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Appendix 1 

“Age-sex differences in the global burden of lower respiratory infections and risk 
factors: results from the Global Burden of Disease Study 2019” 
 

This appendix provides further methodological details for “Age-sex differences in the global burden of lower 
respiratory infections and risk factors: results from the Global Burden of Disease Study 2019”.  

 

All the material in the paper itself is novel although it builds off previous GBD work and the parts of the supplemental 
methods appendix include sections adapted from the GBD Capstones1,2 published in The Lancet last year.  

 
1. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries 

and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 
396(10258): 1204-22. 

2. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-
2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396(10258): 1223-49. 
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Case definition 
We used clinician-diagnosed pneumonia or bronchiolitis as our case definition for lower respiratory infections (LRI). 
We included ICD9 codes 079.6, 466-469, 470.0, 480-482.8, 483.0-483.9, 484.1-484.2, 484.6-484.7, 487-489 and ICD10 
codes A48.1, A70, B97.4-B97.6, J09-J15.8, J16-J16.9, J20-J21.9, J91.0, P23.0-P23.4, U04-U04.9. The definitions for 
each of the ICD-9 and ICD-10 codes can be found on pages 81–84 in this appendix. LRI etiologies are modeled 
separately from overall LRI incidence and prevalence.  

 

Input data 
Input data included all data used in GBD 2017 and new data identified in our updated systematic review, population-
representative surveys, and new claims and inpatient data.  

For GBD 2019, we included new survey data from the following countries: Benin, Haiti, Kenya, Mali, Papua New 
Guinea, Senegal, Uganda, South Africa, Timor-Leste, Guinea, Guinea-Bissau, Mongolia, Mauritania, Sudan, Thailand, 
Trinidad and Tobago, and Ukraine. 

This search string below looks for the incidence and prevalence of LRI cases, and the etiology proportion for influenza 
and RSV.  
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((“lower respiratory”[title] OR pneumonia[title]) AND (2018/08/01[PDat] : 2019/2/7[PDat]) AND ((incidence OR 
prevalence OR epidemiology) OR (etiolog*[title/abstract] OR influenza[title/abstract] OR “respiratory syncytial 

virus”[title/abstract])) AND Humans[MeSH Terms]) NOT(autoimmune[title/abstract] OR COPD [title/abstract] 
OR “cystic fibrosis”[title/abstract] OR Review[ptyp]) NOT (animals[MeSH] NOT humans[MeSH]) 

Our inclusion criteria were studies that had a sample size of at least 100 people (the sample size threshold was 
chosen arbitrarily), a study duration of at least one year, and included lower respiratory infections, pneumonia, or 
bronchiolitis in the case definition. 

We identified 121 studies, of which 2 met our inclusion criteria and were extracted.  

Figure 1. Lower Respiratory Infection updated systematic review (2018/08/01-2019/2/7) PRISMA flow diagram 
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Table 1. Unique source counts for lower respiratory infections by measure  

Measure Total sources Countries with data 
All measures 1152 162 
Prevalence 918 154 

 

 

 

Figure 1. Total nonfatal data availability (site-years) by location, lower respiratory infections, GBD 2019 

 

 

To estimate the non-fatal burden of LRI, we also used self-reported prevalence of LRI symptoms from population-
representative surveys, such as the Demographic and Health Survey and the Multiple Indicator Cluster Survey. When 
possible, we extracted survey data by one-year age group and by sex. We converted these data from two-week 
period prevalence to point prevalence. The equation for this adjustment is 

1) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−1)

 

 
We accepted four survey definitions for the prevalence of symptoms of LRI: 1) Cough with difficulty breathing with 
the symptoms in the chest with a fever was our gold standard but we also accepted 2) Cough with difficulty breathing 
with the symptoms in the chest without fever, 3) Cough with difficulty breathing with fever, and 4) Cough with 
difficulty breathing without fever. To make these definitions comparable, we identified the surveys that met the best 
case definition (definition 1). Within these surveys, we calculated the ratio of the prevalence of the best case 
definition to the prevalence of the alternate definitions. This ratio was used as the dependent variable in a meta-
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regression. The results from that meta-regression were used to adjust the prevalence and uncertainty for all the 
surveys that reported alternate case definitions (Table 1). The survey data adjusted to the best survey definition 
were then adjusted to the level of our reference case definition of clinician-diagnosed pneumonia or bronchiolitis. 

Table 1. Survey crosswalk coefficients 

Data Input 
Reference or 
alternative case 
definition 

Gamma Crosswalk 
covariate 

Beta Coefficient, 
Logit (95% UI) 

Cough, with difficulty 
breathing and fever 

ref -- -- -- 

Survey, chest without 
fever 

alt 0.18 intercept -0.5 (-0.85, -0.15) 

Survey, difficulty 
breath without fever 

alt 0.55 intercept -0.78 (-1.87, 0.31) 

Survey, difficulty 
breathing with fever 

alt 0.23 intercept -0.6 (-1.04, -0.15) 

 

Survey data were adjusted for seasonality. An inclusion criterion for scientific literature is a study duration of at least 
one year to avoid bias in the seasonal timing of LRI. Surveys are frequently conducted over several months. To 
account for seasonal variation in LRI symptom prevalence, we fit a generalised additive model with a forced 
periodicity for each GBD region. The model is mixed-effects with random effects on each country. The model 
accounts for the year of the survey and the case definition used. The percent difference between the monthly model 
fit LRI prevalence and the corresponding regional-mean LRI prevalence is a scalar to adjust survey data by month and 
geography.  

In addition to survey data, hospital inpatient, outpatient data, and US claims data were included in the LRI modelling. 
These data are adjusted prior to modelling for multiple admissions, multiple diagnoses, and for outpatient claims. To 
make the data more consistent in the modelling process, we converted all incidence data to prevalence. We found 
the ratio of the prevalence of LRI in hospitalisation records to the prevalence of LRI in our case definition (clinician-
diagnosed pneumonia or bronchiolitis) for locations that contained data on both these prevalence values. We then 
regressed this ratio in a meta-regression to predict the adjustment factor for hospitalisation data to make them 
compatible with the reference case definition for our modelling. This meta-regression considered the Socio-
demographic Index (SDI) as a predictor of this ratio for inpatient data, assuming that location-years with higher 
values of SDI are more likely to have access to healthcare, making this ratio smaller in those location-years (Table 2). 
Similarly, age was considered a predictor for hospital-based studies, and data was adjusted accordingly using age 
midpoint (Table 3). 

Table 2. Crosswalk coefficient, clinical inpatient to reference definition 

Data Input 
Reference or 
alternative case 
definition 

Gamma Crosswalk 
covariate 

Beta Coefficient, 
Logit (95% UI) 
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clinician-diagnosed 
pneumonia or bronchiolitis 

ref 

1.49 

-- -- 

Clinical, inpatient alt sdi_0 2.77 (-0.37, 5.92) 
Clinical, inpatient alt sdi_1 4.82 (3.77, 5.87) 
Clinical, inpatient alt sdi_2 1.25 (0.22, 2.29) 
Clinical, inpatient alt sdi_3 0.47 (0.04, 0.9) 

 

Table 3. Crosswalk coefficient, hospital-based studies to reference definition 

Data Input 
Reference or 
alternative case 
definition 

Gamma Covariate Beta Coefficient, 
Logit (95% UI) 

clinician-diagnosed 
pneumonia or bronchiolitis 

ref 

0.3 

-- -- 

Literature, hospital-based alt age_mid_0 1.06 (0.03, 2.08) 
Literature, hospital-based alt age_mid_1 1.98 (-0.16, 4.12) 
Literature, hospital-based alt age_mid_2 1.31 (0.38, 2.25) 
Literature, hospital-based alt age_mid_3 0.95 (0.56, 1.34) 

 

Claims data for GBD 2019 include Marketscan (US), and data from Taiwan, Poland, and Russia. Marketscan data are 
retrieved by IHME’s the Clinical Informatics Team. As with inpatient clinical data, these data are converted first to 
prevalence, then compared to the reference definition for LRI using a meta-regression model (Table 4). Taiwan 
claims data were dropped as there were no reference data to match with and because the values there were 
systematically different from those in the United States. 

Table 4. Claims to reference crosswalk coefficients 

Data Input 
Reference or 
alternative case 
definition 

Gamma Crosswalk 
covariate 

Beta Coefficient, 
Logit (95% UI) 

Claims, marketscan Alt 0.39 intercept -0.87 (-1.67, -0.067) 

 

We performed a systematic review of the duration of symptoms of LRI. We sought consistency with our case 
definition of LRI and defined our duration as the time between the onset of symptoms to the resolution of increased 
work of breathing. Although crucial, there were very limited data on spatial, temporal, or age-specific duration, which 
may vary based on severity, aetiology, and treatment. We identified 485 titles from PubMed and extracted six studies 
which were used in a meta-analysis (mean duration 7.79 days, 6.2–9.64 days). We used this as the duration of LRI in 
our conversions from period to point prevalence and for the conversion between incidence and prevalence. 

Modelling strategy  
The non-fatal lower respiratory infection burden is modelled in DisMod MR 2.1, a Bayesian meta-regression 
modelling framework. DisMod-MR 2.1 produces estimates of the incidence, prevalence, and remission of LRI for each 
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age, sex, geographic location, and year. We defined the time to recovery as an average of 10 days (5-15 days), which 
corresponds with a remission 36.5. The models are informed by country-level covariates (Table 5).  

 

Table 5. Model covariates 

Study covariate Type Parameter Exponentiated beta (95% 
Uncertainty Interval) 

Socio-
demographic 
Index 

Country-level Prevalence 0.14 (0.14 — 0.14) 

Healthcare access 
and quality index 

Country-level Excess 
mortality 

0.38 (0.15 — 1.00) 

 

Changes from GBD 2017 
There is one key methodological change from GBD 2017. All data adjustments in GBD 2019 occur before modeling 
using a standardized approach. Data adjustments for non-fatal LRI include survey prevalence, inpatient clinical 
prevalence, and clinical claims prevalence. All of these data sources are adjusted to be comparable with our 
reference definition. To do so, we first computed the ratio of the alternative data to the reference data based on all 
available data matched by location, year, age, and sex. We then ran a meta-regression to pool the ratios and used the 
pooled ratio to crosswalk or adjust alternative data to the level of the reference data. We believe that this represents 
an improvement in our methodology because it standardizes these adjustments, accounts for between and within 
study variance, and explicitly creates these ratios using data within studies or location-years.  
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Lower respiratory infections (mortality) 
 

  

 
Input data 
Lower respiratory infection (LRI) mortality was estimated in CODEm. We estimated LRI mortality separately for males 
and females and for children under 5 years and older than 5 years. We used all available data from vital registration 
systems, surveillance systems, and verbal autopsy. We checked for and excluded outliers from our data by country or 
region. We also excluded ICD9-coded mortality data in Sri Lanka (1982, 1987–1992), ICD9-coded neonatal mortality 
data in Guatemala (1980, 1981, 1984, 2000–2004), and medically coded cause of death data and Civil Registration 
System data in many Indian states (1986–2013).  
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Figure 1. Total cause of death data availability (site-years) by location, lower respiratory infections, GBD 2019 

 

Modelling strategy  
LRI fatal modelling occurs using CODEm. Because of starkly different patterns, LRI CODEm models include under-5 
years and 5–95+ years. Like all models of mortality in GBD, LRI mortality models are single-cause, requiring in effect 
that the sum of all mortality models must be equal to the all-cause mortality envelope. We correct LRI mortality 
estimates, and other causes of mortality, by rescaling them according to the uncertainty around the cause-specific 
mortality rate. This process is called CoDCorrect and is essential to ensure internal consistency among causes of 
death.  

 

Table 1. Covariates used in LRI mortality modelling. Table 1A is for children under 5 and Table 1B shows the 
covariates used for ages 5–95+. The Level is the associated strength of relationship between the covariate and LRI 
mortality, ranked from 1 (proximally related) to 3 (distally related). Direction is the direction of the association 
between the covariate and LRI mortality.  

Table 1A. Covariates used in under 5 years model 

Level Covariate Direction 

1 

Childhood stunting summary exposure value 
(SEV) + 
Childhood underweight SEV  + 
Childhood wasting SEV + 
Indoor air pollution + 
LRI SEV + 
Antibiotics for LRI - 
Hib vaccine coverage - 
PCV coverage - 
Vitamin A deficiency + 
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2 

Secondhand smoking prevalence + 
Zinc deficiency + 
DTP3 vaccine coverage - 
Healthcare Access and Quality Index - 
Ambient particulate matter SEV + 
Household air pollution + 
Outdoor air pollution (PM2.5) + 
Handwashing SEV + 

3 

Sanitation SEV + 
Population density > 1000/km2 + 
Population density < 150/km2 + 
Maternal education  - 
Socio-demographic Index - 

 

Table 1B. Covariates used in 5-95+ years model 

Level Covariate Direction 

1 

Indoor air pollution + 
LRI SEV + 
Outdoor air pollution + 
Secondhand smoking prevalence + 
Smoking prevalence + 

2 

DTP3 vaccine coverage - 
Adult underweight + 
Healthcare Access and Quality Index - 
PCV coverage - 
Handwashing access + 

3 

Education years per capita - 
Lag distributed income per capita - 
Socio-demographic Index - 
Sanitation SEV + 
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Risk factors included in this study by age group 
 

Age group Risk factors  
Under five Child wasting, child underweight, child stunting, 

low birth weight, short gestation, non-exclusive 
breastfeeding, ambient particulate matter, 
household air pollution, secondhand smoke, 
handwashing, high temperature, low 
temperature 

5-14 Ambient particulate matter, household air 
pollution, secondhand smoke, handwashing, high 
temperature, low temperature 

15-49; 50-69; 70+  Ambient particulate matter, household air 
pollution, smoking, secondhand smoke, alcohol 
use, handwashing, high temperature, low 
temperature. 
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 Risk factors and potential causal pathways leading to LRI 
Risk factor Mechanism 
Child malnutrition (wasting, underweight, 
stunting) 

Malnutrition weakens immune response; it 
especially impairs mucosal epithelial barriers in 
the respiratory tract and also decreases leukocyte 
microbicidal capacity.1 

Household air pollution Adversely affects airway defense against 
infection such as inducing epithelial 
inflammation, surfactant dysfunction, and cilial 
function impairment.2 

Ambient particulate matter Ambient particulate matter can serve as bacterial 
carriers, impair antimicrobial activity in the 
respiratory tract, reduce mucociliary 
transportation, and hinder the phagocytic 
capacity against pathogens.3 

Short gestation, low birth weight Immature immune system with impaired innate 
and adaptive immunity.4-7 

No access to handwashing facility Hands carry respiratory pathogens to the nasal 
mucosa and conjunctiva.8 

Non-exclusive breastfeeding Breast milk involves immune cells (for defense 
against pathogens), antibodies, and immune 
system modulators that protect the infant against 
respiratory infections.9 

Smoking Smoking interferes with the structural, 
functional, and immunologic defense 
mechanisms.10 

Secondhand smoke Induces inflammatory response and weakens the 
immune system.11,12 

Alcohol use Elevates the risk of microbial aspiration and 
impairs the host's immunity.13 

Non-optimal temperature Decreases thermoregulation capability and 
increases vulnerability to infection.14 
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Child growth failure  
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Input data and methodological summary 
 
Exposure 
Case definition 
Child growth failure is estimated using three indicators (stunting, wasting, and underweight), all of which are based 
on categorical definitions using the WHO 2006 growth standards for children 0-59 months. Definitions are based on Z 
scores from the growth standards, which were derived from an international reference population. Mild (<-1 to -2 Z 
score), moderate (<-2 to -3 Z score), and severe (<3 Z score) categorical prevalences were estimated for each of the 
three indicators. 

