serious ^b	Not serious ^p	Not serious ⁱ	Serious ^j	studies to undertake formal testing of publication bias	0.81 (0.69-0.96)	Moderate

CI, confidence interval; GRADE, Grading of Recommendations Assessment, Development, and Evaluation; RR, risk ratio.

^aIntervention foods were egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 161 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1162 participants); egg, or milk and egg, or egg and peanut, or milk, egg, peanut, cashew, almond, shrimp, walnut, wheat, salmon, and hazelnut (1 trial; 133 participants); peanut, milk, wheat, and egg (1 trial; 1839 participants).

^bMost information is from studies at low risk of bias or some concerns for one domain only.

e12=45%; relatively small difference in RR in one large study (Perkin et al, 2016) appears to explain heterogeneity, but the reason for the different findings in this study is not clear.

^dAlmost all the information for this analysis is derived from trials of multiple food interventions. The limited information for egg only shows 6/15 children developed food allergy, compared with 21/44 in a control group. There is therefore little meaningful information about the effect of earlier egg introduction on risk of allergy to any food.

^eThe 95% CI excludes a RR of no effect or effect sizes that are not clinically meaningful.

^fIntervention foods were egg (8 trials; 2739 participants); peanut, soya, almond, cashew, hazelnut, pecan, pistachio, walnut, wheat, oat, milk, egg, cod, shrimp, salmon, and sesame (1 trial; 705 participants); egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 163 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1303 participants); egg, or milk and egg, or egg and peanut, or milk, egg, peanut, cashew, almond, shrimp, walnut, wheat, salmon, and hazelnut (1 trial; 135 participants); peanut, milk, wheat, and egg (1 trial; 2397 participants).

^gMost information is from studies at high risk of bias, but findings appear to be similar to studies at low risk of bias or some concerns for one domain only.

 $h^2=90\%$; heterogeneity appears to be explained by lower compliance in two large, pragmatic studies of high-dose multiple allergenic food introduction using normal foods, together with reports of allergic reactions to egg intervention in some smaller, single-food intervention trials.

¹Populations and interventions are similar to those which might be targeted outside of trial settings. Some studies used food powder, but findings were similar to studies using normal foods. Populations varied in risk factors such as eczema at baseline, in whether and how egg allergy was excluded prior to the intervention and in the nature of the intervention.

^jThe 95% CI excludes a RR of no effect but includes effect sizes that are both trivial or uncertain and clinically meaningful.

^kFunnel plot asymmetrical and Egger's test P=0.004; however, likely due to lower compliance in larger studies of multiple, high-dose allergenic food introduction, compared with smaller studies of single allergen (egg) introduction.

¹Intervention foods were egg (6 trials; 1646 participants); egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 161 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1165 participants); peanut, milk, wheat, and egg (1 trial; 1839 participants).

mI2=0%; mostly similar RRs and overlapping CIs. No obvious difference in outcome between single and multiple allergenic food introduction. Borderline interaction for high versus low dose egg introduction (P=0.02), with increased effect in low dose group.

ⁿIn one further high risk of bias trial which could not be included in meta-analysis, egg yolk was introduced before 3 weeks versus after 6 months in a cohort of 1753 infants; 9 participants in the earlier and 4 in the later introduction group developed symptoms before 4 and by 7 months, respectively, but precise outcome definition and denominators were not available.

^oIntervention foods were egg (5 trials; 1504 participants); egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 150 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1167 participants); peanut, milk, wheat, and egg (1 trial; 1504 participants).

Pl²=18%; mostly similar RRs and overlapping CIs. *Post hoc* subgroup analysis showed a possible interaction for method of assessment (P=0.06): skin prick test (5 studies; 3740 participants) RR 0.72 (95% CI 0.58-0.89; l²=0%); specific immunoglobulin E test (3 studies; 585 participants) RR 0.92 (95% CI 0.58-0.89; l²=0%).

eTable 5. Summar	of Findings for Earlier Intr	oduction of Peanut

	GRADE of evid	GRADE of evidence assessment					
Outcome	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	RR (95% CI)	GRADE of evidence
Allergy to any foodª	Not serious ^b	Serious	Serious ^d	Serious ^e		0.60 (0.38-0.94)	Very low
Withdrawal from study intervention ^f	Serious ^g	Serious ^h	Serious ^d	Not serious ⁱ	_ Insufficient studies to undertake formal testing of	1.91 (1.19-3.05)	Very low
Allergic sensitization to any food ^j	Not serious ^b	Serious ^k	Not serious ⁱ	Serious ^e		0.86 (0.71-1.05)	Low
Allergy to peanut ^m	Not serious ^b	Not serious ⁿ	Not serious ^I	Not serious ⁱ	publication bias	0.31 (0.19-0.51)	High
Allergic sensitization to peanut ^o	Not serious ^b	Serious ^p	Not serious ⁱ	Serious ^e		0.74 (0.46-1.20)	Low

CI, confidence interval; GRADE, Grading of Recommendations Assessment, Development, and Evaluation; RR, risk ratio.

^aIntervention foods were peanut (1 trial; 633 participants); egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 161 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1162 participants); peanut, or egg and peanut, or milk and peanut, or milk, egg, peanut, cashew, almond, shrimp, walnut, wheat, salmon, and hazelnut (1 trial; 132 participants); peanut, milk, wheat, and egg (1 trial; 1839 participants). ^bMost or all information is from studies at low risk of bias or some concerns for one domain only.

e12=81%; heterogeneity appears to be partly (but not wholly) explained by a lack of effect in the single peanut-only intervention trial but reduced allergy in the multiple food intervention trials. This interaction was statistically significant (P=0.02).

^dSome data contributing to this effect estimate are from trials of multiple allergenic food introduction. The single trial of peanut only shows no effect. Populations varied in risk factors such as eczema at baseline, in whether and how peanut allergy was excluded prior to the intervention and in the nature of the intervention.

eThe 95% CI includes both a meaningful reduction and a trivial reduction or small increase in RR.

^fIntervention foods were peanut (1 trial; 640 participants); peanut, soya, almond, cashew, hazelnut, pecan, pistachio, walnut, wheat, oat, milk, egg, cod, shrimp, salmon, and sesame (1 trial; 705 participants); egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 163 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1303 participants); peanut, or milk and peanut, or milk, egg, peanut, cashew, almond, shrimp, walnut, wheat, salmon, and hazelnut (1 trial; 135 participants); peanut, milk, wheat, and egg (1 trial; 2397 participants).

^gMost information is from studies at high risk of bias for one domain or some concerns for multiple domains. The main reason for risk of bias is that withdrawal could have been influenced by knowledge of intervention received.

h12=91%; heterogeneity appears to be partly explained by lower compliance in two large, pragmatic studies of high-dose multiple allergenic food introduction using normal foods.

The 95% CI excludes a RR of no effect or effect sizes that are not clinically meaningful.

^jIntervention foods were peanut (1 trial; 629 participants); egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 150 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1173 participants); peanut, milk, wheat, and egg (1 trial; 1504 participants).

 k^2 =61%; one study (Skjerven et al, 2022) of multiple allergenic food introduction which used skin prick test (SPT) \geq 3mm showed reduced sensitization and appears to explain the heterogeneity, but the reason for different findings in this trial is unclear.

¹Most of the events contributing to this effect estimate are from a trial of single allergenic food introduction. Populations varied in risk factors such as eczema at baseline, in whether and how peanut allergy was excluded prior to the intervention and in the nature of the intervention.

^mIntervention foods were peanut (1 trial; 628 participants); egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 161 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1168 participants); peanut, milk, wheat, and egg (1 trial; 1839 participants).

ⁿI²=21%; mostly similar RRs and overlapping CIs.

^oIntervention foods were peanut (1 trial; 617 participants); egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 145 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1168 participants); peanut, milk, wheat, and egg (1 trial; 1504 participants).

 $Pl^2=77\%$; one study (Skjerven et al, 2022) of multiple allergenic food introduction which used SPT \geq 3mm showed reduced sensitization and appears to explain the heterogeneity, but the reason for different findings in this trial is unclear. *Post hoc* subgroup analysis showed a possible interaction for method of assessment (P=0.06): SPT (2 studies; 2672 participants) RR 0.46 (95% CI, 0.20-1.05; $I^2=72\%$); specific immunoglobulin E test (2 studies; 762 participants) RR 1.07 (95% CI, 0.85-1.34; $I^2=0\%$).