Input data 
There are three main inputs for the GBD child growth failure models: microdata from population surveys, tabulated 
data from reports and published literature, and the WHO Global Database on Child Growth and Malnutrition.1 The 
primary data additions in GBD 2019 for child growth failure were from population surveys that include 
anthropometry. Population surveys include a variety of multi-country and country-specific survey series such as 
Multiple Indicator Cluster Surveys (MICS), Demographic and Health Surveys (DHS), Living Standards Measurement 
Surveys (LSMS), and the China Health and Nutrition Survey (CHNS), as well as other one-time country-specific surveys 
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such as the Indonesia Family Life Survey and the Brazil National Demographic and Health Survey of Children and 
Women. These microdata contain information about each individual child’s age (from which age in weeks and age in 
months are calculated), as well as height and/or weight. From that information, a height-for-age z-score (HAZ), 
weight-for-age z-score (WAZ), and weight-for-height z-score (WHZ) are calculated using the WHO 2006 Child Growth 
Standards and the LMS method.2 In GBD 2019, several new data-cleaning criteria were applied to increase the quality 
of the microdata set. Data that did not meet the following criteria were dropped: 1) non-sex-specific data, 2) data 
with invalid Z-scores (HAZ, WAZ, WHZ, or BMI above 6 SD or below -6 SD), and 3) data with impossible values 
(negative height, weight, or age).  

All available data from the WHO Global Database on Child Growth and Malnutrition were extracted in GBD 2016 – 
much of which are from published studies. Exclusions included examination date prior to 1985, non-population-
representative studies, and those based on self-report. A systematic literature review was last completed in GBD 
2010. We looked for four metrics from all sources with tabulated data: mean Z score, prevalence <-1 Z score, 
prevalence <-2 Z score, and prevalence <-3 Z score. All data for each metric were extracted for each of stunting 
(height-for-age Z score; HAZ), wasting (weight-for-height Z score; WHZ), and underweight (weight-for-age Z score; 
WAZ).  

Table 1: Input data counts for Child wasting exposure models 

 Input data Exposure 

Source count (total) 1240 

Number of countries with data 151 

 

Table 2: Input data counts for Child underweight exposure models 

 Input data Exposure 

Source count (total) 1270 

Number of countries with data 150 

 

Table 3: Input data counts for Child stunting exposure models 

 Input data Exposure 

Source count (total) 1262 

Number of countries with data 151 

 

Data processing 
To maximise internal consistency and comprehensiveness of the modelling dataset, we performed three data 
transformations. First, any data that were reported using the National Center for Health Statistics (NCHS) 1978 
growth standards were crosswalked to corresponding values on the WHO 2006 Growth Standards curves based on a 
study that evaluated growth standard concordance.3 Crosswalks from 1978 to 2006 growth standards were 
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performed using OLS linear regression only on <-2 (ie, moderate) prevalence data, as that is where the concordance 
was most consistent. Second, for any study that lacked a measure of mean Z score for any of stunting, wasting, or 
underweight, we predicted a mean value for that study based on an ordinary-least-squares regression of mean Z 
score versus <-2 prevalence for that metric from all sources where both were available. Third, for any data that were 
presented as both sexes combined or for 0-59 months combined, we used the age and sex pattern from all data 
sources that included that detail to split into corresponding and age- and sex-specific data.  

Modelling strategy  
Exposure estimation 
The following four-step modelling process was applied in parallel to each of stunting, wasting, and underweight.  

First, all microdata were fit using an ensemble modelling process, a modelling framework developed for GBD 2019 
that is described elsewhere in this appendix. A series of 12 individual distributions (normal, log-normal, log-logistic, 
exponential, gamma, mirror gamma, inverse gamma, gumbel, mirror gumbel, Weibull, inverse Weibull, and beta) 
were fit to the entire set of microdata (approximately 2.5 million individual z-scores) at the individual survey level. A 
weighting algorithm combined each distribution to find the optimal combination of these distributions for each 
survey, minimising the absolute prediction error across the entire distribution. Ensemble weights for each survey 
were then averaged across all surveys to produce a single set of global weights of the ensemble distributions. 
Weights were different for each sex, but invariant across geography, time, and age group. All component 
distributions that were used to derive weights were parameterised using “method of moments,” meaning that each 
corresponding probability density function (PDF) could be described as a function of the mean and variance of the 
quantity of interest.  

Second, models were developed for mean Z scores and prevalence of moderate and severe growth failure. 
Individual-level microdata were collapsed to calculate three metrics: mean z-score, moderate prevalence, and severe 
prevalence. These data were combined with those derived from literature, GHDx review, and the WHO Global 
Database on Child Growth and Malnutrition. Each of the three metrics was then modelled using spatiotemporal 
Gaussian process regression (ST-GPR), a common modelling framework used across GBD, generating estimates for 
each age group, sex, year, and location. Location-level covariates used in all models included Socio-demographic 
Index (SDI) and logit-transformed proportion of households with improved sanitation.  

Third, we combined estimates of mean, prevalence (moderate and severe) with ensemble weights in an optimisation 
framework in order to derive the variance that would best correspond to the predicted mean and prevalence. This 
variance was then paired with the mean and, using the method of moments equation for each of the component 
distributions of the ensemble, PDF of the distribution of Z-scores were calculated for each location, year, age group, 
and sex.   

Fourth, PDFs were integrated to determine the prevalence between -1 and -2 Z scores (mild), between -2 and -3 Z 
scores (moderate), and below -3 Z scores (severe). These were categorical exposures used for subsequent 
attributable risk analysis.  

Theoretical minimum-risk exposure level 
Theoretical minimum risk exposure level (TMREL) for underweight, stunting, and wasting was assigned to be greater 
than or equal to -1 SD of the WHO 2006 standard weight-for-age, height-for-age, and weight-for-height curves, 
respectively. This has not changed since GBD 2010. 
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Relative risks 
The relative risks for the association between child growth failure and lower respiratory infections are shown in Table 
4. These were derived from a pooled cohort analysis by Olofin and colleagues.5  

There is a high degree of correlation between stunting, wasting, and underweight. Failing to account for their 
covariance and assuming independence would overestimate the total burden significantly. This is the main reason 
that GBD 2010 only included childhood underweight. In GBD 2013, a method was developed to adjust observed RRs 
of Olofin and colleagues by simulating the joint distribution of the three indicators using the distribution of each 
indicator and covariance between indicators in the countries included in the meta-analysis (extracted from 
Demographic and Health Survey (DHS) micro-data).4 Based on the analysis done by McDonald and colleagues, we 
assumed there is an interaction between the three indicators, and extracted the interaction terms from the 
corresponding analysis. We calculated the adjusted RRs by minimising the error between observed crude RRs (from 
meta-analysis) and expected crude RRs derived from adjusted RRs.   

 
Table 4: Adjusted RRs for the association between child growth failure and lower respiratory infections 
 

Outcome Stunting Wasting Underweight 
Lower respiratory 

infections  
<-1:   1.125 (0.998-1.655) 
<-2:   1.318 (1.014-2.165) 
<-3:   2.355 (1.15-5.114) 

<-1:   5.941 (1.972-11.992) 
<-2:   20.455 (70.84-37.929) 
<-3:   47.67 (15.923-94.874) 

<-1:   1.145 (1.044-1.364) 
<-2:   1.365 (1.215-1.755) 
<-3:   2.593 (1.908-4.39) 
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Smoking 
 
Flowchart 

 

 
Input data and methodological summary  
Definition  
Exposure 
As in GBD 2017, we estimated the prevalence of current smoking and the prevalence of former smoking using data 
from cross-sectional nationally representative household surveys. We defined current smokers as individuals who 
currently use any smoked tobacco product on a daily or occasional basis. We defined former smokers as individuals 
who quit using all smoked tobacco products for at least six months, where possible, or according to the definition 
used by the survey. 

Input data 
We extracted primary data from individual-level microdata and survey report tabulations. We extracted data on 
current, former, and/or ever smoked tobacco use reported as any combination of frequency of use (daily, occasional, 
and unspecified, which includes both daily and occasional smokers) and type of smoked tobacco used (all smoked 
tobacco, cigarettes, hookah, and other smoked tobacco products such as cigars or pipes), resulting in 36 possible 
combinations. Other variants of tobacco products, for example hand-rolled cigarettes, were grouped into the four 
type categories listed above based on product similarities. 
 
For microdata, we extracted relevant demographic information, including age, sex, location, and year, as 
well as survey metadata, including survey weights, primary sampling units, and strata. This information 
allowed us to tabulate individual-level data in the standard GBD five-year age-sex groups and produce 
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accurate estimates of uncertainty. For survey report tabulations, we extracted data at the most granular 
age-sex group provided. 

 

Table 1: Data inputs for exposure for smoking. 

 Input data Exposure 
Source count (total) 3439 

Number of countries with data 201 

 

Table 2: Data inputs for relative risks for smoking. 

 Input data Relative risk 
Source count (total) 673 

Number of countries with data 16 

 

Crosswalk 
Our GBD smoking case definitions were current smoking of any tobacco product and former smoking of any tobacco 
product. All other data points were adjusted to be consistent with either of these definitions. Some sources 
contained information on more than one case definition and these sources were used to develop the adjustment 
coefficient to transform alternative case definitions to the GBD case definition. The adjustment coefficient was the 
beta value derived from a linear model with one predictor and no intercept. We used the same crosswalk adjustment 
coefficients as in GBD 2017, and thus we have not included a methods explanation in this appendix, as it has been 
detailed previously. 

Age and sex splitting  
As in GBD 2017, we split data reported in broader age groups than the GBD 5-year age groups or as both sexes 
combined by adapting the method reported in Ng et al1 to split using a sex- geography- time-specific reference age 
pattern. We separated the data into two sets: a training dataset, with data already falling into GBD sex-specific 5-year 
age groups, and a split dataset, which reported data in aggregated age or sex groups. We then used spatiotemporal 
Gaussian process regression (ST-GPR) to estimate sex-geography-time-specific age patterns using data in the training 
dataset. The estimated age patterns were used to split each source in the split dataset.  
 
The ST-GPR model used to estimate the age patterns for age-sex splitting used an age weight parameter value that 
minimises the effect of any age smoothing. This parameter choice allowed the estimated age pattern to be driven by 
data, rather than being enforced by any smoothing parameters of the model. Because these age-sex split data points 
were to be incorporated in the final ST-GPR exposure model, we did not want to doubly enforce a modelled age 
pattern for a given sex-location-year on a given aggregate data point.  

 
Modelling strategy  
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Smoking prevalence modelling 
We used ST-GPR to model current and former smoking prevalence. The model is nearly identical to that in GBD 2017. 
Full details on the ST-GPR method are reported elsewhere in the appendix. Briefly, the mean function input to GPR is 
a complete time series of estimates generated from a mixed effects hierarchical linear model plus weighted residuals 
smoothed across time, space, and age. The linear model formula for current smoking, fit separately by sex using 
restricted maximum likelihood in R, is: 
 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑔𝑔,𝑎𝑎,𝑡𝑡� = 𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝐶𝐶𝐶𝐶𝑔𝑔,𝑡𝑡 + �𝛽𝛽𝑘𝑘𝐼𝐼𝐴𝐴[𝑎𝑎] + 𝛼𝛼𝑠𝑠 + 𝛼𝛼𝑟𝑟 + 𝛼𝛼𝑔𝑔 + 𝜖𝜖𝑔𝑔,𝑎𝑎,𝑡𝑡

19

𝑘𝑘=2

  

 

Where 𝐶𝐶𝐶𝐶𝐶𝐶𝑔𝑔,𝑡𝑡 is the tobacco consumption covariate by geography 𝑔𝑔 and time 𝑡𝑡, described above, 𝐼𝐼𝐴𝐴[𝑎𝑎] is a dummy 
variable indicating specific age group 𝐴𝐴 that the prevalence point 𝑝𝑝𝑔𝑔,𝑎𝑎,𝑡𝑡 captures, and 𝛼𝛼𝑠𝑠,𝛼𝛼𝑟𝑟 , and 𝛼𝛼𝑔𝑔 are super-region, 
region, and geography random intercepts, respectively. Random effects were used in model fitting but not in 
prediction.  

The linear model formula for former smoking is:  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑔𝑔,𝑎𝑎,𝑡𝑡� = 𝛽𝛽0 + 𝛽𝛽1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴[𝑎𝑎],𝑔𝑔,𝑡𝑡 + 𝛽𝛽3𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴[𝑎𝑎],𝑔𝑔,𝑡𝑡 + �𝛽𝛽𝑘𝑘𝐼𝐼𝐴𝐴[𝑎𝑎] + 𝛼𝛼𝑠𝑠 + 𝛼𝛼𝑟𝑟 + 𝛼𝛼𝑔𝑔 + 𝜖𝜖𝑔𝑔,𝑎𝑎,𝑡𝑡

20

𝑘𝑘=3

  

 
Where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴[𝑎𝑎],𝑔𝑔,𝑡𝑡 is the percentage change in current smoking prevalence from the previous year, and 
𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴[𝑎𝑎],𝑔𝑔,𝑡𝑡 is the current smoking prevalence by specific age group 𝐴𝐴, geography 𝑔𝑔, and time 𝑡𝑡 that point 𝑝𝑝𝑔𝑔,𝑎𝑎,𝑡𝑡 
captures, both derived from the current smoking ST-GPR model defined above.  