	GRADE of evid	ence assessment		Summary of find	ings		
Outcome	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	RR (95% CI)	GRADE of evidence
Allergy to any foodª	Not serious ^b	Serious ^c	Serious ^d	Serious ^e	Insufficient studies to undertake formal testing of publication bias	0.67 (0.39-1.13)	Very low ^f
Withdrawal from study intervention ^g	Not serious ^b	Not serious ^h	Serious ^d	Serious ^e	Not likely ⁱ	1.05 (0.61-1.82)	Low ^j
Allergic sensitization to any food	Results as for "e outcome, was ic		multiple allergenic	foods"; no study of	cow's milk introductior	n without other food	s, reporting this
Allergy to cow's milk ^k	Serious ⁱ	Not serious ^m	Serious ^d	Serious ^e	Insufficient studies to	0.84 (0.38-1.87)	Very low ⁿ
Allergic sensitization to cow's milk ^o	Not serious ^p	Serious ^q	Serious ^d	Serious ^e	undertake formal testing of publication bias	1.14 (0.82-1.59)	Very low ^r

CI, confidence interval; GRADE, Grading of Recommendations Assessment, Development, and Evaluation; RR, risk ratio.

^aIntervention foods were milk (2 trials; 686 participants); egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 161 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1162 participants); milk, or milk and egg, or milk and peanut, or milk, egg, peanut, cashew, almond, shrimp, walnut, wheat, salmon, and hazelnut (1 trial; 133 participants); peanut, milk, wheat, and egg (1 trial; 1839 participants). ^bMost information is from studies at high risk of bias, but findings appear to be similar to studies at low risk of bias or some concerns for one domain only.

 12 =83%; heterogeneity appears to be partly, but not completely, explained by one high risk of bias study.

 1^{2} =83%; heterogeneity appears to be partly, but not completely, explained by one high risk of bias study.

^dInterventions were not all representative of typical ways to introduce cow's milk products to an infant's diet. Some studies used food powder, others used formula milk compared with a control group using soya formula, but often using very early and specific exposure regimes.

eThe 95% CI includes both a meaningful reduction and increase in risk or no effect.

^fIn one further high risk of bias study which could not be included in meta-analysis, none of 120 children who were given cow's milk (formula) and none of 115 children who were given a soya formula for the first 9 months of life developed allergy to foods such as soya, fish, orange, and nuts, and one child became clinically sensitive to chocolate after a 10-year follow-up.

^gIntervention foods were milk (6 trials; 3192 participants); peanut, soya, almond, cashew, hazelnut, pecan, pistachio, walnut, wheat, oat, milk, egg, cod, shrimp, salmon, and sesame (1 trial; 705 participants); egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 163 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1303 participants); milk, or milk and egg, or milk and peanut, or milk, egg, peanut, cashew, almond, shrimp, walnut, wheat, salmon, and hazelnut (1 trial; 135 participants); peanut, milk, wheat, and egg (1 trial; 2397 participants).

 $h^2=94\%$; heterogeneity is extreme and is fully explained by high rates of withdrawal in two pragmatic trials of multiple, high-dose, real food intervention trials, and a trial where many participants withdrew from the soya milk intervention due to a preference for cow's milk. Without these three trials included, the RR is 0.86 (95% CI, 0.70-1.06; I²=0%).

¹Funnel plot asymmetrical and Egger's test P=0.01; however, likely due to lower compliance in larger studies of multiple, high-dose allergenic food introduction, compared with smaller studies of single allergen (milk) introduction.

^jIn one further high risk of bias trial which could not be included in meta-analysis, 32/249 participants in the cow's milk group were given soya milk and 41/238 participants in the cow's milk avoidance group were given cow's milk. However, total number of participants randomized in each group was not clear as these numbers excluded some post-randomization exclusions and the number of events in the cow's milk avoidance group was inconsistent between study publications.

^kIntervention foods were milk (3 trials; 734 participants); egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 161 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1166 participants); peanut, milk, wheat, and egg (1 trial; 1839 participants).

¹Most information is from studies at high risk of bias for at least one domain and/or some concerns for multiple domains, with high heterogeneity in the high risk of bias information. The main reason for risk of bias is that outcome assessors were not blinded.

mI2=36%; heterogeneity appears to be explained by risk of bias, with low risk of bias studies showing no heterogeneity and RR 0.32 (95% CI, 0.09-1.18).

ⁿOne further high risk of bias trial (Sakihara et al, 2021) reported milk allergy in 2/242 in the earlier and 17/249 in the later introduction group, assessed at 6 months, so could not be included in meta-analysis. ^oIntervention foods were milk (4 trials; 2071 participants); egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 145 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1167 participants); peanut, milk, wheat, and egg (1 trial; 1504 participants).

^pMost information is from studies at low risk of bias or some concerns for one domain only.

el²=45%; heterogeneity may be partly explained by method of outcome measurement. *Post hoc* subgroup analysis showed a possible interaction for method of assessment (P=0.08): skin prick test (3 studies; 2974 participants) RR 0.64 (95% CI, 0.32-1.29; I²=0%); specific immunoglobulin E test (4 studies; 1913 participants) RR 1.29 (95% CI, 0.89-1.89; I²=62%).

'One further high risk of bias trial (Sakihara et al, 2021) reported milk sensitization in 11/227 in the earlier and 38/235 in the later introduction group, assessed at 6 months, so could not be included in meta-analysis.

© 2023 Scarpone R et al. JAMA Pediatrics.

Outcome	Subgroup ^a	No. of participants (studies)	RR (95% CI)	l² (%)	P value for between groups difference	
	Single food	-	-	-		
	Multiple foods	3295 (4)	0.49 (0.33-0.74)	49	-	
	High allergen	3001 (2)	0.60 (0.32-1.14)	63	0.32	
Allergy to any food	Low allergen	161 (1)	0.35 (0.16-0.80)	-	0.32	
Allergy to any loou	Breastmilk	1162 (1)	0.80 (0.51-1.25)	-	0.02	
	Other	2133 (3)	0.40 (0.27-0.57)	0	0.02	
	High risk	161 (1)	0.35 (0.16-0.80)	-	0.41	
	Standard/ low risk	3134 (3)	0.53 (0.33-0.85)	59	0.41	
	Single food	-	-	-		
	Multiple foods	4703 (5)	2.06 (1.00-4.26)	89	-	
	High allergen	3700 (2)	3.45 (3.13-3.80)	0	-0.001	
Withdrawal from	Low allergen	868 (2)	1.02 (0.69-1.50)	0	<0.001	
study intervention	Breastmilk	1303 (1)	3.69 (3.10-4.38)	-	0.08	
	Other	3400 (4)	1.57 (0.62-3.98)	91	0.08	
	High risk	163 (1)	0.96 (0.06-15.15)	-	0.58	
	Standard/ low risk	4540 (4)	2.15 (1.00-4.63)	92	0.58	
	Single food	-	-	-		
	Multiple foods	2827 (3)	0.75 (0.49-1.15)	73	-	
	High allergen	2677 (2)	0.63 (0.31-1.29)	79	0.29	
Allergic sensitization	Low allergen	150 (1)	0.93 (0.83-1.04)	-	0.29	
o any food	Breastmilk	1173 (1)	0.88 (0.62-1.25)	-	0.50	
	Other	1654 (2)	0.66 (0.30-1.42)	87	0.50	
	High risk	150 (1)	0.93 (0.83-1.04)	-	0.29	
	Standard/ low risk	2677 (2)	0.63 (0.31-1.29)	79	0.29	

eTable 7. Subgroup Analyses for Earlier Introduction of Multiple Allergenic Foods

CI, confidence interval; RR, risk ratio.

^aPrespecified subgroup analyses for single vs multiple allergenic food introduction; high vs low allergen intake, using a cut-off of 2g per week of the relevant individual food protein(s); milk feeding status at enrolment – exclusively breastmilk, with or without non-milk foods, vs mixed breastmilk/other milk or non-breastmilk fed; and a *post hoc* subgroup analysis of high vs standard/low risk for atopic disease based on family or personal history. Subgroup analyses were conducted using study-level variables; one small study (Quake et al, 2022) which used a mix of high and low allergen interventions within the study could not be included in the high vs low allergen intake subgroup analysis.