 
Supply-side estimation 
The methods for modelling supply-side-level data were changed substantially from those used in GBD 2017. The raw 
data were domestic supply (USDA Global Surveillance Database and UN FAO) and retail supply (Euromonitor) of 
tobacco. Domestic supply was calculated as production + imports - exports. The data went through three rounds of 
outliering. First, they were age-sex split using daily smoking prevalence to generate number of cigarettes per smoker 
per day for a given location-age-sex-year. If more than 12 points for a particular source-location-year (equal to over 
1/3 of the split points) were above the given thresholds, that source-location-year was outliered. A point would not 
be outliered if it was (in cigarettes per smoker): under five (10–14 year olds); under 20 (males, 15–19 year olds); 
under 18 (females, 15–19 year olds); under 38/35 and over three (males/females, 20+ year olds). These thresholds 
were chosen by visualising histograms of the data for each age-sex, as well as with expert knowledge about 
reasonable consumption levels. In the second round of outliering, the mean tobacco per capita value over a 10-year 
window was calculated. If a point was over 70% of that mean value away from the mean value, it was outliered. The 
70% limit was chosen using histograms of these distances. Additionally, some manual outliering was performed to 
account for edge cases. Finally, data smoothing was performed by taking a three-year rolling mean over each 
location-year. 

Next, a simple imputation to fill in missing years was performed for all series to remove compositional bias from our 
final estimates. Since the data from our main sources covered different time periods, by imputing a complete time 
series for each data series, we reduced the probability that compositional bias of the sources was leading to biased 
final estimates. To impute the missing years for each series, we modelled the log ratio of each pair of sources as a 
function of an intercept and nested random effects on super-region, region, and location. The appropriate predicted 
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ratio was multiplied by each source that we did have, and then the predictions were averaged to get the final 
imputed value. For example, if source A was missing for a particular location-year, but sources B and C were present, 
then we predicted A twice: once from the modelled ratio of A to B, and again from the modelled ratio of A to C. 
These two predictions were then averaged. For some locations where there was limited overlap between series, the 
predicted ratio did not make sense, and a regional ratio was used. 

Finally, variance was calculated both across series (within a location-year) as well as across years (within a location-
source). Additionally, if a location-year had one imputed point was, the variance was multiplied by 2. If a location-
year had two imputed points, the variance was multiplied by 4. The average estimates in each location-year were the 
input to an ST-GPR model. For this, we used a simple mixed effects model, which was modelled in log space with 
nested location random effects. Subnational estimates were then further modelled by splitting the country-level 
estimates using current smoking prevalence. 

Theoretical minimum-risk exposure level 
The theoretical minimum-risk exposure level is 0. 

Exposure among current and former smokers 
Identical to GBD 2017, we estimated exposure among current smokers for two continuous indicators: cigarettes per 
smoker per day and pack-years. Pack-years incorporates aspects of both duration and amount. One pack-year 
represents the equivalent of smoking one pack of cigarettes (assuming a 20-cigarette pack) per day for one year. 
Since the pack-years indicator collapses duration and intensity into a single dimension, one pack-year of exposure 
can reflect smoking 40 cigarettes per day for six months or smoking 10 cigarettes per day for two years. 

To produce these indicators, we simulated individual smoking histories based on distributions of age of initiation and 
amount smoked. We informed the simulation with cross-sectional survey data capturing these indicators, modelled 
at the mean level for all locations, years, ages, and sexes using ST-GPR. We rescaled estimates of cigarettes per 
smoker per day to an envelope of cigarette consumption based on supply-side data. We estimated pack-years of 
exposure by summing samples from age- and time-specific distributions of cigarettes per smoker for a birth cohort in 
order to capture both age trends and time trends and avoid the common assumption that the amount someone 
currently smokes is the amount they have smoked since they began smoking. All distributions were age-, sex-, and 
region- specific ensemble distributions, which were found to outperform any single distribution.  

We estimated exposure among former smokers using years since cessation. We utilised ST-GPR to model mean age 
of cessation using cross-sectional survey data capturing age of cessation. Using these estimates, we generated 
ensemble distributions of years since cessation for every location, year, age group, and sex. 

Relative risk 
We examined the smoking-lower respiratory infections risk-outcome pair using the same input data for relative risks 
as in GBD 2017. We synthesised effect sizes by cigarettes per smoker per day, pack-years, and years since quitting 
from cohort and case-control studies to produce nonlinear dose-response curves using a Bayesian meta-regression 
model.  

We estimated risk curves of former smokers compared to never smokers taking into account the rate of risk 
reduction among former smokers seen in the cohort and case-control studies, and the cumulative exposure among 
former smokers within each age, sex, location, and year group.  

Population attributable fraction (PAF) 
As in GBD 2017, we estimated PAFs based on the following equation: 
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𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑝𝑝(𝑛𝑛) + 𝑝𝑝(𝑓𝑓)∫ exp(𝑥𝑥) ∗ 𝑟𝑟𝑟𝑟(𝑥𝑥) + 𝑝𝑝(𝑐𝑐)∫ exp(𝑦𝑦) ∗ 𝑟𝑟𝑟𝑟(𝑦𝑦) − 1
𝑝𝑝(𝑛𝑛) + 𝑝𝑝(𝑓𝑓)∫ exp(𝑥𝑥) ∗ 𝑟𝑟𝑟𝑟(𝑥𝑥) + 𝑝𝑝(𝑐𝑐)∫ exp(𝑦𝑦) ∗ 𝑟𝑟𝑟𝑟(𝑦𝑦)  

where 𝑝𝑝(𝑛𝑛) is the prevalence of never smokers, 𝑝𝑝(𝑓𝑓) is the prevalence of former smokers, 𝑝𝑝(𝑐𝑐) is the prevalence of 
current smokers, exp(𝑥𝑥) is a distribution of years since quitting among former smokers, 𝑟𝑟𝑟𝑟(𝑥𝑥) is the relative risk for 
years since quitting, exp(𝑦𝑦) is a distribution of cigarettes per smoker per day or pack-years, and 𝑟𝑟𝑟𝑟(𝑦𝑦) is the relative 
risk for cigarettes per smoker per day or pack-years. 

We used pack-years as the exposure definition for cancers and chronic respiratory diseases, and cigarettes per 
smoker per day for cardiovascular diseases and all other health outcomes. 
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1. Ng M, Freeman MK, Fleming TD, Robinson M, Dwyer-Lindgren L, Thomson B, et al. Smoking Prevalence and 
Cigarette Consumption in 187 Countries, 1980–2012. JAMA. 2014 Jan 8;311(2):183–92. 
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Household air pollution  
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Input data and methodological summary 
 
Exposure 
Case definition 
Exposure to household air pollution from solid fuels (HAP) is estimated from both the proportion of individuals using 
solid cooking fuels and the level of PM2.5 air pollution exposure for these individuals. Solid fuels in our analysis 
include coal, wood, charcoal, dung, and agricultural residues.  

Input data 
We extracted information on use of solid fuels from the standard multi-country survey series such as Demographic 
and Health Surveys (DHS), Living Standards Measurement Surveys (LSMS), Multiple Indicator Cluster Surveys (MICS), 
and World Health Surveys (WHS), as well as censuses and country-specific survey series such as Kenya Welfare 
Monitoring Survey and South Africa General Household Survey. To fill the gaps of data in surveys and censuses, we 
also downloaded and updated estimates from WHO Energy Database and extracted from literature through 
systematic review. Each nationally or subnationally representative datapoint provided an estimate for the percentage 
of households using solid cooking fuels. We used studies from 1980 to 2019 to inform the time series.  

We also excluded sources that did not distinguish specific primary fuel types, estimated fuel used for purposes other 
than cooking (eg, lighting or heating), failed to report standard error or sample size, had over 15% of households with 
missing responses, reported fuel use in physical units, or were secondary sources referencing primary analyses. Table 
1 summarizes exposure input data. 
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Table 1: Exposure Input Data 

 Input data Exposure 

Source count (total) 1680 

Number of countries with data 195 

 

Family size crosswalk 
Many estimates in the WHO Energy Database and other reports quantify the proportion of households using solid 
fuel for cooking; however, we are interested in the proportion of individuals using solid fuel for cooking. To crosswalk 
these estimates, whenever we had the available information, we extracted fuel use at both the individual and 
household levels. We included 3676 source-specific pairs in the MR-BRT crosswalk model.   

MR-BRT crosswalk adjustment factors for household air pollution exposure 

Data input Reference or alternative 
case definition 

Gamma Beta coefficient, logit 
(95% CI) 

Proportion of 
individuals  

Ref 0.097 --- 

Proportion of 
Households 

Alt  -0.095  
(-0.100, -0.090) 

 

We then apply this coefficient to household-only reports with the following formula: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = the proportion of individuals using solid fuel for cooking, and  

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎℎ = the proportion of households using solid fuel for cooking. 

 

log �
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
� = log �

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎℎ
1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎℎ

� − 𝛽𝛽 

or 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎℎ ∗ 𝑒𝑒−𝛽𝛽

1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎℎ + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎℎ ∗ 𝑒𝑒−𝛽𝛽
 

 

The effect is that the household studies are inflated to account for bias. Larger households are more likely to use 
solid fuel for cooking. The following figure depicts the 3676 data points that informed the crosswalk model. There the 
red points indicate the 10% of studies that were trimmed as outliers. 
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𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎℎ) − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 

 
 
Modelling strategy  
Household air pollution was modelled at individual level using a three-step modelling strategy that uses linear 
regression, spatiotemporal regression, and Gaussian process regression (GPR). The first step is a mixed-effect linear 
regression of logit-transformed proportion of individuals using solid cooking fuels. The linear model contains 
maternal education and the proportion of population living in urban areas as covariates and has nested random 
effects by GBD region and GBD super-region. The full ST-GPR process is specified elsewhere this appendix. No 
substantial modelling changes were made in this round compared to GBD 2017. 

First-stage linear model and coefficients 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)~𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + (1|𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) + (1|𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑒𝑒 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)  

Variable Beta (95% CI) 

Intercept 3.16 (1.59, 4.74) 

Maternal education (years per capita) -0.45 (-0.76, -0.15) 

Urbanicity (proportion of population living in urban areas) -1.42 (-2.67, -0.17) 

 

Theoretical minimum-risk exposure level 
For cataract, the TMREL is defined as no households using solid cooking fuel. For outcomes related to both ambient 
and household air pollution, the PAFs are estimated jointly and the TMREL is defined as uniform distribution between 
2.4 and 5.9 ug/m3 PM2.5.  

Relative risks 
In addition to the previously included outcomes of lower respiratory infections (LRI), stroke, ischaemic heart disease 
(IHD), chronic obstructive pulmonary disease (COPD), lung cancer, type 2 diabetes, and cataract, in GBD 2019 we 
added low birthweight and short gestation as new outcomes of household air pollution through a mediation 
analyses. With the exception of cataract, all causes share risk curves and are jointly calculated with ambient PM2.5 air 
pollution. Table 2 summarizes relative risk input data for ambient particulate matter pollution and household air 
pollution. 
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Table 2: Relative Risk Input Data 

 Input data Relative risk 

Source count (total) 200 

Number of countries with data 40 

 

PM2.5 mapping value  
In order to use the particulate matter risk curves, we must estimate the level of exposure to particulate matter with 
diameter of less than 2.5 micrometers (PM2.5) for individuals using solid fuels for cooking. The Global Household Air 
Pollution (HAP) Measurements database from WHO contains 196 studies with measurements from 43 countries of 
various pollution metrics in households using solid fuel for cooking.2 From this database, we take all measurements 
of PM2.5 using indoor or personal monitors. In addition to the WHO database, we included eight additional studies 
from a systematic review conducted in 2015 for GBD.  

The final dataset included 336 estimates from 75 studies in 43 unique locations. We included 260, 64, nine, and three 
measurements indoors, on personal monitors for females, children (under 5), and males, respectively. 274 estimates 
were in households using solid fuels, 47 in households only using clean (gas or electricity) fuels, and 15 in households 
using a mixture of solid and clean fuels.  

We use the following model: 

log(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑃𝑃𝑃𝑃) ~ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 24 ℎ𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑆𝑆𝑆𝑆𝑆𝑆 + (1|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  

Where, 

• 24-hour measurement: binary variable equal to 1 if the measurement occurred over at least a 24-hour period 
and not only during mealtimes 

• Measure group: categorical variable indicating indoor, female, male, or children 
• Solid: indicator variable equal to 1 if the measurements were among households using solid fuel only, 0.5 if 

the measurements represented a mix of clean and solid fuels, and 0 if the households only used clean fuels.  
 

We also included the Socio-demographic Index (SDI) as a variable to predict a unique value of HAP for each location 
and year based on development. We also included a random effect on study. We weighted each study by its sample 
size.  

Before modelling, we calculated the excess particulate matter in households using solid fuel by subtracting off the 
predicted ambient PM2.5 value in the study location and year based on the GBD 2017 PM2.5 exposure model. The final 
model coefficients are included below: 

HAP mapping model and coefficients 

Variable Beta, log (95% CI) Beta, adjusted (95% CI) 
Intercept 6.23 (4.58, 7.88)  506 (97, 2635) 
Solid 2.60 (2.06, 3.13) 13.4 (7.8, 23.0) 
Measure group  

• Indoor (ref) 
• Female 

 
 

-0.56 (-1.15, 0.04) 

 
 

0.57 (0.32, 1.04) 
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• Male 
• Child 

-1.56 (-3.81, 0.70) 
-1.13 (-2.06, -0.20) 

0.21 (0.02, 2.02) 
0.32 (0.13, 0.82) 

24-hour measurement -0.29 (-1.04, 0.46) 0.75 (0.35, 1.59) 
SDI -6.42 (-9.30, -3.54) 1.6 e -3 (9.1 e -5, 2.9 e -2) 

 

Therefore, for females in households using solid fuel, we would expect their long-term mean excess PM2.5 exposure 
due to the use of solid fuels to be 1522, 117, and 9 μg/m3 in SDI of 0.1, 0.5, and 0.9, respectively.  

Because there are so few studies of personal monitoring in men and children, rather than directly using the results of 
the model, we generated ratios using studies that measured at least two of the population groups for any size 
particulate matter. For PM2.5 we used the predicted ambient PM2.5 value in the study location and year based on the 
GBD 2017 PM2.5 exposure model as the “outdoor” measurement, and for PM4 and PM10 we used published values in 
the studies themselves. We first subtracted off this outdoor value from each PM measurement, and then calculated 
the ratio of male to female and child to female exposure, weighted by sample size.  