Dutcome	Subgroup ^a	No. of participants (studies)	RR (95% CI)	l² (%)	P value for between groups difference	
	Single food	-	-	-		
	Multiple foods	3162 (3)	0.53 (0.31-0.90)	55	-	
	High allergen	3001 (2)	0.60 (0.32-1.14)	63	0.32	
Manage to any food	Low allergen	161 (1)	0.35 (0.16-0.80)	-	0.32	
Allergy to any food	Breastmilk	1162 (1)	0.80 (0.51-1.25)	-	0.00	
	Other	2133 (3)	0.41 (0.28-0.58)	0	0.02	
	High risk	161 (1)	0.35 (0.16-0.80)	-	0.00	
	Standard/ low risk	3134 (3)	0.54 (0.34-0.84)	55	0.38	
Withdrawal from study intervention	Single food	2739 (8)	1.39 (1.16-1.65)	35	0.04	
	Multiple foods	4568 (4)	2.25 (1.07-4.71)	91	0.21	
	High allergen	6292 (9)	1.77 (1.20-2.61)	90	0.04	
	Low allergen	1015 (̀3)́	1.03 (0.74-1.45)	0	0.04	
	Breastmilk	1303 (1)	3.69 (3.10-4.38)	-		
	Other	6139 (12)	1.45 (1.05-1.99)	89	<0.001	
	High risk	1535 (5)	1.48 (1.10-2.01)	18	0.00	
	Standard/ low risk	5907 (8)	1.53 (0.92-2.53)	92	0.92	
	Single food	-	-	-		
	Multiple foods	2827 (3)	0.75 (0.49-1.15)	73	-	
	High allergen	2677 (2)	0.63 (0.31-1.29)	79	0.00	
Allergic sensitization	Low allergen	150 (1)	0.93 (0.83-1.04)	-	0.29	
o any food	Breastmilk	1173 (1)	0.88 (0.62-1.25)	-	0.50	
· · · · · ·	Other	1654 (2)	0.66 (0.30-1.42)	87	0.50	
	High risk	150 (1)	0.93 (0.83-1.04)	-		
	Standard/ low risk	2677 (2)	0.63 (0.31-1.29)	79	0.29	
	Single food	1646 (6)	0.58 (0.42-0.81)	20		
	Multiple foods	3165 (3)	0.61 (0.40-0.95)	0	0.86	
	High allergen	4529 (7)	0.68 (0.52-0.88)	0		
	Low allergen	282 (2)	0.28 (0.14-0.54)	0	0.02	
llergy to egg	Breastmilk	1165 (1)	0.69 (0.40-1.18)	-		
	Other	3646 (8)	0.57 (0.43-0.76)	2	0.56	
	High risk	1361 (5)	0.53 (0.37-0.75)	30		
	Standard/ low risk	3450 (4)	0.73 (0.45-1.17)	0	0.29	

eTable 8. Subgroup Analyses for Earlier Introduction of Egg

© 2023 Scarpone R et al. *JAMA Pediatrics*.

Outcome	Subgroup ^a	No. of participants (studies)	RR (95% CI)	l² (%)	P value for between groups difference
	Single food	1504 (5)	0.70 (0.55-0.89)	19	0.06
	Multiple foods	2821 (3)	0.91 (0.80-1.03)	0	0.06
	High allergen	4175 (7)	0.73 (0.59-0.90)	0	0.08
Allergic sensitization	Low allergen	150 (1)	0.91 (0.80-1.04)	-	0.08
to egg	Breastmilk	1167 (1)	0.83 (0.52-1.33)	-	0.00
	Other	3158 (7)	0.80 (0.66-0.97)	30	0.90
	High risk	1219 (4)	0.78 (0.63-0.97)	40	0.69
	Standard/ low risk	3106 (4)	0.85 (0.59-1.24)	16	0.68

CI, confidence interval; RR, risk ratio.

^aPrespecified subgroup analyses for single vs multiple allergenic food introduction; high vs low allergen intake, using a cut-off of 2g per week of the relevant individual food protein(s); milk feeding status at enrolment – exclusively breastmilk, with or without non-milk foods, vs mixed breastmilk/other milk or non-breastmilk fed; and a *post hoc* subgroup analysis of high vs standard/low risk for atopic disease based on family or personal history. Subgroup analyses were conducted using study-level variables; one small study (Quake et al, 2022) which used a mix of single and multiple allergenic food and high and low allergen interventions within the study could not be included in the single vs multiple allergenic food introduction and high vs low allergen intake subgroup analyses.

Outcome	Subgroup ^a	No. of participants (studies)	RR (95% CI)	l² (%)	P value for between groups difference	
	Single food	633 (1)	1.01 (0.88-1.16)	-	0.02	
	Multiple foods	3162 (3)	0.53 (0.31-0.90)	55	0.02	
	High allergen	3634 (3)	0.75 (0.47-1.21)	74	0.12	
Allergy to any food	Low allergen	161 (1)	0.35 (0.16-0.80)	-		
Allergy to any lood	Breastmilk	1162 (1)	0.80 (0.51-1.25)	-	0.29	
	Other	2765 (4)	0.55 (0.33-0.93)	85		
	High risk	794 (2)	0.65 (0.24-1.78)	84	0.77	
	Standard/ low risk	3133 (3)	0.55 (0.36-0.84)	50	0.77	
	Single food	640 (1)	0.97 (0.57-1.64)	-	0.07	
	Multiple foods	4568 (4)	2.25 (1.07-4.71)	92	0.07	
	High allergen	4340 (3)	2.37 (1.06-5.31)	91	0.00	
Nithdrawal from	Low allergen	868 (2)	1.02 (0.69-1.50)	0	0.06	
study intervention	Breastmilk	1303 (1)	3.69 (3.10-4.38)	-	0.01	
2	Other	4040 (5)	1.46 (0.72-2.94)	92		
	High risk	803 (2)	0.97 (0.58-1.62)	0	0.07	
	Standard/ low risk	4540 (4)	2.23 (1.07-4.62)	92		
	Single food	629 (1)	0.96 (0.79-1.15)	-	0.21	
	Multiple foods	2827 (3)	0.75 (0.49-1.15)	73	0.31	
	High allergen	3306 (3)	0.75 (0.48-1.18)	73	0.07	
Allergic sensitization	Low allergen	150 (Ì) ́	0.93 (0.83-1.04)	-	0.37	
o any food	Breastmilk	1173 (1)	0.88 (0.62-1.25)	-	0.07	
•	Other	2283 (3)	0.78 (0.50-1.20)	74	0.67	
	High risk	779 (2)	0.94 (0.85-1.03)	0	0.00	
	Standard/ low risk	2677 (2)	0.63 (0.31-1.29)	79	0.28	
	Single food	628 (1)	0.19 (0.10-0.36)	-	0.00	
	Multiple foods	3168 (3)	0.43 (0.24-0.76)	0	0.06	
	High allergen	3635 (3)	0.31 (0.17-0.56)	45	0.70	
	Low allergen	161 (1)	0.48 (0.04-5.21)	-	0.73	
Allergy to peanut	Breastmilk	1168 (1)	0.49 (0.20-1.19)	-	0.00	
	Other	2628 (3)	0.27 (0.14-0.52)	14	0.30	
	High risk	789 (2)	0.20 (0.11-0.37)	0	0.00	
	Standard/ low risk	3007 (2)	0.43 (0.24-0.76)	0	0.08	

eTable 9. Subgroup Analyses for Earlier Introduction of Peanut

© 2023 Scarpone R et al. *JAMA Pediatrics*.

Outcome	Subgroup ^a	No. of participants (studies)	RR (95% CI)	l² (%)	P value for between groups difference	
	Single food	617 (1)	1.08 (0.83-1.39)	-	0.15	
	Multiple foods	2817 (3)	0.62 (0.30-1.25)	77	0.15	
Allergic sensitization to peanut	High allergen	3289 (3)	0.63 (0.31-1.31)	84	0.26	
	Low allergen	145 (1)	1.05 (0.65-1.69)	-		
	Breastmilk	1168 (1)	0.68 (0.40-1.15)	-	0.89	
	Other	2266 (3)	0.73 (0.33-1.60)	83		
	High risk	762 (2)	1.07 (0.85-1.34)	0		
	Standard/ low risk	2672 (2)	0.46 (0.20-1.05)	72	0.05	

CI, confidence interval; RR, risk ratio.

^aPrespecified subgroup analyses for single vs multiple allergenic food introduction; high vs low allergen intake, using a cut-off of 2g per week of the relevant individual food protein(s); milk feeding status at enrolment – exclusively breastmilk, with or without non-milk foods, vs mixed breastmilk/other milk or non-breastmilk fed; and a *post hoc* subgroup analysis of high vs standard/low risk for atopic disease based on family or personal history. Subgroup analyses were conducted using study-level variables; one small study (Quake et al, 2022) which used a mix of single and multiple allergenic food and high and low allergen interventions within the study could not be included in the single vs multiple allergenic food introduction and high vs low allergen intake subgroup analyses.