 

 

 

 

 

 

 

 

The final ratios were 0.64 95% CI (0.45, 0.91) for males and 0.85 95% CI (0.56, 1.31) for children. We used these 
results to scale the PM2.5 mapping model for these age and sex groups to input into the PM2.5 risk curves. 
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Study Location Year Pollutant Female N Female PM Group N PM Outdoor 

Balakrishnan et 
al., 2004 

Andhra 
Pradesh, Rural 

2004 PM4 591 352 male 503 187 94 

Gao X et al., 
2009. 

Tibet 2009 PM2.5 52 127 male 85 111 27 

Dasgupta et al., 
2006 

Bangladesh 2006 PM10 944 209 male 944 166 50 

Devkumar et al., 
2014 

Nepal 2014 PM2.5 405 169 male 429 167 90 

Balakrishnan et 
al., 2004 

Andhra 
Pradesh, Rural 

2004 PM4 591 352 child 56 262 94 

Dionisio et al., 
2008. 

The Gambia 2008 PM2.5 13 275 child 13 219 31 

Dasgupta et al., 
2006 

Bangladesh 2006 PM10 944 209 child 944 199 50 
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Input data and modelling strategy 
 
Exposure 
Definition 
Exposure to ambient particulate matter pollution is defined as the population-weighted annual average mass 
concentration of particles with an aerodynamic diameter less than 2.5 micrometers (PM2.5) in a cubic meter of air. 
This measurement is reported in µg/m3. 

Input data 
The data used to estimate exposure to ambient particulate matter pollution comes from multiple sources, including 
satellite observations of aerosols in the atmosphere, ground measurements, chemical transport model simulations, 
population estimates, and land-use data. Table 1 summarizes exposure input data. 

Table 1: Exposure Input Data 

 Input data Exposure 

Source count (total) 663 

Number of countries with data 114 

 

The following details the updates in methodology and input data used in GBD 2019.  

PM2.5 ground measurement database 
Ground measurements used for GBD 2019 include updated measurements from sites included in 2017 and additional 
measurements from new locations. New and up-to-date data (mainly from the USA, Canada, EU, Bangladesh, China 
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and USA embassies and consulates), were added to the data from the 2018 update of the WHO Global Ambient Air 
Quality Database used in GBD 2017. The updated data included measurements of concentrations of PM10 and PM2.5 

from 10,408 ground monitors from 116 countries from 2010 to 2017. The majority of measurements were recorded 
in 2016 and 2017 (as there is a lag in reporting measurements, few data from 2018 or newer were available). Annual 
averages were excluded if they were based on less than 75% coverage within a year. If information on coverage was 
not available, then data were included unless there were already sufficient data within the same country (monitor 
density greater than 0.1). 

For locations measuring only PM10, PM2.5 measurements were estimated from PM10. This was performed using a 
hierarchy of conversion factors (PM2.5/PM10 ratios): (i) for any location a ‘local’ conversation factor was used, 
constructed as the ratio of the average measurements (of PM2.5 and PM10) from within 50km of the location of the 
PM10 measurement, and within the same country, if such measurements were available; (ii) if there was not sufficient 
local information to construct a conversion factor then a country-wide conversion factor was used; and (iii) if there 
was no appropriate information within a country, then a regional factor was used. In each case, to avoid the possible 
effects of outliers in the measured data (both PM2.5 and PM10), extreme values of the ratios were excluded (defined 
as being greater/lesser than the 95% and 5% quantiles of the empirical distributions of conversion factors). As with 
GBD 2013, 2015, 2016, and 2017 databases, in addition to values of PM2.5 and whether they were direct 
measurement or converted from PM10, the database also included additional information, where available, related to 
the ground measurements such as monitor geo-coordinates and monitor site type.  

Satellite-based estimates 
The global geophysical PM2.5 estimates for the years 2000–2017 are from Hammer and colleagues Version 
V4.GL.03.NoGWR used at 0.1ox0.1o resolution (~11 x 11 km resolution at the equator).1 The method is based on the 
algorithms of van Donkelaar and colleagues (2016) as used in GBD 2017,2 with updated satellite retrievals, chemical 
transport modelling, and ground-based monitoring. The algorithm uses aerosol optical depth (AOD) from several 
updated satellite products (MAIAC, MODIS C6.1, and MISR v23), including finer resolution, increased global coverage, 
and improved long-term stability. Ground-based observations from a global sunphotometer network (AERONET 
version 3) are used to combine different AOD information sources. This is the first time that data from MAIAC at 1 km 
resolution was used to estimate PM2.5 at the global scale. The GEOS-Chem chemical transport model with updated 
algorithms was used for geophysical relationships between surface PM2.5 and AOD. Updates to the GEOS-Chem 
simulation included improved representation of mineral dust and secondary organic aerosol, as well as updated 
emission inventories. The resultant geophysical PM2.5 estimates are highly consistent with ground monitors 
worldwide (R2=0.81, slope = 1.03, n = 2541). 

Population data  
A comprehensive set of population data, adjusted to match UN2015 Population Prospectus, on a high-resolution grid 
was obtained from the Gridded Population of the World (GPW) database. Estimates for 2000, 2005, 2010, 2015, and 
2020 were available from GPW version 4, with estimates for 1990 and 1995 obtained from the GPW version 3. These 
data are provided on a 0.0083o× 0.0083o resolution. Aggregation to each 0.1o×0.1o grid cell was accomplished by 
summing the central 12 × 12 population cells. Populations estimates for 2001–2004, 2006–2009, 2011–2014 and 
2016–2019 were obtained by interpolation using natural splines with knots placed at 2000, 2005, 2010, 2015, and 
2020. This was performed for each grid cell.  

http://beta.sedac.ciesin.columbia.edu/data/collection/gpw-v4
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Chemical transport model simulations 
Estimates of the sum of particulate sulfate, nitrate, ammonium, and organic carbon and the compositional 
concentrations of mineral dust simulated using the GEOS Chem chemical transport model, and a measure combining 
elevation and the distance to the nearest urban land surface (as described in van Donkelaar and colleagues 20162 and 
Hammer and colleagues (submitted))1 were available for 2000–2017 for each 0.1o×0.1o grid cell.  

Modelling strategy 
The following is a summary of the modelling approach, known as the Data Integration Model for Air Quality (DIMAQ) 
used in GBD 2015, 2016, 2017, and now in GBD 2019.3,4 

Before the implementation of DIMAQ (ie, in GBD 2010 and GBD 2013), exposure estimates were obtained using a 
single global function to calibrate available ground measurements to a “fused” estimate of PM2.5; the mean of 
satellite-based estimates and those from the TM5 chemical transport model, calculated for each 0.1o×0.1o grid cell. 
This was recognised to represent a tradeoff between accuracy and computational efficiency when utilising all the 
available data sources. In particular, the GBD 2013 exposure estimates were known to underestimate ground 
measurements in specific locations (see discussion in Brauer and colleagues, 2015).5 This underestimation was largely 
due to the use of a single, global calibration function, whereas in reality the relationship between ground 
measurements and other variables will vary spatially.  

In GBD 2015 and GBD 2016, coefficients in the calibration model were estimated for each country. Where data were 
insufficient within a country, information can be “borrowed” from a higher aggregation (region) and, if enough 
information is still not available, from an even higher level (super-region). Individual country-level estimates were 
therefore based on a combination of information from the country, its region, and its super-region. This was 
implemented within a Bayesian hierarchical modelling (BHM) framework. BHMs provide an extremely useful and 
flexible framework in which to model complex relationships and dependencies in data. Uncertainty can also be 
propagated through the model, allowing uncertainty arising from different components, both data sources and 
models, to be incorporated within estimates of uncertainty associated with the final estimates. The results of the 
modelling comprise a posterior distribution for each grid cell, rather than just a single point estimate, allowing a 
variety of summaries to be calculated. The primary outputs here are the median and 95% credible intervals for each 
grid cell. Based on the availability of ground measurement data, modelling and evaluation were focused on the year 
2016.  

The model used in GBD 2017 and GBD 2019 also included within-country calibration variation.6 The model used for 
GBD 2019, henceforth referred to as DIMAQ2, provides a number of substantial improvements over the initial 
formulation of DIMAQ. In DIMAQ, ground measurements from different years were all assumed to have been made 
in the primary year of interest and then regressed against values from other inputs (eg, satellites, etc.) made in that 
year. In the presence of changes over time, therefore, and particularly in areas where no recent measurements were 
available, there was the possibility of mismatches between the ground measurements and other variables. In 
DIMAQ2, ground measurements were matched with other inputs (over time), and the (global-level) coefficients were 
allowed to vary over time, subject to smoothing that is induced by a first-order random walk process. In addition, the 
manner in which spatial variation can be incorporated within the model has developed: where there are sufficient 
data, the calibration equations can now vary (smoothly) both within and between countries, achieved by allowing the 
coefficients to follow (smooth) Gaussian processes. Where there are insufficient data within a country, to produce 
accurate equations, as before, information is borrowed from lower down the hierarchy and it is supplemented with 
information from the wider region.   
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DIMAQ2 as described above is used for all regions except for the north Africa and Middle East and sub-Saharan Africa 
super-regions, where there are insufficient data across years to allow the extra complexities of the new model to be 
implemented. In these super-regions, a simplified version of DIMAQ2 is used in which the temporal component is 
dropped. 

Model evaluation 
Model development and comparison was performed using within- and out-of-sample assessment. In the evaluation, 
cross-validation was performed using 25 combinations of training (80%) and validation (20%) datasets. Validation 
sets were obtained by taking a stratified random sample, using sampling probabilities based on the cross-tabulation 
of PM2.5 categories (0-24.9, 25-49.9, 50-74.9, 75-99.9, 100+ µg/m3) and super-regions, resulting in them having the 
same distribution of PM2.5 concentrations and super-regions as the overall set of sites. The following metrics were 
calculated for each training/evaluation set combination: for model fit – R2 and deviance information criteria (DIC, a 
measure of model fit for Bayesian models); for predictive accuracy – root mean squared error (RMSE) and population 
weighted root mean squared error (PwRMSE). The median R2 was 0.9, and the median PwRMSE was 10.1 µg/m3. 

All modelling was performed on the log-scale. The choice of which variables were included in the model was made 
based on their contribution to model fit and predictive ability. The following is a list of variables and model structures 
that were included in DIMAQ. 

Continuous explanatory variables: 

o (SAT) Estimate of PM2.5 (in μg/m3) from satellite remote sensing on the log-scale. 
o (POP) Estimate of population for the same year as SAT on the log-scale.  
o (SNAOC) Estimate of the sum of sulfate, nitrate, ammonium, and organic carbon simulated using the 

GEOS Chem chemical transport model. 
o (DST) Estimate of compositional concentrations of mineral dust simulated using the GEOS-Chem 

chemical transport model. 
o (EDxDU) The log of the elevation difference between the elevation at the ground measurement 

location and the mean elevation within the GEOS Chem simulation grid cell multiplied by the inverse 
distance to the nearest urban land surface. 
 

Discrete explanatory variables: 

o (LOC) Binary variable indicating whether exact location of ground measurement is known. 
o (TYPE) Binary variable indicating whether exact type of ground monitor is known. 
o (CONV) Binary variable indicating whether ground measurement is PM2.5 or converted from PM10. 

Interactions: 

o Interactions between the binary variables and the effects of SAT. 
 

Random effects: 
o Regional temporal (random walk) hierarchical random-effects on the intercept   
o Regional hierarchical random-effects for the coefficient associated with SAT  
o Regional hierarchical random-effects for the coefficient associated with POP 
o Smoothed, spatially varying random-effects for the intercept 
o Smoothed, spatially varying random-effects for the coefficient associated with SAT 
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Inference and prediction 
Due to both the complexity of the models and the size of the data, notably the number of spatial predictions that are 
required, recently developed techniques that perform “approximate” Bayesian inference based on integrated nested 
Laplace approximations (INLA) were used.7 Computation was performed using the R interface to the INLA 
computational engine (R-INLA). GBD 2019 also makes use of an innovation in the way that samples from the 
(Bayesian) model are used to represent distributions of estimated concentrations in each grid-cell. Here estimates, 
and distributions representing uncertainty, of concentrations for each grid are obtained by taking repeated (joint) 
samples from the posterior distributions of the parameters and calculating estimates based on a linear combination 
of those samples and the input variables.8   

DIMAQ2 was used to produce estimates of ambient PM2.5 for 1990, 1995, and 2010–2019 by matching the gridded 
estimates with the corresponding coefficients from the calibration. As there is a lag in reporting ambient air pollution 
based quantities, the input variables were extrapolated (as in GBD 2017), allowing estimates for 2018 and 2019 to be 
produced in the same way as other years and, crucially, allowing measures of uncertainty to be produced within the 
BHM framework rather than by using post-hoc approximations.  

Estimates from the satellites and the GEOS-Chem chemical transport model in 2018 and 2019 were produced by 
extrapolating estimates from 2000–2017 using generalised additive models,9 on a cell-by-cell basis, except in those 
grid cells that saw a >100% increase between 2016 and 2017, in which case only the 2000–2016 estimates were used 
for extrapolating, in order to avoid unrealistic and/or unjustified extrapolation of trends. Population estimates for 
2018 and 2019 were obtained by interpolation as described above.   

Theoretical minimum-risk exposure level 
The TMREL was assigned a uniform distribution with lower/upper bounds given by the average of the minimum and 
fifth percentiles of outdoor air pollution cohort studies exposure distributions conducted in North America, with the 
assumption that current evidence was insufficient to precisely characterise the shape of the concentration-response 
function below the fifth percentile of the exposure distributions. The TMREL was defined as a uniform distribution 
rather than a fixed value in order to represent the uncertainty regarding the level at which the scientific evidence 
was consistent with adverse effects of exposure. The specific outdoor air pollution cohort studies selected for this 
averaging were based on the criteria that their fifth percentiles were less than that of the American Cancer Society 
Cancer Prevention II (CPSII) cohort’s fifth percentile of 8.2 based on Turner and colleagues (2016).10 This criterion was 
selected since GBD 2010 used the minimum, 5.8, and fifth percentile solely from the CPS II cohort. The resulting 
lower/upper bounds of the distribution for GBD 2019 were 2.4 and 5.9. This has not changed since GBD 2015.  
 
Relative risks and population attributable fractions 
We create one set of cause-specific risk curves for both household air pollution and ambient air pollution as two 
different sources of PM2.5. We used results from cohort and case-control studies of ambient PM2.5 pollution, cohort 
studies, case-control studies, and randomised-controlled trials of household use of solid fuel for cooking, and cohort 
and case-control studies of secondhand smoke.  

For GBD 2019, we made several important changes to the risk functions. Previously, we have used relative risk 
estimates for active smoking, converting cigarettes-per-day to PM2.5 exposure in order to estimate the PM2.5 relative 
risk at the highest end of the PM2.5 exposure-response curve. We took this approach because the vast majority of the 
air pollution epidemiological studies have been performed in low-pollution settings in high-income countries, 
preventing us from extrapolating the steep relationship at the beginning of the exposure range to locations with high 
exposure but no relative risk estimates, such as India and China. However, with the recent publication of studies in 
China and other higher-exposure settings and additional studies of HAP, we have been able to include more 

http://www.r-inla.org/
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estimates at high PM2.5 levels in the model.11,12,13,14,15 Furthermore, in contrast to previous cycles of the GBD where 
the power function used to develop the IER required the inclusion of active smoking data to anchor the risk function, 
with the current use of splines and their flexibility, it is easier to fit functions to the (ambient, household, and SHS) 
data without active smoking data. Beginning in GBD 2019, we excluded active smoking studies from the risk curves. 
Removal of active smoking information removes an important source of uncertainty in our earlier estimates related 
to differences in dose rates and other aspects of exposure between active smoking and the other PM2.5 sources, 
including differences in voluntary (active smoking) and involuntary (ambient and household PM2.5, secondhand 
smoke) exposure.16,17  

Once we have a median age during follow-up (a), we extrapolate each study to the full set of ages where the 
estimated datapoint for age, aj, is calculated with the following equation and accompanying explanatory figure:  

log (𝑅𝑅𝑅𝑅)𝑎𝑎𝑗𝑗  =  
log (𝑅𝑅𝑅𝑅)𝑎𝑎 − 0
𝑎𝑎 − 110

∗ (𝑎𝑎𝑗𝑗 − 110)  

 

Previously we have used a fixed functional form to fit the risk curves.16 In GBD 2019, we used MR-BRT (described in 
detail elsewhere) splines to fit the risk data with a more flexible shape. While previously we built in the TMREL 
estimates into the model fitting, this year we have fit the curve beginning at zero exposure and incorporate the 
TMREL into the relative risk calculation process. This allows others to use our risk curves with whatever 
counterfactual level is of interest to them. Relative risk curves are available upon request.  

When fitting the risk curves, we consider the published relative risk over a range of exposure data. For OAP studies, 
the relative risk informs the curve from the fifth to the 95th percentile of observed exposure. When this is not 
available in the published study, we estimate the distribution from the provided information (mean and standard 
deviation, mean and IQR, etc.). We scale the RR to this range.  

For HAP studies, we allow each study to inform the curve from the ExpOAP to ExpOAP+ExpHAP, where ExpOAP is the GBD 
2017 estimate of the ambient exposure level in the study location and year, and ExpHAP is the GBD 2017 estimate of 
the excess exposure for those who use solid fuel for cooking in the study location and year. 

For SHS studies, we updated our strategy of exposure estimation in GBD 2019. For the first time, we are also 
accounting for outdoor exposure. Similar to the approach used for HAP, we allow each study to inform the curve 
from the ExpOAP to ExpOAP+ExpSHS, where ExpOAP is the GBD 2017 estimate of the ambient exposure level in the study 
location and year, and ExpSHS is an estimate of the excess exposure for those who experience secondhand smoke. This 
is estimated from the number of cigarettes smoked per smoker per day in a given location and year, estimated by the 
smoking team of GBD, and from a study in Sweden, which measured the PM2.5 exposure in homes of smokers.19 We 
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divided the household PM2.5 exposure level by the average number of cigarettes smoked per smoker per day in 
Sweden over the study duration to estimate the SHS PM2.5 exposure per cigarette (2.31 µg/m3 [95% UI 1.53–3.39]). 
To calculate ExpSHS we multiplied the estimated number of cigarettes per smoker per day by the average PM2.5 
exposures per cigarette to generate a predicted PM2.5 exposure level.   

MR-BRT risk splines 
We fit splines on the datasets including studies of OAP, HAP, and SHS using the following functional form, where X 
and XCF represent the range of exposure characterised by the effect size: 

𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋)
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋𝐶𝐶𝐶𝐶)�~log (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑒𝑒𝑒𝑒 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 

 

For each of the risk-outcome pairs, we tested various model settings and priors in fitting the MR-BRT splines. The 
final models used third-order splines with two interior knots and a constraint on the right-most segment, forcing the 
fit to be linear rather than cubic. We used an ensemble approach to knot placement, wherein 100 different models 
were run with randomly placed knots and then combined by weighting based on a measure of fit that penalises 
excessive changes in the third derivative of the curve. Knots were free to be placed anywhere within the fifth and 
95th percentile of the data, as long as a minimum width of 10% of that domain exists between them. We included 
shape constraints so that the risk curves were concave down and monotonically increasing, the most biologically 
plausible shape for the PM2.5 risk curve. On the non-linear segments, we included a Gaussian prior on the third 
derivative of mean 0 and variance 0.01 to prevent over-fitting; on the linear segment, a stronger prior of mean 0 and 
variance 1e-6 was used to ensure that the risk curves do not continue to increase beyond the range of the data. 

Table 2 summarizes relative risk input data for ambient particulate matter pollution and household air pollution. 

Table 2: Relative Risk Input Data 

 Input data Relative risk 

Source count (total) 200 

Number of countries with data 40 

 

The following figures display risk curves for each outcome. The dashed line depicts the GBD 2017 IER including active 
smoking data, the dotted line depicts the GBD 2019 IER including active smoking data and updates to the AS and SHS 
exposure incorporation, and the solid line depicts the GBD 2019 MR-BRT curve without the inclusion of active 
smoking data. The grey shaded areas represent the 95% CI. The red box represents the TMREL area of the curve. On 
each page, the first figure depicts the typical range of outdoor exposure, whereas the second plot includes higher 
levels typical of household air pollution exposure. 

Each point or number represents one study effect size. Each is plotted at the 95th percentile of the exposure 
distribution (OAP), the expected level of exposure for individual using solid fuel (HAP), or the expected level of 
exposure for individuals experiencing SHS. The relative risk is plotted relative to the predicted relative risk at the fifth 
percentile of exposure distribution (OAP), the expected (ambient only) level of exposure for individuals not using 
solid fuel (HAP), or the expected (ambient only) level of exposure for individuals not exposed to SHS. For example, a 
study predicting a relative risk of 1.5 for an exposure range of 10 to 20 would be plotted at (20, MRBRT(10)*1.5). 
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Arrows represent studies that would have been outside the range of the plot but have been moved to include on the 
figure. 
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For lower respiratory infections, we have directly estimated PAFs attributable to PM2.5 in addition to those mediated 
through birthweight and gestational age. We would expect that some of the directly estimated PAFs are mediated 
through birthweight and gestational age. Additionally, the directly estimated PAF is based on a summary of relative 
risks for all children under 5 years, so there is a chance that the mediated PAF, which is more finely resolved, could 
be greater. To avoid double-counting for these two age groups (0-6 days and 0-27 days), we take the max of the two 
PAF estimates. If the directly estimated PAF is greater than the birthweight-gestational age-mediated PAF, we take 
the direct estimate, and if the mediated PAF is greater, we take the mediated.  

Limitations 
Although in GBD 2019 we have not used active smoking data to estimate the risk curves, we are still using an 
integrated exposure response approach because we are integrating relative risk estimates across various exposure 
sources: ambient, SHS, and HAP. The use of various sources to construct a risk curve with PM2.5 as the exposure 
indicator assumes equitoxicity of particles, despite some evidence suggesting differences in health impact by PM 
source, size, and chemical composition. However, in the absence of consistent and robust evidence of differential 
toxicity by source and sufficient estimates of source or composition-specific exposure-response relationships, 
integrating across OAP, SHS, and HAP studies is the approach most consistent with the current evidence, as reviewed 
by US EPA and WHO.20,21 Use of a common risk function may affect the magnitude of risk estimates for HAP and OAP 
compared to separate risk functions. As more data from higher OAP concentration locations and from HAP studies 
for non-respiratory outcomes becomes available it may be possible to evaluate the strength of evidence for each and 
to develop separate risk functions. 

Proportional PAF approach 
Prior to GBD 2017, relative risks for both exposures were obtained from the IER as a function of exposure and 
relative to the same TMREL. In reality, were a country to reduce only one of these risk factors, the other would 
remain. We did not consider the joint effects of particulate matter from outdoor exposure and burning solid fuels for 
cooking. For GBD 2017 we developed a new approach to use the IER for obtaining PAFs for both OAP and HAP: 

Let 𝐸𝐸𝐸𝐸𝑝𝑝𝑂𝑂𝑂𝑂𝑂𝑂 be the ambient PM2.5 exposure level and 𝐸𝐸𝐸𝐸𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻 be the excess exposure for those who use solid fuel for 
cooking. Let 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻 be the proportion of the population using solid fuel for cooking. We calculated PAFs at each 
0.1o×0.1o grid cell. We assumed that the distribution of those using solid fuel for cooking (HAP) was equivalent across 
all grid cells of the GBD location. 

For the proportion of the population not exposed to HAP the relative risk was: 

𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂  =   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧 =  𝐸𝐸𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂)/𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇), 

And for those exposed to HAP, the relative risk was  

𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻𝐻𝐻  =   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧 =  𝐸𝐸𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻)/𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇). 

We then calculate a population level RR and PAF for all particulate matter exposure. 

𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃 = 𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(1 − 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻) + 𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃 − 1
𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃

 

We population weight the grid-cell level particulate matter PAFs to get a country level PAF, and finally, we split this 
PAF based on the average exposure to each OAP and HAP.  
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𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐸𝐸𝐸𝐸𝑝𝑝𝑂𝑂𝑂𝑂𝑂𝑂
𝐸𝐸𝐸𝐸𝑝𝑝𝑂𝑂𝑂𝑂𝑂𝑂+𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻∗𝐸𝐸𝐸𝐸𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻

𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃, and 𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻∗𝐸𝐸𝐸𝐸𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻
𝐸𝐸𝐸𝐸𝑝𝑝𝑂𝑂𝑂𝑂𝑂𝑂+𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻∗𝐸𝐸𝐸𝐸𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻

𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃. 

With this strategy, 𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻 + 𝑃𝑃𝑃𝑃𝐹𝐹𝑂𝑂𝑂𝑂𝑂𝑂, and no burden is counted twice.  
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disease, and LRI

Population 
attributable 

fractions by risk, 
cause, age, sex, 
and geography

Exposures by 
risk, age, sex, 

year, and 
geography

Calculate PAFs using 
exposure, relative risks, 

and TMREL

Secondhand smoke

Exposure

Relative risks

CUSTOM COUNTRY-LEVEL COVARIATE
Overall male adult (15+) smoking 

prevalence (females and children under 
15); overall female adult (15+) smoking 

prevalence (males 15 and over)

Literature review of 
published meta-analyses

Power2 functional form

Bayesian MCMC 
nonlinear curve-fitting Integrated exposure 

response curve (IER)

Relative risks for 
otitis media, 

breast cancer, 
and diabetes

Population 
attributable 

fractions by risk 
aggregate, cause, 

age, sex, and 
geography

Application of mediation 
factors where applicable

Deaths, YLLs, YLDs, 
and DALYs 

attributable to each 
risk by age, sex, 
year, geography

Deaths, YLLs, YLDs, 
DALYs for each 

disease and injury 
by age, sex, year, 

geography

Surveys with self-reported occupational 
exposure to secondhand smoke

Spatiotemporal Gaussian 
process regression

Probability of living with a 
daily smoker based on 

household composition

 

Exposure 
Case definition 
We define secondhand smoke exposure as current exposure to secondhand tobacco smoke at home, at work, or in 
other public places. We use household composition as a proxy for non-occupational secondhand smoke exposure 
and make the assumption that all persons living with a daily smoker are exposed to tobacco smoke. We use surveys 
to estimate the proportion of individuals exposed to secondhand smoke at work. We only consider non-smokers to 
be exposed to secondhand smoke. Non-smokers are defined as all persons who are not daily smokers. Ex-smokers 
and occasional smokers are considered non-smokers in this analysis. Exposure is evaluated for both children and 
adults. 

Input data 
To calculate the proportion of non-smokers who live with at least one smoker, we used unit record data on 
household composition, which included the ages and sexes of all persons living in the same household. Our sources 
included representative major survey series with a household composition module, including the Demographic 
Health Surveys (DHS), the Multiple Indicator Cluster Surveys (MICS), and the Living Standards Measurement Surveys 
(LSMS); and national and subnational censuses, which included those captured in the IPUMS project and identified 
using the Global Health Data Exchange catalog (GHDx). 

To calculate the proportion of individuals exposed to secondhand smoke at work, by age and sex, we used cross-
sectional surveys that ask respondents about self-reported occupational secondhand smoke exposure. Sources 
include the Global Adult Tobacco Surveys, Eurobarometer Surveys, and WHO STEPS Surveys. We identified sources 
using the GHDx. 

No major changes have been introduced to data inputs since 2016. A new systematic review is planned for the next 
GBD round. Table 1 summarizes exposure input data. 
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 Input data Exposure 

Source count (total) 721 

Number of countries with data 153 

 

Given the nature of the data used in our models (microdata), no crosswalk for case definition adjustment or age- and 
sex-splitting processes were required. Estimates of daily smoking prevalence in each location were also used in our 
calculations, as described in the modelling strategy section below. 

Modelling strategy  
Identical to GBD 2017, we estimated the probability that each person is living with a smoker and is also a non-smoker 
themselves using set theory. First, household composition data were used at the individual level to capture the ages 
and sexes of each person in the household. Second, we analysed surveys with both household composition data and 
tobacco use questions and determined that the distribution of household size, mean age of the household members, 
and the age distribution were not significantly different between households with and without a self-reported 
smoker. Since we did not find that household composition varied between smokers and non-smokers, we then used 
the GBD 2019 primary daily smoking prevalence model to calculate the probability that each household member is a 
daily smoker. Next, we used the probability of the union of sets on each individual household member to calculate 
the overall probability that at least one of the other household members was a daily smoker. As in GBD 2017, we 
incorporated occupational exposure by modelling prevalence of current exposure to secondhand smoke at work, by 
age, sex, location, and year, using ST-GPR. In order to avoid double counting we calculated the probability that an 
individual is exposed through either non-occupational exposure or occupational exposure, given their age, sex, and 
household composition. Finally, we multiplied this probability of exposure by the probability that the individual is not 
a smoker themselves (ie, 1 minus primary daily smoking prevalence for that person’s location, year, age, and sex). We 
then collapsed these individual-level probabilities to produce average probabilities of exposure by location, year, age, 
and sex.  