Outcome	Subgroup ^a	No. of participants (studies)	RR (95% CI)	l² (%)	P value for between groups difference	
	Single food 686 (2)		1.19 (0.41-3.43)	91	0.18	
	Multiple foods	3162 (3)	0.53 (0.31-0.90)	55	0.10	
	High allergen	3687 (4)	0.85 (0.44-1.61)	85	0.10	
Allorau to any food	Low allergen	161 (1)	0.35 (0.16-0.80)	-		
Allergy to any food	Breastmilk	1848 (3)	1.04 (0.54-2.02)	84	0.01	
	Other	2133 (3)	0.41 (0.28-0.58)	0		
	High risk	847 (3)	0.83 (0.31-2.22)	89	0.44	
	Standard/ low risk	3134 (3)	0.54 (0.34-0.84)	55	0.44	
	Single food	3192 (6)	0.78 (0.61-0.99)	64	0.04	
	Multiple foods	4568 (4)	2.25 (1.07-4.71)	92	0.01	
	High allergen	6892 (8)	0.76 (0.24-2.33)	95	0.00	
Vithdrawal from	Low allergen	868 (2)	1.02 (0.69-1.50)	0	0.63	
study intervention	Breastmilk	3991 (6)	0.48 (0.09-2.45)	94	0.28	
•	Other	3904 (Š)	1.29 (0.59-2.79)	95		
	High risk	939 (4)	0.73 (0.38-1.38)	0	0.82	
	Standard/ low risk	6956 (7)	0.85 (0.26-2.78)	96		
	Single food	-	-	-		
	Multiple foods	2827 (3)	0.75 (0.49-1.15)	73	-	
	High allergen	2677 (2)	0.63 (0.31-1.29)	79	0.00	
Allergic sensitization	Low allergen	150 (Ì)	0.93 (0.83-1.04)	-	0.29	
o any food	Breastmilk	1173 (1)	0.88 (0.62-1.25)	-	0.50	
•	Other	1654 (2)	0.66 (0.30-1.42)	87	0.50	
	High risk	150 (1)	0.93 (0.83-1.04)	-	2.00	
	Standard/ low risk	2677 (2)	0.63 (0.31-1.29)	79	0.29	
	Single food	734 (3)	1.54 (0.37-6.39)	61	0.40	
	Multiple foods	3166 (3)	0.47 (0.18-1.26)	0	0.18	
	High allergen	3739 (5)	0.96 (0.49-1.87)	36	0.04	
	Low allergen	161 (1)	0.32 (0.07-1.54)	-	0.21	
Allergy to cow's milk	Breastmilk	1900 (4)	1.16 (0.49-2.75)	43	0.44	
	Other	2000 (2)	0.32 (0.09-1.18)	0	0.11	
	High risk	895 (4)	1.04 (0.32-3.43)	58		
	Standard/ low risk	3005 (2)	0.60 (0.17-2.10)	0	0.54	

eTable 10. Subgroup Analyses for Earlier Introduction of Cow's Milk

Outcome	Subgroup ^a	No. of participants (studies)	RR (95% CI)	l² (%)	P value for between groups difference	
	Single food	2071 (4)	1.44 (1.00-2.07)	25	0.05	
	Multiple foods	2816 (3)	0.93 (0.72-1.19)	0	0.05	
	High allergen	4742 (6)	1.18 (0.75-1.86)	33	0.43	
Allergic sensitization	Low allergen	145 (1)	0.96 (0.74-1.25)	-		
to cow's milk	Breastmilk	3238 (5)	1.18 (0.74-1.89)	46	0.44	
	Other	1649 (2)	0.96 (0.74-1.25)	0		
	High risk	782 (4)	1.15 (0.71-1.85)	63		
	Standard/ low risk	4105 (3)	1.03 (0.49-2.17)	26	0.81	

CI, confidence interval; RR, risk ratio.

^aPrespecified subgroup analyses for single vs multiple allergenic food introduction; high vs low allergen intake, using a cut-off of 2g per week of the relevant individual food protein(s); milk feeding status at enrolment – exclusively breastmilk, with or without non-milk foods, vs mixed breastmilk/other milk or non-breastmilk fed; and a *post hoc* subgroup analysis of high vs standard/low risk for atopic disease based on family or personal history. Subgroup analyses were conducted using study-level variables; one small study (Quake et al, 2022) which used a mix of single and multiple allergenic food and high and low allergen interventions within the study could not be included in the single vs multiple allergenic food introduction and high vs low allergen intake subgroup analyses.

Intervention	Outcome	No. of participants (studies)	RR (95% CI)	l² (%)
	Allergy to any food	2000 (2)	0.39 (0.24-0.65)	0
Earlier introduction of	Withdrawal from study intervention	163 (1)	0.96 (0.06-15.15)	-
multiple allergenic foods	Allergic sensitization to any food	2827 (3)	0.75 (0.49-1.15)	73
	Allergy to any food	2000 (2)	0.39 (0.24-0.65)	0
	Withdrawal from study intervention	1388 (4)	1.62 (1.09-2.40)	26
Earlier introduction of egg	Allergic sensitization to any food	2827 (3)	0.75 (0.49-1.15)	73
	Allergy to egg	2825 (4)	0.63 (0.46-0.86)	0
	Allergic sensitization to egg	3646 (5)	0.85 (0.74-0.99)	0
	Allergy to any food	2000 (2)	0.39 (0.24-0.65)	0
	Withdrawal from study intervention	163 (1)	0.96 (0.06-15.15)	-
Earlier introduction of peanut	Allergic sensitization to any food	2827 (3)	0.75 (0.49-1.15)	73
	Allergy to peanut	2000 (2)	0.40 (0.19-0.82)	0
	Allergic sensitization to peanut	2817 (3)	0.62 (0.30-1.25)	77
	Allergy to any food	2000 (2)	0.39 (0.24-0.65)	0
	Withdrawal from study intervention	163 (1)	0.96 (0.06-15.15)	-
Earlier introduction of cow's milk	Allergic sensitization to any food	2827 (3)	0.75 (0.49-1.15)	73
	Allergy to cow's milk	2000 (2)	0.32 (0.09-1.18)	0
	Allergic sensitization to cow's milk	3102 (4)	1.11 (0.62-1.98)	66

eTable 11. Sensitivity Analysis of Low Risk of Bias Data

CI, confidence interval; RR, risk ratio.

Intervention	Outcome	No. of participants (studies)	Earlier introduction	Later introduction	RR (95% CI)	l² (%)		
Earlier introduction of	Allergy to any food	3250 (4) ^a	54/1617	113/1633	0.40 (0.20-0.79)	72		
	Withdrawal from study intervention	4658 (5) ^b	1350/2371	409/2287	2.34 (1.49-3.68)	89		
	Allergic sensitization to any food	Results as for "earlier introduction of multiple allergenic foods".						
wheat	Allergy to wheat	3169 (3) ^c	1/1578	3/1591	0.66 (0.10-4.47)	2		
	Allergic sensitization to wheat	2818 (3) ^d	46/1409	60/1409	0.62 (0.29-1.34)	59		
	Allergy to any food	545 (2) ^e	44/273	45/272	0.74 (0.19-2.93)	88		
	Withdrawal from study intervention	2215 (6) ^f	197/1116	93/1099	1.43 (0.80-2.54)	63		
Earlier introduction of	Allergic sensitization to any food	Only one study of soya introduction (with other foods) ⁹ , reporting this outcome, was identified (150 participants); allergic sensitization to any food developed in 65/76 vs 68/74 participants in the earlier vs later introduction group.						
soya	Allergy to soya	Only one study of soya introduction (with other foods) ⁹ , reporting this outcome, was identified (161 participants); allergy to soya developed in 1/82 vs 0/79 participants in the earlier vs later introduction group.						
	Allergic sensitization to soya	192 (2) ^h	37/97	30/95	1.14 (0.79-1.65)	0		
	Allergy to any food	1250 (2) ⁱ	34/611	63/639	0.31 (0.04-2.44)	88		
	Withdrawal from study intervention	2098 (3) ^j	478/1063	159/1035	1.80 (0.56-5.74)	94		
Earlier introduction of fish	Allergic sensitization to any food	Only one study of fish introduction (with other foods) ^k , reporting this outcome, was identified (1173 participants); allergic sensitization to any food developed in 51/572 vs 61/601 participants in the earlier vs later introduction group.						
	Allergy to fish	Only one study of fish introduction (with other foods) ^k , reporting this outcome, was identified (1174 participants); allergy to fish developed in 1/573 vs 1/601 participants in the earlier vs later introduction group.						
	Allergic sensitization to fish	Only one study of fis	h introduction (with	other foods) ^k , reporting th developed in 4/567 vs 5/	is outcome, was iden	tified (1166		

eTable 12. Earlier Introduction of Other Common Allergenic Foods

Intervention	Outcome	No. of participants (studies)	Earlier introduction	Later introduction	RR (95% CI)	l² (%)
	Allergy to any food			eans or tree nuts (with ot v food developed in 2/44 v		
	Withdrawal from study intervention	795 (2) ^m	46/411	42/384	1.02 (0.69-1.50)	0
Earlier introduction of crustaceans or tree nuts	Allergic sensitization to any food	No study of introduct sensitization to any f		or tree nuts (with or withou	ut other foods), report	ing allergic
	Allergy to crustaceans or tree nuts	No study of introduct crustaceans or tree r		or tree nuts (with or withou	ut other foods), report	ing allergy to
	Allergic sensitization to crustaceans or tree nuts	No study of introduct sensitization to crust		or tree nuts (with or withou was identified.	ut other foods), report	ing allergic

CI, confidence interval; RR, risk ratio.