These probabilities were modelled in the GBD ST-GPR framework, which generates exposure estimates from a mixed 
effects hierarchical linear model plus weighted residuals smoothed across time, space, and age. The linear model 
formula was fit separately by sex using restricted maximum likelihood in R. 

We used the sex-specific overall daily smoking prevalence for adults (age 15 and older) as a country-level covariate in 
the model. The overall male adult daily smoking prevalence was used as the covariate for females of all ages and for 
males under age 15. The overall female adult daily smoking prevalence was used as the covariate for males age 15 
and older.  

All input datapoints from the probability calculation had a measure of uncertainty (variance and sample size) coming 
from the uncertainty of the primary smoking prevalence model and the sample size from the unit record data going 
into the modelling process. Geographical random effects were used in model fitting but were not used in prediction. 

Theoretical minimum-risk exposure level 
 
The theoretical minimum-risk exposure level for secondhand smoke is zero exposure among non-smokers, meaning 
that non-smokers would not live with any primary smokers. 



45 
 

 
Relative risks 
The same risk-outcome pairs from GBD 2017 were used. For LRI, we used country-specific relative risks created using 
integrated exposure response curves (IER) for PM2.5 air pollution. IER curve calculation was updated with the GBD 
2019 cigarettes per smoker estimates. Table 2 summarizes relative risk input data. 

 

 Input data Exposure 

Source count (total) 232 

Number of countries with data 34 

 

We used the standard GBD population attributable fraction (PAF) equation to estimate burden based on exposure 
and relative risks.  
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Low birthweight and short gestation 
 

Flowchart  
 

 

 

 

 

 

 

 

 

 

 

 

 

Exposure 
Case definition 
Low birthweight and short gestation is defined as birth at a gestational age less than the lowest-risk age (38 weeks) 
and at a lower birthweight than the lowest-risk weight (3500 grams). The TMREL is 38–42 weeks of gestation and 
birthweight of 3500–4500 grams. 
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Input data and methodological summary 
 
Short gestational age and low birthweight are highly correlated risk factors associated with poor child health 
outcomes. The “low birthweight and short gestation” (LBWSG) risk factor quantifies the burden of disease 
attributable to increased risk of death and disability due to 1) less than ideal birthweight (“low birthweight”) and 2) 
shorter than ideal length of gestation (“short gestation”).   

Generally, within GBD, attributable burden is estimated separately for each individual risk factor. However, within 
the global health community, the combined burden attributable to multiple risk factors is of general interest. In GBD, 
attributable burden due to multiple risk factors is typically estimated through a “mediation analysis” that is applied 
after independent estimation of each risk factor’s exposure, relative risk, theoretical minimum risk exposure level 
(TMREL), and population attributable fraction (PAF). In the mediation analysis, a “mediation factor” adjusts the PAF 
of each risk factor by the amount of attributable burden mediated through the other GBD risk factors. While 
mediation analysis is the standard approach in GBD used to estimate combined attributable burden, direct 
quantification of the joint exposure, relative risk, and PAF of the combined risk factors is a conceptually more 
straightforward analysis. However, in practice, data informing joint exposure and relative risk of multiple risk factors 
is typically scarce.  

In GBD 2016, LBWSG became the first (and, as of GBD 2019, only) group of GBD risk factors in which combined 
attributable burden is quantified by direct estimation of the joint exposure, relative risk, TMREL, and PAF of multiple 
risk factors. Compared to other risk factor groups in GBD, the data needed to estimate the joint exposure and joint 
relative risk of birthweight and gestational age are relatively abundant, as birthweight and gestational age are 
commonly reported together. LBWSG was also an appealing candidate to pilot joint direct estimation because the 
combined burden attributable to birthweight and gestational age, as well as the separately attributable burden due 
to birthweight or gestational age, are both of interest to the global health community.  

After first directly estimating the joint exposure, relative risk, TMREL, and PAF of birthweight and gestational age 
together, we then separate out the independent PAFs due to birthweight only or gestational age only. Because of this 
modelling strategy, the joint GBD risk factor quantifying the burden of disease due to both less than ideal birthweight 
(“low birthweight”) and shorter than ideal gestational age (“short gestation”) is grouped into a single “parent” risk 
factor termed “low birthweight and short gestation”. LBWSG is disaggregated into two “child” risk factors: “low 
birthweight for gestation” and “short gestation for birthweight”. Low birthweight for gestation quantifies the burden 
of disease attributable to less than ideal birthweight, after adjusting for the influence of gestational age. Likewise, 
short gestation for birthweight quantifies the burden of disease attributable to shortened gestational age, after 
adjusting for the influence of birthweight. 

Ideally, the model for joint exposure and joint relative risk would be fully continuous. To simplify the computation for 
the analysis, a grid of 500-gram and 2-week units (“bins”) is used as the LBWSG dimensions and to approximate a 
fully continuous joint distribution model (see Figure 1). 
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Figure 2: Fully continuous analysis of joint gestational age and birthweight (left) is approximated with a grid of 
birthweight and gestational age with 500-gram and 2-week “bins” (right) 

 

 

Case definition 
“Low birthweight” has historically referred to any birthweight less than 2500 grams, dichotomising birthweight into 
two categories: “normal” and “low”. In the context of the GBD LBWSG risk factor, low birthweight refers to any 
birthweight less than the birthweight TMREL (the birthweight that minimises risk at the population level). Because 
LBWSG is estimated in a grid of 500-gram and 2-week bins, any 500-gram birthweight unit less than the TMREL, 
which was determined as [38, 40) weeks and [3500, 4000) g for the LBWSG parent risk factor, is considered “low 
birthweight”. This includes, for example, birthweight of [2500, 3000) grams, which the traditional, dichotomous 
definition of “low birthweight” would not include.   

Like birthweight, gestational age is typically classified into broad categories. “Preterm” is used to describe any 
newborn baby born less than 37 completed weeks of gestation. In the GBD context, “short gestation” is used to refer 
to all gestational ages below the gestational age TMREL.  

LBWSG is paired with the outcomes listed in Table 1 and is only attributed to burden in the early and late neonatal 
period.  

Table 1: Cause list of outcomes for low birthweight and short gestation 

Cause name 
Diarrhoeal diseases 
Lower respiratory infections 
Upper respiratory infections 
Otitis media 
Pneumococcal meningitis 
H influenzae type B meningitis 
Meningococcal meningitis 
Other meningitis 
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Encephalitis 
Neonatal preterm birth complications 
Neonatal encephalopathy due to birth asphyxia and trauma 
Neonatal sepsis and other neonatal infections 
Haemolytic disease and other neonatal jaundice 
Other neonatal disorders 
Sudden infant death syndrome 

 

Exposure 
 

In LBWSG, exposure refers to the portion of the joint distribution of gestational age and birthweight less than the 
TMREL, by location/year/sex (l/y/s), from birth to the end of the neonatal period. Modelling LBWSG exposure can be 
summarised in three steps: 

A. Model univariate gestational age and birthweight distributions at birth, by l/y/s  
B. Model joint distributions of gestational age and birthweight at birth, by l/y/s  
C. Model joint distributions from birth to the end of the neonatal period, by l/y/s 

 

Table 2: Analytic steps in estimation of YLDs due to preterm birth 

 Summary of exposure modelling strategy 

Step A 

Model univariate 
distributions at birth  

1. Model mean gestational age, prevalence of gestational age <28 weeks, and 
prevalence of gestational age <37 weeks, by l/y/s 

2. Model mean birthweight and prevalence of birthweight <2500 grams, by l/y/s 
3. Model univariate gestational age and birthweight distributions separately at birth, 

by l/y/s 

Step B 

Model joint 
distributions at birth 

1. Use copulae to model the correlation structure of the joint distribution of 
gestational age and birthweight, globally 

2. Model the joint distribution of gestational age and birthweight, by location/year/sex 
at birth, by applying the globally modelled correlation structure to the 
location/year/sex-specific univariate models of gestational age and birthweight 
distributions  

Step C 

Model joint 
distributions from 

birth to 28 days 

1. Model all-cause mortality rates by gestational age and birthweight 
2. Model gestational age and birthweight distributions of surviving neonates for all 

l/y/s from birth to end of the neonatal period, using all-cause mortality rates by 
gestational age and birthweight 

 

Input data and data processing 
Input data needed to model univariate gestational age and birthweight distributions at birth (Step A) are: 

• Prevalence of preterm birth (<37 weeks), by l/y/s 
• Prevalence of preterm birth (<28 weeks), by l/y/s 
• Mean gestational age, by l/y/s 
• Gestational age microdata 
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• Prevalence of low birthweight (<2500 grams), by l/y/s 
• Mean birthweight, by l/y/s 
• Birthweight microdata 

 

To model joint distributions of gestational age and birthweight (Step B), joint microdata of gestational age and 
birthweight are also required. Additional inputs to modelling joint distributions from birth to 28 days (Step C) are all-
cause mortality by l/y/s and joint birthweight and gestational age microdata linked to mortality outcomes.  

Prevalence of extremely preterm birth (<28 weeks) and preterm birth (<37 weeks) were modelled using vital 
registration, survey, and clinical data. For the preterm models, only inpatient and insurance claims data were 
included from clinical informatics datasets; outpatient data were excluded because they were more likely to capture 
repeated visits by the same child rather than unique visits. Prevalence of low birthweight (<2500 grams) was 
modelled using only vital registration and survey data.  

Literature review 
Before GBD 2016, available preterm birth data were sourced by a technical working group. In GBD 2016 and GBD 
2017, we conducted systematic reviews to identify additional sources beyond the data already used in the models. 
The PubMed database was searched using the following search string:  

((("Infant, Premature"[Mesh] OR ("infant"[All Fields] AND "premature"[All Fields]) OR "premature infant"[All Fields] 
OR ("preterm"[All Fields] AND "infant"[All Fields]) OR "preterm infant"[All Fields] OR ("infant, newborn"[MeSH 
Terms] OR ("infant"[All Fields] AND "newborn"[All Fields]) OR "newborn infant"[All Fields] OR ("newborn"[All Fields] 
AND "infant"[All Fields])) AND (premature[All Fields] OR preterm[All Fields]) OR "premature birth"[MeSH Terms] OR 
("premature"[All Fields] AND "birth"[All Fields]) OR "premature birth"[All Fields] OR ("preterm"[All Fields] AND 
"birth"[All Fields]) OR "preterm birth"[All Fields]) ((("Infant, Premature"[Mesh] OR ("infant"[All Fields] AND 
"premature"[All Fields]) OR "premature infant"[All Fields] OR ("preterm"[All Fields] AND "infant"[All Fields]) OR 
"preterm infant"[All Fields] OR ("infant, newborn"[MeSH Terms] OR ("infant"[All Fields] AND "newborn"[All Fields]) 
OR "newborn infant"[All Fields] OR ("newborn"[All Fields] AND "infant"[All Fields])) AND (premature[All Fields] OR 
preterm[All Fields]) OR "premature birth"[MeSH Terms] OR ("premature"[All Fields] AND "birth"[All Fields]) OR 
"premature birth"[All Fields] OR ("preterm"[All Fields] AND "birth"[All Fields]) OR "preterm birth"[All Fields]) AND 
("1985"[PDAT] : "3000"[PDAT]) AND "humans"[MeSH Terms].  

The exclusion criteria were: studies that did not provide primary data on epidemiological parameters, non-
representative studies (eg, only high-risk pregnancies), and reviews. Table 3 shows the search hits, number of full-
texts reviewed, and number of extracted sources. 

Table 3. LBWSG search hits, full-text review, extracted sources 

Search Hits Full-text review Extracted Search date 

GBD 2017  16174 2200 154 6/6/2017 

 

Table 4. Input data for exposure models 

 Input data Exposure 

Source count (total) 1695 
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Number of countries with data 161 

 

Data processing 
Starting in GBD 2019, as was the case with all other non-fatal analyses, we applied empirical age and sex ratios from 
previous GBD 2019 Decomposition 1 models to disaggregate observations that did not entirely fit in one GBD age 
category or sex. Ratios were determined by dividing the result for a specific age and sex by the result for the 
aggregate age and sex specified in a given observation. It is our intention to update this splitting process annually.  

Low birthweight (<2500 grams) data were extracted from literature, vital registration systems, and surveys. DHS 
survey data were observed to have high missingness; to correct for the missingness, birthweight was imputed using 
the Amelia II (Version 1.7.6) package in R. Birthweight was predicted using standard Amelia imputation methods 
from the following variables also in the DHS surveys: urbanicity, sex, birthweight recorded on card, birth order, 
maternal education, paternal education, child age, child weight, child height, mother’s age at birth, mother’s weight, 
shared toilet facility, and household water treated. 

“Crosswalking”, or the process of reducing non-random bias by adjusting non-standard data to the likely value had 
the data been “gold-standard”, was used to process data in the extremely preterm (<28 weeks) and preterm (<37 
weeks) models. All preterm crosswalks were done using meta-regression – regularized, Bayesian, trimmed (MR-BRT). 
Insurance claims data in extremely preterm (<28 weeks) data were adjusted to vital registration data. Insurance 
claims data and inpatient data were also adjusted to vital registration in preterm (<37 weeks) conditions. The 
crosswalk for inpatient data had a spline on the prevalence of inpatient data. Once all claims and inpatient preterm 
(<37 weeks) data were adjusted, low birthweight data were crosswalked to post-claims and inpatient preterm (<37 
weeks) data. If low birthweight data in countries that were 1) categorised as “data-rich” locations in cause-of-death 
modelling or had at least ten consecutive years of vital registration data recording gestational age and 2) had both 
preterm birth and low birthweight data, crosswalked low birthweight data were outliered so that the model was 
informed only by the gestational age data.  

Table 5. MR-BRT VR-insurance claims crosswalk adjustment factor for extremely preterm birth (<28 weeks of 
gestation) 

Data input Reference or 
alternative case 
definition 

Gamma Beta coefficient, 
log  

(95% CI) 

Adjustment 
factor* 

Vital registration Reference 0.00 --- --- 

Insurance claims Alt  -0.651 (-0.602, -
0.699) 

0.521 (0.500, 
0.548) 

*Adjustment factor is the transformed beta coefficient in normal space and can be interpreted as the factor by which the 
alternative case definition is adjusted to reflect what it would have been if measured as the reference.  

 
Table 6. MR-BRT VR-insurance claims crosswalk adjustment factor for preterm birth (<37 weeks of gestation) 

Data input Reference or 
alternative case 
definition 

Gamma Beta coefficient, 
log  

(95% CI) 

Adjustment 
factor* 
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Vital registration Reference 0.16 --- --- 

Insurance claims Alt  -0.728 (-0.705, -
0.752) 

0.483 (0.471, 
0.494) 

*Adjustment factor is the transformed beta coefficient in normal space and can be interpreted as the factor by which the 
alternative case definition is adjusted to reflect what it would have been if measured as the reference.   

Figure 2: MR-BRT clinical inpatient data crosswalk with spline on prevalence of preterm birth 

 
 

Table 7. MR-BRT preterm birth-low birthweight crosswalk adjustment factor for neonatal preterm birth (<37 weeks of 
gestation) 

Data input Reference or 
alternative case 
definition 

Gamma Beta coefficient, 
log  

(95% CI) 

Adjustment 
factor* 

Preterm birth Reference 0.41 --- --- 

Low birthweight Alt  -0.0974 (-0.0807, -
0.1161) 

0.907 (0.890, 
0.922) 
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*Adjustment factor is the transformed beta coefficient in normal space and can be interpreted as the factor by which the 
alternative case definition is adjusted to reflect what it would have been if measured as the reference.  

 

Modelling strategy  
 
Step A: Model univariate birthweight and gestational age distributions at birth, by l/y/s 
Microdata are the ideal data source for modelling distributions; however, microdata are not widely available for 
birthweight and are scarcer for gestational age. Categorical prevalence data are more readily available from a wider 
range of locations and years for low birthweight (<2500g), extremely preterm (<28 weeks of gestation), and preterm 
birth (<37 weeks of gestation). Because categorical prevalence has wider availability than microdata, we use 
prevalence data to assist in modelling birthweight and gestational age ensemble distributions. 

Ensemble distribution models can be constructed with three pieces of information: mean of the distribution, variance 
of the distribution, and the weights of the distributions being ensemble. To model mean and variance for all l/y/s for 
birthweight and gestational age, we first used spatiotemporal Gaussian process regression (ST-GPR) models to model 
prevalence of low birthweight, extremely preterm, and preterm birth for all l/y/s at birth. To model mean birthweight 
for all l/y/s, OLS linear regression was used to regress mean birthweight on log-transformed low birthweight 
prevalence. This model was then used to predict mean birthweight for all l/y/s, using the prevalence of low 
birthweight (<2500 grams) modelled for all l/y/s in ST-GPR. Similarly, to model gestational age mean for all l/y/s, OLS 
linear regression model was used to regress mean gestational age on log-transformed preterm prevalence. Mean 
gestational age for all l/y/s was predicted using the preterm birth (<37 weeks) estimated modelled in ST-GPR.  

Global ensemble weights for gestational age were derived by using a 3 million sample of all available gestational age 
and birthweight microdata in Table 8 to select the ensemble weights. The two distribution families that received the 
highest weights were the Weibull (43%) and log-logistic (21%) distributions. Global ensemble weights for birthweight 
were derived using a 3 million sample of all available microdata in Table 8, in addition to birthweight microdata 
available primarily through the DHS and MICS surveys. The four distribution families that received the highest 
weights were the mirror gamma (31%), log-logistic (19%), normal (10%), and mirror gumbel (10%) distributions. 

For each l/y/s, given the mean and ensemble weights, the variance was optimised to minimise error on the 
prevalence of preterm birth (<37 weeks) for the gestational age distribution and prevalence of low birthweight 
(<2500 grams) for the birthweight distribution.    

Step B: Model joint birthweight and gestational age distributions at birth, by l/y/s 
In order to model the joint distribution of gestational age and birthweight from separate distributions, information 
was needed about the correlation between the two distributions. Distributions of gestational age and birthweight are 
not independent; the Spearman correlation for each country where joint microdata were available (Table 8), pooling 
across all years of data available, ranged from 0.25 to 0.49. The overall Spearman correlation was 0.38, pooling 
across all countries in the dataset.  

Table 8. Summary of microdata inputs 

Location Years of 
data 

Total 
births*  

Format of 
data 

Spearman 
correlation 

Used in 
ensemble 
weight 
selection 

Used in 
copula 
parameter 
selection   

Used in 
relative risk 
models 

BRA 2016 2,854,380 Microdata 0.37 Yes Yes No 
ECU 2003–2015 2,473,039 Microdata 0.34 Yes Yes No 
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ESP 1990–2014 8,537,220 Microdata 0.42 Yes Yes No 
JPN 1995–2015 23,644,506 Tabulations 0.41 No No Yes 
MEX 2008–2012 10,256,117 Microdata 0.35 Yes Yes No 
NOR 1990–2014 1,489,210 Microdata 0.44 Yes Yes Yes 
NZL 1990–2016 1,600,501 Microdata 0.25 Yes Yes Yes 
SGP 1993–2015 972,775 Tabulations 0.41 No No Yes 
TWN 1998–2002 1,331,760 Tabulations 0.38 No No Yes 
URY 1996–2014 698,622 Microdata 0.49 Yes Yes No 
USA 1990–2014 81,929,879 Microdata 0.38 Yes Yes Yes 

* Pooled across all years and sexes, excluding data missing year of birth, gestational age, or birthweight 

Joint distributions between the birthweight and gestational age marginal distributions were modelled with copulae. 
The Copula and VineCopula packages in R were used to select the optimal copula family and copula parameters to 
model the joint distribution, using joint microdata from the country-years in Table 8. The copula family selected from 
the microdata was “Survival BB8”, with theta parameter set to 1.75 and delta parameter set to 1.   

The joint distribution of birthweight and gestational age per location-year-sex was modelled using the global copula 
family and parameters selected and the location-year-sex gestational age and birthweight distributions. The joint 
distribution was simulated 100 times to capture uncertainty. Each simulation consisted of 10,000 simulated joint 
birthweight and gestational age datapoints. Each joint distribution was divided into 500g by 2-week bins to match the 
categorical bins of the relative risk surface. Birth prevalence was then calculated for each 500g by 2-week bin. 

Step C: Model joint distributions from birth to the end of the neonatal period, by l/y/s 
Early neonatal prevalence and late neonatal prevalence were estimated using life table approaches for each 500g 
and 2-week bin. Using the all-cause early neonatal mortality rate for each location-year-sex, births per location-year-
sex-bin, and the relative risks for each location-year-sex-bin in the early neonatal period, the all-cause early neonatal 
mortality rate was calculated for each location-year-sex-bin. The early neonatal mortality rate per bin was used to 
calculate the number of survivors at seven days and prevalence in the early neonatal period. Using the same process, 
the all-cause late neonatal mortality rate for each location-year-sex was paired with the number of survivors at seven 
days and late neonatal relative risks per bin to calculate late neonatal prevalence and survivors at 28 days. 

Relative risks & theoretical minimum-risk exposure level 
Causes 
The available data for deriving relative risk was only for all-cause mortality. The exception was the USA linked infant 
birth-death cohort data, which contained three-digit ICD causes of death, but also had nearly 30% of deaths coded to 
causes that are ill-defined, or intermediate, in the GBD cause classification system. We analysed the relative risk of 
all-cause mortality across all available sources and selected outcomes based on criteria of biological plausibility. 
Some causes, most notably congenital birth defects, haemoglobinopathies, malaria, and HIV/AIDS, were excluded 
based on the criteria that reverse causality could not be excluded.  

Input data 
In the Norway, New Zealand, and USA Linked Birth/Death Cohort microdata datasets, livebirths are reported with 
gestational age, birthweight, and an indicator of death at 7 days and 28 days. For this analysis, gestational age was 
grouped into two-week categories, and birthweight was grouped into 500-gram categories. The Taiwan, Japan, and 
Singapore datasets were prepared in tabulations of joint 500-gram and two-week categories. A pooled country 
analysis of mortality risk in the early neonatal period and late neonatal period by “small for gestational age” category 
in developing countries in Asia and sub-Saharan Africa were also used to inform the relative risk analysis.  

Table 9: Input data for relative risk models  



55 
 

 Input data Relative Risk 

Source count (total) 113 

Number of countries with data 6 

 

Modelling strategy  
For each location, data were pooled across years, and the risk of all-cause mortality at the early neonatal period and 
late neonatal period at joint birthweight and gestational age combinations was calculated. In all datasets except for 
the USA, sex-specific data were combined to maximise sample size. The USA analyses were sex-specific. To calculate 
relative risk at each 500-gram and two-week combination, logistic regression was first used to calculate mortality 
odds for each joint two-week gestational age and 500-gram birthweight category. Mortality odds were smoothed 
with Gaussian process regression, with the independent distributions of mortality odds by birthweight and mortality 
odds by gestational age serving as priors in the regression.  

A pooled country analysis of mortality risk in the early neonatal period and late neonatal period by SGA category in 
developing countries in Asia and sub-Saharan Africa were also converted into 500-gram and two-week bin mortality 
odds surfaces. The relative risk surfaces produced from microdata and the Asia and Africa surfaces produced from 
the pooled country analysis were meta-analysed, resulting in a meta-analysed mortality odds surface for each 
location. The meta-analysed mortality odds surface for each location was smoothed using Gaussian process 
regression and then converted into mortality risk. To calculate mortality relative risks, the risk of each joint two-week 
gestational age and 500-gram birthweight category were divided by the risk of mortality in the joint gestational age 
and birthweight category with the lowest mortality risk. 

For each of the country-derived relative risk surfaces, the 500-gram and two-week gestational age joint bin with the 
lowest risk was identified. This bin differed within each country dataset. To identify the universal 500-gram and two-
week gestational age category that would serve as the universal TMREL for our analysis, we chose the bins that was 
identified to be the TMREL in each country dataset to contribute to the universal TMREL. Therefore, the joint 
categories that served as our universal TMREL for the LBWSG risk factor were “38-40 weeks of gestation and 3500-
4000 grams”, “38-40 weeks of gestation and 4000-4500 grams”, and “40-42 weeks of gestation and 4000-4500 
grams”. As the joint TMREL, all three categories were assigned to a relative risk equal to 1.   

PAF calculations 
The total PAF for the low birthweight and short gestation joint risk factor was calculated by summing the PAF 
calculated from each 500g x two-week category, with the lowest risk category among all the 500g x two-week 
categories serving as the TMREL. The equation for calculating PAF for each 500g x two-week category is: 

 

To calculate the PAFs for the univariate risks (‘short gestation for birthweight’ and ‘low birth weight for gestation’), 
relative risks are first weighted by global exposure in 2019, summed across one of the dimensions (gestational age or 
birth weight), and then rescaled by the maximum RR in the TMREL block (38-42 weeks of gestation and 3500-4500 
grams). Any RR less than 1 was set to 1. Exposure was also summed across the same dimension, and the univariate 
PAF equalled the sum of the product of the weighted RRs and exposures.  
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Suboptimal breastfeeding  
Flowchart 

 

Input data and methodological summary 
 

Exposure definitions 
Exposure to suboptimal breastfeeding is composed of two distinct categories: non-exclusive breastfeeding and 
discontinued breastfeeding.  

Non-exclusive breastfeeding is defined as the proportion of children under 6 months of age who are not exclusively 
breastfed. We then parse those not exclusively breastfed into three categories – predominant, partial, and no 
breastfeeding. Exclusive breastfeeding is defined as the proportion of children who receive no other food or drink 
except breastmilk (allowing for ORS, drops, or syrups containing vitamins, minerals, or medicines). Predominant 
breastfeeding is the proportion of children whose predominant source of nourishment is breastmilk but also receive 
other liquids. Partial breastfeeding refers to those infants who receive breastmilk as well as food and liquids, 
including non-human milk and formula. No breastfeeding refers to infants who do not receive breastmilk as a source 
of nourishment. 

Input data 
Exposure 
The data used in the analysis consist mostly of processed individual-level microdata from surveys; in the cases where 
microdata were unavailable, we used reported tabulated data from survey reports and scientific literature. Data used 
to categorise type of non-exclusive breastfeeding (predominant, partial, and none) come from surveys with 24-hour 
dietary logs based on maternal recall.  
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We updated our systematic review in GBD 2019 by searching the Global Health Data Exchange (GHDx) using the 
keyword “breastfeeding.” We prioritised extraction of surveys with microdata and new surveys from major survey 
series such as Demographic and Health Surveys (DHS) and Multiple Indicator Cluster Surveys (MICS).  

Exposure modelling 
Using the processed microdata and tabulated data from reports, we generated a complete time series from 1980 to 
2019 for the prevalence of breastfeeding patterns for children 0 to 5 months and 6 to 23 months using a three-step 
spatiotemporal Gaussian process regression modelling process.  

First, a mixed-effects linear regression with fixed effects on location-level covariates and nested geographical random 
effects produces a stage 1 prediction. In GBD 2019, we revised this step to include an ensemble stage 1 prediction, 
estimating candidate models consisting of all combinations of covariates and averaging across the top 50 models 
weighted by out-of-sample predictive validity. We included the following covariates: Socio-demographic Index, SEV 
for unsafe water (age-standardised), total fertility rate, maternal education (years per capita), antenatal care (4+ 
visits), HIV mortality (women of reproductive age), high BMI (women of reproductive age), and underweight (women 
of reproductive age).  

We then followed this with a spatiotemporal regression that uses the residuals of the predictions from the linear 
regression to perform a locally weighted regression that provides a greater weighting factor to those nearer in space 
and time. The predicted residuals from this step are then added to those created in the linear regression step.  

Finally, we ran a Gaussian process regression that incorporated the variance of the input data as well as the variance 
of the model predictions. It uses predictions from the spatiotemporal regression as the mean function and generates 
draws from a multinomial distribution (based on the data uncertainty in the prior) to generate the final prevalence 
estimates and their confidence intervals. 

We estimated six models to produce each of our categories: the proportion of currently breastfeeding infants 0-5 
months of age, the ratio of infants exclusively breastfed to breastfed infants 0-5 months of age, the ratio of infants 
predominantly breastfed to breastfed infants 0-5 months of age, the ratio of infants partially breastfed to breastfed 
infants 0-5 months of age, the proportion of currently breastfeeding infants 6-11 months of age, and the proportion 
of currently breastfeeding infants 12-23 months of age. We convert the ratios of exclusive, predominant, and partial 
breastfeeding to the total category prevalence proportions by multiplying each ratio by the estimates of any 
breastfeeding among infants aged 0-5 months. This ensures that these categories sum correctly to the “any 
breastfeeding 0-5 months” envelope. We calculate the proportion of infants receiving no breastmilk 0-5 months of 
age by subtracting the estimates of current breastfeeding from 1. We perform the same operation to estimate 
discontinued breastfeeding in the 6-11 months and 12-23 months categories.  