^aIntervention foods were egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 161 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1162 participants); milk, egg, peanut, cashew, almond, shrimp, walnut, wheat, salmon, and hazelnut (1 trial; 88 participants); peanut, milk, wheat, and egg (1 trial; 1839 participants).

^bIntervention foods were peanut, soya, almond, cashew, hazelnut, pecan, pistachio, walnut, wheat, oat, milk, egg, cod, shrimp, salmon, and sesame (1 trial; 705 participants); egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 163 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1303 participants); milk, egg, peanut, cashew, almond, shrimp, walnut, wheat, salmon, and hazelnut (1 trial; 90 participants); peanut, milk, wheat, and egg (1 trial; 2397 participants).

Intervention foods were egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 161 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1169 participants); peanut, milk, wheat, and egg (1 trial; 1839 participants).

^dIntervention foods were egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 146 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1168 participants); peanut, milk, wheat, and egg (1 trial; 1504 participants).

"Intervention foods were soya (1 trial; 384 participants); egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 161 participants).

^fIntervention foods were soya (4 trials; 1347 participants); peanut, soya, almond, cashew, hazelnut, pecan, pistachio, walnut, wheat, oat, milk, egg, cod, shrimp, salmon, and sesame (1 trial; 705 participants); egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 163 participants).

^gIntervention foods were egg, milk, wheat, soya, buckwheat, and peanut.

^hIntervention foods were soya (1 trial; 48 participants); egg, milk, wheat, soya, buckwheat, and peanut (1 trial; 144 participants).

¹Intervention foods were milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1162 participants); milk, egg, peanut, cashew, almond, shrimp, walnut, wheat, salmon, and hazelnut (1 trial; 88 participants). ¹Intervention foods were peanut, soya, almond, cashew, hazelnut, pecan, pistachio, walnut, wheat, oat, milk, egg, cod, shrimp, salmon, and sesame (1 trial; 705 participants); milk, peanut, egg, sesame, white fish, and wheat (1 trial; 1303 participants); milk, egg, peanut, cashew, almond, shrimp, walnut, wheat, salmon, and hazelnut (1 trial; 90 participants).

^kIntervention foods were milk, peanut, egg, sesame, white fish, and wheat.

¹Intervention foods were milk, egg, peanut, cashew, almond, shrimp, walnut, wheat, salmon, and hazelnut.

^mIntervention foods were peanut, soya, almond, cashew, hazelnut, pecan, pistachio, walnut, wheat, oat, milk, egg, cod, shrimp, salmon, and sesame (1 trial; 705 participants); milk, egg, peanut, cashew, almond, shrimp, walnut, wheat, salmon, and hazelnut (1 trial; 90 participants).

eReferences

1. Ierodiakonou D, Garcia-Larsen V, Logan A, et al. Timing of Allergenic Food Introduction to the Infant Diet and Risk of Allergic or Autoimmune Disease: A Systematic Review and Meta-analysis. *JAMA*. Sep 20 2016;316(11):1181-1192. doi:10.1001/jama.2016.12623

2. Boyle RJ, Ierodiakonou D, Khan T, et al. Hydrolysed formula and risk of allergic or autoimmune disease: systematic review and meta-analysis. *Bmj*. Mar 8 2016;352:i974. doi:10.1136/bmj.i974

3. Garcia-Larsen V, Ierodiakonou D, Jarrold K, et al. Diet during pregnancy and infancy and risk of allergic or autoimmune disease: A systematic review and meta-analysis. *PLoS Med.* Feb 2018;15(2):e1002507. doi:10.1371/journal.pmed.1002507

4. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *Bmj*. Sep 13 1997;315(7109):629-34. doi:10.1136/bmj.315.7109.629

5. Sterne JAC, Savovic J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *Bmj*. Aug 28 2019;366:14898. doi:10.1136/bmj.14898

6. R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL <u>https://www.R-project.org/</u>.

7. Balduzzi S, Rucker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. *Evid Based Ment Health*. Nov 2019;22(4):153-160. doi:10.1136/ebmental-2019-300117

8. Viechtbauer W. Conducting Meta-Analyses in R with the metafor Package. *Journal of Statistical Software*. 08/05 2010;36(3):1 - 48. doi:10.18637/jss.v036.i03

9. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. *J Natl Cancer Inst.* Apr 1959;22(4):719-48.

10. DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials*. Sep 1986;7(3):177-88. doi:10.1016/0197-2456(86)90046-2

11. Trial Sequential Analysis (TSA) [Computer program]. Version 0.9.5.10 Beta. The Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital – Rigshospitalet, 2021.

12. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *Bmj*. Apr 26 2008;336(7650):924-6. doi:10.1136/bmj.39489.470347.AD

 Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. *J Clin Epidemiol*. Apr 2011;64(4):383-94. doi:10.1016/j.jclinepi.2010.04.026
 Bellach J, Schwarz V, Ahrens B, et al. Randomized placebo-controlled trial of hen's egg consumption for primary prevention in infants. *Journal of allergy and clinical immunology*. 2017;139(5):1591-1599.e2. doi:10.1016/j.jaci.2016.06.045

15. Brown EB, Josephson BM, Levine HS, Rosen M. A prospective study of allergy in a pediatric population. The role of heredity in the incidence of allergies, and experience with milk-free diet in the newborn. *Am J Dis Child.* Jun 1969;117(6):693-8.

16. de Jong MH, Scharp-van der Linden VT, Aalberse RC, Oosting J, Tijssen JG, de Groot CJ. Randomised controlled trial of brief neonatal exposure to cows' milk on the development of atopy. *Archives of disease in childhood*. 1998;79(2):126-130. doi:10.1136/adc.79.2.126

17. Du Toit G, Roberts G, Sayre PH, et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. *N Engl J Med.* 2015;372(9):803-13. doi:<u>https://dx.doi.org/10.1056/NEJMoa1414850</u>

18. du Toit G, Sayre PH, Roberts G, et al. Allergen specificity of early peanut consumption and effect on development of allergic disease in the Learning Early About Peanut Allergy study cohort. *Journal of allergy and clinical immunology*. 2018;141(4):1343-1353. doi:10.1016/j.jaci.2017.09.034

19. Halpern SR, Sellars WA, Johnson RB, Anderson DW, Saperstein S, Reisch JS. Development of childhood allergy in infants fed breast, soy, or cow milk. *J Allergy Clin Immunol*. 1973;51(3):139-51.

20. Holl JL, Bilaver LA, Finn DJ, Savio K. A randomized trial of the acceptability of a daily multi-allergen food supplement for infants. *Pediatric allergy and immunology*. 2020;31(4):418-420. doi:10.1111/pai.13223

21. Iannotti LL, Lutter CK, Stewart CP, et al. Eggs in Early Complementary Feeding and Child Growth: a Randomized Controlled Trial. *Pediatrics*. 2017;140(1)doi:10.1542/peds.2016-3459

22. Johnstone DE, Dutton AM. Dietary prophylaxis of allergic disease in children. *N Engl J Med.* 1966;274(13):715-9.

23. Kjellman NI, Johansson SG. Soy versus cow's milk in infants with a biparental history of atopic disease: development of atopic disease and immunoglobulins from birth to 4 years of age. *Clinical allergy*. 1979;9(4):347-358. doi:10.1111/j.1365-2222.1979.tb02493.x

24. Lowe AJ, Hosking CS, Bennett CM, et al. Effect of a partially hydrolyzed whey infant formula at weaning on risk of allergic disease in high-risk children: a randomized controlled trial. *Journal of allergy and clinical immunology*. 2011;128(2):360-365.e4. doi:10.1016/j.jaci.2010.05.006

25. Makrides M, Hawkes JS, Neumann MA, Gibson RA. Nutritional effect of including egg yolk in the weaning diet of breast-fed and formula-fed infants: a randomized controlled trial. *Am J Clin Nutr*. Jun 2002;75(6):1084-92. doi:10.1093/ajcn/75.6.1084

26. Miskelly FG, Burr ML, Vaughan-Williams E, Fehily AM, Butland BK, Merret TG. Infant feeding and allergy. *Archives of Disease in Childhood*. 1988;63(4):388-393. doi:<u>http://dx.doi.org/10.1136/adc.63.4.388</u>
27. Hand S, Dunstan F, Jones K, Doull I. The effect of diet in infancy on asthma in young adults: the

Merthyr Allergy Prevention Study. Thorax. 2021;07:07. doi:https://dx.doi.org/10.1136/thoraxjnl-2020-215040

28. Natsume O, Kabashima S, Nakazato J, et al. Two-step egg introduction for prevention of egg allergy in high-risk infants with eczema (PETIT): a randomised, double-blind, placebo-controlled trial. *Lancet (london, england)*. 2017;389(10066):276-286. doi:10.1016/S0140-6736(16)31418-0

29. Nishimura T, Fukazawa M, Fukuoka K, et al. Early introduction of very small amounts of multiple foods to infants: a randomized trial. *Allergology international*. 2022;doi:10.1016/j.alit.2022.03.001

30. Palmer DJ, Metcalfe J, Makrides M, et al. Early regular egg exposure in infants with eczema: a randomized controlled trial. *Journal of allergy and clinical immunology*. 2013;132(2):387-92.e1. doi:10.1016/j.jaci.2013.05.002

31. Palmer DJ, Sullivan TR, Gold MS, Prescott SL, Makrides M. Randomized controlled trial of early regular egg intake to prevent egg allergy. *Journal of allergy and clinical immunology*. 2017;139(5):1600-1607.e2. doi:10.1016/j.jaci.2016.06.052

32. Perkin MR, Logan K, Tseng A, et al. Randomized Trial of Introduction of Allergenic Foods in Breast-Fed Infants. *N Engl J Med.* 2016;374(18):1733-43. doi:<u>https://dx.doi.org/10.1056/NEJMoa1514210</u>

33. Quake AZ, Liu TA, D'Souza R, et al. Early Introduction of Multi-Allergen Mixture for Prevention of Food Allergy: Pilot Study. *Nutrients*. 2022;14(4) (no pagination)doi:<u>https://dx.doi.org/10.3390/nu14040737</u>

34. Sakihara T, Otsuji K, Arakaki Y, Hamada K, Sugiura S, Ito K. Randomized trial of early infant formula introduction to prevent cow's milk allergy. *Journal of allergy and clinical immunology*. 2021;147(1):224-232.e8. doi:10.1016/j.jaci.2020.08.021

35. Skjerven HO, Lie A, Vettukattil R, et al. Early food intervention and skin emollients to prevent food allergy in young children (PreventADALL): a factorial, multicentre, cluster-randomised trial. *Lancet*. 2022;399(10344):2398-2411. doi:https://dx.doi.org/10.1016/S0140-6736(22)00687-0

36. Stewart CP, Caswell B, Iannotti L, et al. The effect of eggs on early child growth in rural Malawi: the Mazira Project randomized controlled trial. *Am J Clin Nutr*. Oct 1 2019;110(4):1026-1033. doi:10.1093/ajcn/ngz163

37. Wei-Liang Tan J, Valerio C, Barnes EH, et al. A randomized trial of egg introduction from 4 months of age in infants at risk for egg allergy. *Journal of allergy and clinical immunology*. 2017;139(5):1621-1628.e8. doi:10.1016/j.jaci.2016.08.035

38. Urashima M, Mezawa H, Okuyama M, et al. Primary Prevention of Cow's Milk Sensitization and Food Allergy by Avoiding Supplementation With Cow's Milk Formula at Birth: a Randomized Clinical Trial. *JAMA pediatrics*. 2019;173(12):1137-1145. doi:10.1001/jamapediatrics.2019.3544

Study on the Induction of Food Tolerance in Babies. <u>https://clinicaltrialsgov/show/NCT02825069</u>.
 2016;

40. Randomized controlled trial of intake of milk in infancy by high-risk infants to prevent milk allergy. <u>http://wwwwhoint/trialsearch/Trial2aspx?TrialID=JPRN-UMIN000030214</u>. 2017;

41. Introducing cashew nuts during infancy – The Cashew Study.

http://www.hoint/trialsearch/Trial2aspx?TrialID=ACTRN12618000228280. 2018;

42. Prevention study of hen's Egg Allergy with Low-allergenisity Egg powder.

http://www.hoint/trialsearch/Trial2aspx?TrialID=JPRN-jRCTs041190089. 2019;

43. Kalb B, Meixner L, Trendelenburg V, et al. Tolerance induction through early feeding to prevent food allergy in infants with eczema (TEFFA): rationale, study design, and methods of a randomized controlled trial. *Trials*. 2022;23(1) <u>https://dx.doi.org/10.1186/s13063-022-06126-x</u>

44. Effects of Complementary Feeding of Eggs on Infant Development and Growth in Guatemala: the Saqmolo Study. *https://clinicaltrialsgov/show/NCT04316221*. 2020;

45. Intervention to Reduce Early (Peanut) Allergy in Children.

https://clinicaltrialsgov/show/NCT04604431. 2020;

46. Kohl PL, Gyimah EA, Diaz J, et al. Grandi Byen-supporting child growth and development through integrated, responsive parenting, nutrition and hygiene: study protocol for a randomized controlled trial. *BMC pediatrics*. 2022;22(1)<u>https://dx.doi.org/10.1186/s12887-021-03089-x</u>

47. The TreEat Study- Can Early Introduction of Tree Nuts Prevent Tree Nut Allergy in Infants With Peanut Allergy. <u>https://clinicaltrialsgov/show/NCT04801823</u>, 2021;

 Infancy to Toddlerhood: early Nutrition & Tolerance (INTENT). <u>https://clinicaltrialsgov/show/NCT04803981</u>, 2021; 49. Nct. Efficacy of Providing Eggs as an Early Complementary Food to Promote Child Growth. <u>https://clinicaltrialsgov/show/NCT05168085</u>. 2021;

eAppendix. Search Strategies

Embase

1. complementary food?.ab,ti. 2. (introduc\$ adj2 food?).ab,ti. 3. wean\$.ab,ti. 4. weaning/ 5. solid?.ab,ti. 6. semi-solid?.ab,ti. 7. baby food?.ab,ti. 8. baby food/ 9. infant nutrition/ 10. breast feeding.ab,ti. 11. breastfeeding.ab,ti. 12. breast fed.ab,ti. 13. breastfed.ab.ti. 14. breast feeding/ 15. breast milk/ 16. formula?.ab,ti. 17. hydrolysed.ab,ti. 18. bottlefed.ab,ti. 19. bottle fed.ab,ti. 20. (bottle adj3 feed\$).ab,ti. 21. artificial milk/ 22. bottle feeding/ 23. liquid?.ti,ab. 24. milk.ti,ab. 25. milk/ 26. egg?.ti,ab. 27. egg/ 28. egg protein/ 29. nut?.ab,ti. 30. peanut?.ab,ti. 31. almond?.ab,ti. 32. (brazil? adj5 nut?).ab,ti. 33. walnut?.ab,ti. 34. pecan?.ab,ti. 35. pistachio?.ab,ti. 36. cashew?.ab,ti. 37. hazelnut?.ab,ti. 38. macadamia?.ab,ti. 39. nut/ 40. peanut/ 41. almond/ 42. Brazil nut/ 43. exp walnut/ 44. pecan/ 45. pistachio/ 46. cashew nut/ 47. hazelnut/ 48. Corylus avellana/ 49. Macadamia/ 50. wheat.ti,ab. 51. exp wheat/ 52. soya.ti,ab. 53. soybean/ 54. gluten\$.ti,ab. 55. gluten/ 56. fish\$.ti,ab. 57. fish/

58. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56 or 57 59. allerg\$.ab,ti. 60. asthma\$.ab,ti. 61. wheeze.ab,ti. 62. wheezing.ab,ti. 63. bronchial hyperresponsiveness.ab,ti. 64. bronchial hyperreactivity.ab,ti. 65. Forced expiratory volume.ab,ti. 66. FEV1.ab,ti. 67. "FEV 1".ab,ti. 68. "FEV0.5".ab,ti. 69. "FEV 0.5".ab,ti. 70. Forced vital capacity.ab,ti. 71. FVC.ab,ti. 72. Peak expiratory flow rate.ab,ti. 73. PEFR.ab,ti. 74. eczema.ab,ti. 75. neurodermatitis.ab,ti. 76. rhinitis.ab,ti. 77. besniers prurigo.ab,ti. 78. rhinoconjunctivitis.ab,ti. 79. havfever.ab.ti. 80. (hay adj fever).ab,ti. 81. poll?nosis.ab,ti. 82. SAR.ab,ti. 83. (pollen adj allergy).ab,ti. 84. conjunctivitis.ab,ti. 85. immunoglobulin e.ab,ti. 86. Total IgE.ab,ti. 87. atopic disease.ab,ti. 88. atopic dermatitis.ab,ti. 89. (food? adj3 sensiti\$).ab,ti. 90. (food? adj3 toleran\$).ab,ti. 91. (food? adj3 intoleran\$).ab,ti. 92. ((aero or air\$) adj3 allergen?).ab,ti. 93. (aeroallergen? adj3 sensiti\$).ab,ti. 94. (allergen? adj3 sensiti\$).ab,ti. 95. skin prick test\$.ab,ti. 96. atopy.ab,ti. 97. hypersensitiv\$.ab,ti. 98. exp hypersensitivity/ 99. respiratory tract allergy/ 100. asthma/ 101. wheezing/ 102. bronchus hyperreactivity/ 103. forced expiratory volume/ 104. forced vital capacity/ 105. peak expiratory flow/ 106. eczema/ 107. neurodermatitis/ 108. rhinitis/ 109. rhinoconjunctivitis/ 110. hay fever/ 111. pollen allergy/ 112. perennial rhinitis/ 113. conjunctivitis/ 114. immunoglobulin E/

116. nutritional intolerance/

117. 59 or 60 or 61 or 62 or 63 or 64 or 65 or 66 or 67 or 68 or 69 or 70 or 71 or 72 or 73 or 74 or 75 or 76 or 77 or 78 or 79 or 80 or 81 or 82 or 83 or 84 or 85 or 86 or 87 or 88 or 89 or 90 or 91 or 92 or 93 or 94 or 95 or 96 or 97 or 98 or 99 or 100 or 101 or 102 or 103 or 104 or 105 or 106 or 107 or 108 or 109 or 110 or 111 or 112 or 113 or 114 or 115 or 116

118. infant?.ab.ti.

119. ((one or two or three or four or five or six or seven or eight or nine or ten or eleven or twelve or thirteen or fourteen or fifteen or sixteen or seventeen or eighteen or nineteen or twenty or "twenty one" or "twenty two" or "twenty three" or "twenty four" or "twenty five" or "twenty six") adj week?).ab,ti.

120. ((one or two or three or four or five or six or seven or eight or nine or ten or eleven or twelve or thirteen or fourteen or fifteen or sixteen or seventeen or eighteen or nineteen or twenty or "twenty one" or "twenty two" or "twenty three" or "twenty four") adj month?).ab,ti.

121. ((1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26) adj week?).ab,ti.

122. ((1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24) adj month?).ab,ti.

123. 119 or 120 or 121 or 122

124. (old or age?).ab,ti.

125. 123 and 124

126. (("one year?" or "two year?") adj3 (old or age?)).ab,ti.

127. ((first or second or two) adj3 "year? of life").ab,ti.

128. (("1 year?" or "2 year?") adj3 (old or age?)).ab,ti.

129. ((first or second or 2) adj3 "year? of life").ab,ti.

130. infant/

131. newborn/

132. 118 or 125 or 126 or 127 or 128 or 129 or 130 or 131

133. clinical trial?.mp.

134. random\$.mp.

135. factorial\$.mp.

136. crossover\$.mp.

137. placebo\$.mp.

138. (doubl\$ adj blind\$).mp.

139. (singl\$ adj blind\$).mp.

140. assign\$.mp.

141. volunteer\$.mp.

142. longitudinal\$.mp.

143. follow-up.mp.

144. groups.ab,ti.

145. exp clinical trial/

146. crossover procedure/

147. placebo/

148. double blind procedure/

149. single blind procedure/

150. follow up/

151. 133 or 134 or 135 or 136 or 137 or 138 or 139 or 140 or 141 or 142 or 143 or 144 or 145 or 146 or 147 or

148 or 149 or 150

152. 58 and 117 and 132 and 151

CENTRAL

1. "complementary food*":ab,ti

2. (introduc* NEAR/2 food*):ab,ti 3. wean*:ab.ti 4. MeSH descriptor [Weaning] this term only 5. solid*:ab,ti 6. semi-solid*:ab,ti 7. "baby food*":ab,ti 8. MeSH descriptor [Infant Food] this term only 9. MeSH descriptor [Infant Nutritional Physiological Phenomena] this term only 10. "breast feeding":ab,ti 11. breastfeeding:ab,ti 12. "breast fed":ab,ti 13. breastfed:ab.ti 14. MeSH descriptor [Breast Feeding] this term only 15. MeSH descriptor [Milk, Human] this term only 16. formula*:ab,ti 17. hydrolysed:ab,ti 18. bottlefed:ab,ti 19. "bottle fed":ab,ti 20. (bottle NEAR/3 feed*):ab,ti 21. MeSH descriptor [Infant Formula] this term only 22. MeSH descriptor [Bottle Feeding] this term only 23. liquid*:ab,ti 24. milk:ab,ti 25. MeSH descriptor [Milk] this term only 26. egg*:ab,ti 27. MeSH descriptor [Egg Proteins] this term only 28. MeSH descriptor [Egg Proteins, Dietary] this term only 29. nut*:ab,ti 30. peanut*:ab,ti 31. almond*:ab,ti 32. (brazil* NEAR/5 nut*):ab,ti 33. walnut*:ab,ti 34. pecan*:ab,ti 35. pistachio*:ab,ti 36. cashew*:ab,ti 37. hazelnut*:ab,ti 38. macadamia*:ab,ti 39. MeSH descriptor [Nuts] this term only 40. MeSH descriptor [Arachis hypogaea] this term only 41. MeSH descriptor [Prunus] this term only 42. MeSH descriptor [Bertholletia] this term only 43. MeSH descriptor [Juglans] this term only 44. MeSH descriptor [Carya] this term only 45. MeSH descriptor [Pistacia] this term only 46. MeSH descriptor [Anacardium] this term only 47. MeSH descriptor [Corylus] this term only 48. MeSH descriptor [Macadamia] this term only 49. wheat:ab,ti 50. MeSH descriptor [Triticum] this term only 51. soya:ab,ti 52. MeSH descriptor [Soybeans] this term only 53. gluten*:ab,ti 54. MeSH descriptor [Glutens] this term only 55. fish:ab.ti 56. MeSH descriptor [Fishes] this term only 57. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56

58. allerg*:ab,ti 59. asthma*:ab,ti 60. wheeze:ab,ti 61. wheezing:ab,ti 62. "bronchial hyperresponsiveness":ab,ti 63. "bronchial hyperreactivity":ab,ti 64. "Forced expiratory volume":ab,ti 65. "FEV1":ab,ti 66. "FEV 1":ab,ti 67. "FEV0.5":ab,ti 68. "FEV 0.5":ab,ti 69. "Forced vital capacity":ab,ti 70. FVC:ab,ti 71. "Peak expiratory flow rate":ab,ti 72. PEFR:ab,ti 73. eczema:ab,ti 74. neurodermatitis:ab,ti 75. rhinitis:ab,ti 76. "besniers prurigo":ab,ti 77. rhinoconjunctivitis:ab,ti 78. hayfever:ab,ti 79. "hay fever":ab,ti 80. poll*nosis:ab,ti 81. SAR:ab.ti 82. "pollen allergy":ab,ti 83. conjunctivitis:ab,ti 84. "immunoglobulin e":ab,ti 85. "Total IgE":ab,ti 86. "atopic disease":ab,ti 87. "atopic dermatitis":ab,ti 88. (food* NEAR/3 sensiti*):ab,ti 89. (food* NEAR/3 toleran*):ab,ti 90. (food* NEAR/3 intoleran*):ab,ti 91. ((aero or air*) NEAR/3 allergen*):ab,ti 92. (aeroallergen* NEAR/3 sensiti*):ab,ti 93. (allergen* NEAR/3 sensiti*):ab,ti 94. "skin prick test*":ab,ti 95. atopy:ab,ti 96. hypersensitiv*:ab,ti 97. MeSH descriptor [Hypersensitivity] this term only 98. MeSH descriptor [Food Hypersensitivity] explode all trees 99. MeSH descriptor [Respiratory Hypersensitivity] this term only 100. MeSH descriptor [Asthma] this term only 101. MeSH descriptor [Bronchial Hyperreactivity] this term only 102. MeSH descriptor [Forced Expiratory Volume] this term only 103. MeSH descriptor [Vital Capacity] this term only 104. MeSH descriptor [Peak Expiratory Flow Rate] this term only 105. MeSH descriptor [Eczema] this term only 106. MeSH descriptor [Neurodermatitis] this term only 107. MeSH descriptor [Rhinitis] this term only 108. MeSH descriptor [Rhinitis, Allergic, Perennial] this term only 109. MeSH descriptor [Rhinitis, Allergic, Seasonal] this term only 110. MeSH descriptor [Conjunctivitis] this term only 111. MeSH descriptor [Immunoglobulin E] this term only 112. MeSH descriptor [Dermatitis, Atopic] this term only 113. MeSH descriptor [Hypersensitivity, Immediate] this term only 114. 58 or 59 or 60 or 61 or 62 or 63 or 64 or 65 or 66 or 67 or 68 or 69 or 70 or 71 or 72 or 73 or 74 or 75 or 76 or 77 or 78 or 79 or 80 or 81 or 82 or 83 or 84 or 85 or 86 or 87 or 88 or 89 or 90 or 91 or 92 or 93 or 94 or 95 or 96 or 97 or 98 or 99 or 100 or 101 or 102 or 103 or 104 or 105 or 106 or 107 or 108 or 109 or 110 or 111 or

112 or 113

115. infant*:ab,ti

116. ((one or two or three or four or five or six or seven or eight or nine or ten or eleven or twelve or thirteen or fourteen or fifteen or sixteen or seventeen or eighteen or nineteen or twenty or "twenty one" or "twenty two" or "twenty three" or "twenty four" or "twenty five" or "twenty six") NEAR/1 week*):ab,ti

117. ((one or two or three or four or five or six or seven or eight or nine or ten or eleven or twelve or thirteen or fourteen or fifteen or sixteen or seventeen or eighteen or nineteen or twenty or "twenty one" or "twenty two" or "twenty three" or "twenty four") NEAR/1 month*):ab,ti

118. ((1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26) NEAR/1 week*):ab,ti

119. ((1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24) NEAR/1 month*):ab,ti

120. 116 or 117 or 118 or 119

121. (old or age*):ab,ti

122. 120 and 121

123. (("one year*" or "two year*") NEAR/3 (old or age*)):ab,ti

124. ((first or second or two) NEAR/3 "year* of life"):ab,ti

125. (("1 year?" or "2 year?") NEAR/3 (old or age*)):ab,ti

126. ((first or second or 2) NEAR/3 "year* of life"):ab,ti

127. MeSH descriptor [Infant] this term only

128. MeSH descriptor [Infant, Newborn] this term only

129. 115 or 122 or 123 or 124 or 125 or 126

130. "clinical trial*"

131. random*

132. factorial*

133. crossover*

134. placebo*

135. "doubl* blind*"

136. "singl* blind*"

137. assign*

138. volunteer*

139. longitudinal*

140. follow-up

141. groups:ab.ti

142. MeSH descriptor [clinical trial] explode all trees

143. MeSH descriptor [Cross-Over Studies] this term only

144. MeSH descriptor [Placebos] this term only

145. MeSH descriptor [Double-Blind Method] this term only

146. MeSH descriptor [Single-Blind Method] this term only

147. 130 or 131 or 132 or 133 or 134 or 135 or 136 or 137 or 138 or 139 or 140 or 141 or 142 or 143 or 144 or 145 or 146

148. 57 and 114 and 129 and 147

Medline

1. complementary food?.ab,ti. 2. (introduc\$ adj2 food?).ab,ti. 3. wean\$.ab,ti. 4. Weaning/ 5. solid?.ab,ti. 6. semi-solid?.ab,ti. 7. baby food?.ab,ti. 8. Infant Food/ 9. Infant Nutritional Physiological Phenomena/ 10. breast feeding.ab,ti. 11. breastfeeding.ab,ti. 12. breast fed.ab,ti. 13. breastfed.ab.ti. 14. Breast Feeding/ 15. Milk, Human/ 16. formula?.ab,ti. 17. hydrolysed.ab,ti. 18. bottlefed.ab,ti. 19. bottle fed.ab,ti. 20. (bottle adj3 feed\$).ab,ti. 21. Infant Formula/ 22. Bottle Feeding/ 23. liquid?.ab,ti. 24. milk.ab,ti. 25. Milk/ 26. egg?.ab,ti. 27. Egg Proteins/ 28. Egg Proteins, Dietary/ 29. nut?.ab,ti. 30. peanut?.ab,ti. 31. almond?.ab,ti. 32. (brazil? adj5 nut?).ab,ti. 33. walnut?.ab,ti. 34. pecan?.ab,ti. 35. pistachio?.ab,ti. 36. cashew?.ab,ti. 37. hazelnut?.ab,ti. 38. macadamia?.ab,ti. 39. Nuts/ 40. Arachis hypogaea/ 41. Prunus/ 42. Bertholletia/ 43. Juglans/ 44. Carya/ 45. Pistacia/ 46. Anacardium/ 47. Corylus/ 48. Macadamia/ 49. wheat.ab,ti. 50. Triticum/ 51. soya.ab,ti. 52. Soybeans/ 53. gluten\$.ab,ti. 54. Glutens/ 55. fish.ab.ti. 56. Fishes/ 57. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40

or 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56

58. allerg\$.ab,ti. 59. asthma\$.ab,ti. 60. wheeze.ab,ti. 61. wheezing.ab,ti. 62. bronchial hyperresponsiveness.ab,ti. 63. bronchial hyperreactivity.ab,ti. 64. Forced expiratory volume.ab,ti. 65. FEV1.ab,ti. 66. "FEV 1".ab,ti. 67. "FEV0.5".ab,ti. 68. "FEV 0.5".ab,ti. 69. Forced vital capacity.ab,ti. 70. FVC.ab,ti. 71. Peak expiratory flow rate.ab,ti. 72. PEFR.ab,ti. 73. eczema.ab.ti. 74. neurodermatitis.ab,ti. 75. rhinitis.ab,ti. 76. besniers prurigo.ab,ti. 77. rhinoconjunctivitis.ab,ti. 78. hayfever.ab,ti. 79. (hay adj fever).ab,ti. 80. poll?nosis.ab,ti. 81. SAR.ab,ti. 82. (pollen adj allergy).ab,ti. 83. conjunctivitis.ab,ti. 84. immunoglobulin e.ab,ti. 85. Total IgE.ab,ti. 86. atopic disease.ab,ti. 87. atopic dermatitis.ab,ti. 88. (food? adj3 sensiti\$).ab,ti. 89. (food? adj3 toleran\$).ab,ti. 90. (food? adj3 intoleran\$).ab,ti. 91. ((aero or air\$) adj3 allergen?).ab,ti. 92. (aeroallergen? adj3 sensiti\$).ab,ti. 93. (allergen? adj3 sensiti\$).ab,ti. 94. skin prick test\$.ab,ti. 95. atopy.ab,ti. 96. hypersensitiv\$.ab,ti. 97. Hypersensitivity/ 98. exp Food Hypersensitivity/ 99. Respiratory Hypersensitivity/ 100. Asthma/ 101. Bronchial Hyperreactivity/ 102. Forced Expiratory Volume/ 103. Vital Capacity/ 104. Peak Expiratory Flow Rate/ 105. Eczema/ 106. Neurodermatitis/ 107. Rhinitis/ 108. Rhinitis, Allergic, Perennial/ 109. Rhinitis, Allergic, Seasonal/ 110. Conjunctivitis/ 111. Immunoglobulin E/ 112. Dermatitis, Atopic/ 113. Hypersensitivity, Immediate/

114. 58 or 59 or 60 or 61 or 62 or 63 or 64 or 65 or 66 or 67 or 68 or 69 or 70 or 71 or 72 or 73 or 74 or 75 or 76 or 77 or 78 or 79 or 80 or 81 or 82 or 83 or 84 or 85 or 86 or 87 or 88 or 89 or 90 or 91 or 92 or 93 or 94 or 95 or 96 or 97 or 98 or 99 or 100 or 101 or 102 or 103 or 104 or 105 or 106 or 107 or 108 or 109 or 110 or 111 or 112 or 113

115. infant? ab.ti

116. ((one or two or three or four or five or six or seven or eight or nine or ten or eleven or twelve or thirteen or fourteen or fifteen or sixteen or seventeen or eighteen or nineteen or twenty or "twenty one" or "twenty two" or "twenty three" or "twenty four" or "twenty five" or "twenty six") adj week?).ab,ti.

117. ((one or two or three or four or five or six or seven or eight or nine or ten or eleven or twelve or thirteen or fourteen or fifteen or sixteen or seventeen or eighteen or nineteen or twenty or "twenty one" or "twenty two" or "twenty three" or "twenty four") adj month?).ab,ti.

118. ((1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26) adj week?).ab,ti.

119. ((1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24) adj month?).ab,ti.

120. 116 or 117 or 118 or 119

121. (old or age?).ab,ti.

122. 120 and 121

123. (("one year?" or "two year?") adj3 (old or age?)).ab,ti.

124. ((first or second or two) adj3 "year? of life").ab,ti.

125. (("1 year?" or "2 year?") adj3 (old or age?)).ab,ti.

126. ((first or second or 2) adj3 "year? of life").ab,ti.

127. Infant/

128. Infant, Newborn/

129. 115 or 122 or 123 or 124 or 125 or 126 or 127 or 128

130. clinical trial?.mp.

131. random\$.mp.

132. factorial\$.mp.

133. crossover\$.mp.

134. placebo\$.mp.

135. (doubl\$ adj blind\$).mp.

136. (singl\$ adj blind\$).mp.

137. assign\$.mp.

138. volunteer\$.mp.

139. longitudinal\$.mp.

140. follow-up.mp.

141. groups.ab.ti.

142. exp clinical trial/

143. Cross-Over Studies/

144. Placebos/

145. Double-Blind Method/

146. Single-Blind Method/

147. 130 or 131 or 132 or 133 or 134 or 135 or 136 or 137 or 138 or 139 or 140 or 141 or 142 or 143 or 144 or 145 or 146

148. 57 and 114 and 129 and 147