 
Modelling strategy 
 

Assessment of risk-outcome pairs 

We included outcomes based on the strength of available evidence supporting a causal relationship. Studies 
evaluating the causal evidence for our risk-outcome pairs came primarily from articles found in a review published by 
the World Health Organization.1 Non-exclusive breastfeeding was paired with diarrhoea and lower respiratory 
infection as diseases outcomes.  



59 
 

Theoretical minimum-risk exposure level 

For non-exclusive breastfeeding, those children that received no source of nourishment other than breastmilk 
(“exclusively breastfed”) were considered to be at the lowest risk of any of the disease outcomes. For discontinued 
breastfeeding, we assumed that children aged 6 to 23 months who received any breastmilk as a source of 
nourishment to be at the lowest risk of disease outcome. 

Relative risks 
We estimated relative risks for both non-exclusive and discontinued breastfeeding in a meta-analysis using relative 
risks from studies compiled in a published review by the World Health Organization.1 

Population attributable fraction 
We used the standard GBD population attributable fraction (PAF) equation to calculate PAFs for non-exclusive 
breastfeeding and each of their paired outcomes using exposure estimates, the theoretical minimum-risk exposure 
level, and relative risks.  

  

References 
1. Horta, B., Voctora, C. (2013) Short-term effects of breastfeeding: a systematic review on the benefits of 

breastfeeding on diarrhoea and pneumonia mortality. The World Health Organization. 

  



60 
 

No access to handwashing facility 
Flowchart 

Unsafe Handwashing

Input data

Process

Results

Database

Risk factors

Burden estimation

Covariates

Input Data

National household and 
health examination surveys

Proportion of individuals 
with access to 

handwashing facility

Spatio-temporal 
Gaussian process 

regression

All individuals with access to 
handwashing station

Theoretical minimum-
risk exposure level

Observational Studies

Cohort studies
Meta-analysis/meta-
regression of relative 

risks

Relative risks by 
risk and cause (i.e. 
no handwashing 

and diarrhea)

Population 
attributable 

fractions by risk, 
cause, age, sex, 
and geographyRandomized Intervention 

studies

Population 
attributable 

fractions by risk 
aggregate, cause, 

age, sex, and 
geography

Exposure by risk, 
year, and 

geography

Deaths, YLLs, YLDs, 
and DALYs 

attributable to 
each risk by age, 

sex, year, 
geography

Calculate PAFs using 
exposure, relative risks, 

and TMREL

Exposure

Relative risks

Deaths, YLLs, YLDs, 
DALYs for each 

disease and injury 
by age, sex, year, 

geography

Covariate: Socio-
Demographic Index

 
Input data and methodological summary 
Exposure 
Case definition 
This risk is defined as lack of access to a handwashing station with available soap and water. 

Input data 
Since water and soap availability data are very limited, only country-specific Demographic and Health Surveys (DHS), 
Multiple Indicator Cluster Surveys (MICS), and Performance Monitoring and Accountability 2020 (PMA2020) surveys 
conducted from 2000 through 2016 were included as input data. Table 1 provides a summary of the exposure input 
data. 

Table 1: Exposure input data 
Input data Exposure 
Source count (total) 98 
Number of countries with data 65 

 
Modelling strategy 
By year and location, proportion of households with a handwashing facility is modelled using a three-step modelling 
scheme of mixed effect linear regression followed by spatiotemporal Gaussian process regression (ST-GPR), which 
outputs full time-series estimates for each GBD 2019 location. Two covariates were used as fixed effects in the linear 
regression: Socio-demographic Index (SDI – a composite index that includes income per capita, education, and 
fertility) and proportion of individuals with access to piped water (see below for model equation). Random effects 
were set at GBD 2019 region and super-region levels to fit the model but were not used in the predictions. 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) ~ 𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + (1|𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_1) + (1|𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_2) 
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  SDI = socio-demographic index 
  Piped water access = proportion of individuals with access to piped water 
  (1|level_1) = super-region-level random effects 
  (2|level_2) = region-level random effects 
 

The process of vetting and validating models was accomplished primarily through an examination of ST-GPR 
scatterplots by GBD 2019 location from 1990 to 2019. Based on visual inspection, any poorly fitting datapoints were 
re-inspected for error at the level of extraction and survey implementation. If errors in data extraction were found, 
the study in question was re-extracted. In addition to SDI, a number of different potential fixed effects were 
considered, including lag-distributed income and urbanicity. However, SDI proved to be the strongest predictor. 

Data sparseness was a considerable limitation in our modelling process. Even when data were published on 
handwashing prevalence, the definition as used in the publication often differed from the GBD 2019 standard 
definition or the data lacked representativeness at the geographical scale we required. The incorporation of 
questions about soap and water availability in DHS and MICS added much-needed information, but there remains a 
large data gap to be filled to reduce uncertainty in the estimation of access to handwashing stations. 

Theoretical minimum-risk exposure level 
The theoretical minimum-risk exposure level for unsafe hygiene is defined as having access to handwashing facility 
after any contact with excreta, including children’s excreta. 

Relative risks 
For GBD 2019, unsafe hygiene was paired with two outcomes: diarrhoeal diseases and lower respiratory infections 
(LRI). A meta-analysis by Cairncross and colleagues 20101 provided relative risk values describing the relationship 
between lack of facility access and diarrhoeal diseases. A meta-analysis by Rabie & Curtis 20062 provided relative risk 
evidence for the relationship between lack of facility access and LRI. Table 2 provides a summary of the relative risk 
data. 

Table 2: Relative risk input data 
Input data Relative risk 
Source count (total) 29 
Number of countries with data 19 

 

In GBD 2019, relative risk values were calculated using MR-BRT. For the LRI model, four study-level covariates were 
included: whether or not the study was generalisable to the general population, whether or not the measurements 
used were based on self-reports, whether or not the outcome was blind to the individual level of exposure, and 
percentage of participants lost to follow-up. No priors were used. Table 3 explains each covariate used in more 
depth. Table 4 shows the result of the MR-BRT analyses, and Figures 1 shows the associated funnel plot. Table 5 
shows the relative risk that was ultimately used for modelling. Note that while the MR-BRT analyses used no access 
to handwashing facility as the reference, the relative risks used for modelling use access to handwashing facility as 
the reference. 
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Table 3: Covariates used in MR-BRT models 

Covariate Description 

Measurements based on self-reports 0 = measurements based on assays, tests, or physician observation 
1 = measurements based on self-report 

Loss to follow-up 0 = > 95% follow-up 
1 = 85-95% follow-up 
2 = < 85% follow-up 

Study generalisation 0 = study sample based on general population 
1 = study sample based on subgroups, eg, high-risk groups, pregnant 
women, hospital patients, etc. 

Outcome/exposure blinded 0 = outcome was blind to individual level of exposure (or vice versa) 
1 = unblinded 

 

Table 4: Relative risk MR-BRT results (reference: no access to handwashing facility) 
Outcome Beta coefficient, log (95% CI) Exponentiated beta (95% CI) 

Lower respiratory infections -0.277 (-0.430, -0.124) 0.758 (0.650, 0.883) 

 

Table 5: Relative risks for each outcome (reference: access to handwashing facility) 

Outcome Relative risk (95% CI) 

Lower respiratory infections 1.321 (1.125, 1.533) 
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Figure 1: MR-BRT funnel plot, lower respiratory infections 

 

  

log(effect size) 



64 
 

References 
1. Cairncross S, Hunt C, Boisson S, et al. Water, sanitation and hygiene for the prevention of diarrhoea. 

International Journal of Epidemiology 2010; 39: i193–205. 
 

2. Rabie T, Curtis V. Handwashing and risk of respiratory infections: a quantitative systematic review. Tropical 
Medicine and International Health 2006; 11: 258–67.  

  



65 
 

Alcohol use  
Flowchart 
 

FAO, domestic supply of 
alcohol in tonnes

WHO, liters per year

Crosswalk using
mixed effect model on 
data series indicators 
and region random 

effects

Cohort studies & case control 
studies

Meta-analysis of relative 
risks, by cause

Relative risk 
function by, 

cause, sex, dose Population 
attributable 

fractions by risk, 
cause, age, sex, 
and geography

Population 
attributable 

fractions by risk 
aggregate, cause, 

age, sex, and 
geography

Deaths, YLLs, 
YLDs, and DALYs 
attributable to 

each risk by age, 
sex, year, 

geography

Calculate PAFs using 
exposure, relative risks, 

individual-level distirbution,  
and TMREL

Alcohol Use

Exposure

Relative risks

Input data

Process

Results

Database

Risk factors

Nonfatal

Burden estimation

Cause of death

Covariates

Input Data

Deaths, YLLs, 
YLDs, DALYs for 

each disease and 
injury by age, sex, 
year, geography

Location-level 
covariates

UNWTO tourist 
estimates

Spatio-temporal 
Gaussian process 

regression

Adjust for tourist 
consumption

Current drinker 
proportion 

by geography, 
year, sex, age

Spatio-temporal 
Gaussian process 

regression

Location-level 
covariates

Household and health 
examination surveys

Administrative data

Alcohol LPC 
by 

geography, 
year

Current drinker 
proportions  by 

geography, 
year, sex, age

Alcohol g/day 
by geography, 
year, sex, age

Split by age/sex-specific 
g/day estimates

Scale subnational 
proportions to 1

Split national into 
subnational units

Alcohol LPC 
by 

geography, 
year, age, sex

Adjust for unrecorded 
consumptionPublished estimates

DisMod ODE

DALYs by 
alcohol cause, 
all-ages, both 

sexes

Minimized weighted 
average relative risk by 

dose
TMREL distribution

Household and health 
examination surveys

Ensemble distribution 
model

Individual-level exposure 
distribution FARS Adjust MVA PAF to 

account for victims

Crosswalk using
MR BRT to adjust for 

recall period

Age and sex split

 

 
Input data and methodological summary 
 
Definition 
Exposure 
We defined exposure as the grams per day of pure alcohol consumed among current drinkers. We constructed this 
exposure using the indicators outlined below: 

1. Current drinkers, defined as the proportion of individuals who have consumed at least one alcoholic 
beverage (or some approximation) in a 12-month period. 

2. Alcohol consumption (in grams per day), defined as grams of alcohol consumed by current drinkers, per day, 
over a 12-month period. 

3. Alcohol litres per capita stock, defined in litres per capita of pure alcohol, over a 12-month period. 
 

We also used three additional indicators to adjust alcohol exposure estimates to account for different types of bias: 

1. Number of tourists within a location, defined as the total amount of visitors to a location within a 12-month 
period. 

2. Tourists’ duration of stay, defined as the number of days resided in a hosting country. 
3. Unrecorded alcohol stock, defined as a percentage of the total alcohol stock produced outside established 

markets. 

Input data 
A systematic review of the literature was performed to extract data on our primary indicators. The Global Health 
Exchange (GHDx), IHME’s online database of health-related data, was searched for population survey data containing 
participant-level information from which we could formulate the required alcohol use indicators on current drinkers 
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and alcohol consumption. Data sources were included if they captured a sample representative of the geographical 
location under study. We documented relevant survey variables from each data source in a spreadsheet and 
extracted using STATA 13.1 and R 3.3. A total of 6172 potential data sources were available in the GHDx, of which 
5091 have been screened and 1125 accepted.   

Table 1: Data inputs for exposure for alcohol use. 

Input data Exposure Relative risk 
Sources (total) 10513 495 
Number of countries with data 199 - 

 

Estimates of current drinking prevalence were split by age and sex where necessary. First, studies that reported 
prevalence for both sexes were split using a region-specific sex ratio estimated using MR-BRT.  Second, where studies 
reported estimates across non-GBD age groups, these were split into standard five-year age groups using the global 
age pattern estimated by ST-GPR.  
 

Table 2: MR-BRT sex splitting adjustment factors for current drinking 

Data input Gamma Beta coefficient, 
log (95% CI) 

Adjustment 
factor* 

Female: Male  0 -0.16 (-0.17, -0.14) 0.85 
Age < 50 0 0.06 (0.06, 0.06) 1.07 
East Asia 0.36 -1.02 (-1.74, -0.29) 0.36 
Southeast Asia 0.64 -1.06 (-2.34, 0.22) 0.35 
Central Asia 0.41 -0.35 (-1.16, 0.46) 0.70 
Central Europe 0.18 -0.21 (-0.58, 0.14) 0.80 
Eastern Europe 0.10 -0.07 (-0.28, 0.14) 0.93 
High-income Asia Pacific 1.27 -1.11 (-4.90, 2.68) 0.33 
Western Europe 0.08 0.03 (-0.14, 0.20) 1.03 
Southern Latin America 1.26 -0.67 (-4.18, 2.84) 0.51 
High-income North America 0.09 -0.07 (-0.26, 0.11) 0.93 
Caribbean 0.25 -0.52 (-1.02, -0.03) 0.59 
Andean Latin America 0.76 -0.16 (-1.66, 1.34) 0.85 
Central Latin America 0.30 -0.52 (-1.12, 0.08) 0.59 
Tropical Latin America 0.08 -0.61 (-0.79, -0.44) 0.54 
North Africa and Middle East 1.21 -1.44 (-3.91, 1.03) 0.24 
South Asia 0.71 -1.17 (-2.57, 0.23) 0.31 
Eastern sub-Saharan Africa 0.28 -0.53 (-1.10, 0.03) 0.58 
Southern sub-Saharan Africa 0.20 -0.16 (-0.56, 0.23) 0.85 
Western sub-Saharan Africa 0.32 -0.19 (-0.83, 0.45) 0.83 
Oceania 0.94 -0.54 (-2.42, 1.34) 0.58 

*Adjustment factor is the transformed beta coefficient in normal space and can be interpreted as the factor by which the 
alternative case definition is adjusted to reflect the ratio by which both-sex data points were split.  

 

To allow for the inclusion of data that did not meet our reference definition for current drinking, two crosswalks were 
performed using MR-BRT. The first crosswalk converted estimates of one-month drinking prevalence to what they 
would be if data represented estimates of 12-month drinking prevalence. This crosswalk incorporated two binary 
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covariates: male and age ≥ 50. The second crosswalk converted estimates of one-week drinking prevalence to 12-
month drinking prevalence. This crosswalk incorporated age < 20 and male as covariates. The covariates utilised in 
both crosswalks were included as both x and z covariates. A uniform prior of 0 was set as the upper bound for the 
beta coefficients to enforce the logical constraint that one-month and one-week prevalence could not be greater 
than 12-month prevalence. 

Table 3: MR-BRT crosswalk adjustment factors for alcohol use current drinking model 

Data input Reference or 
alternative case 
definition 

Gamma Beta coefficient, 
logit (95% CI) 

12-month 
prevalence 

Ref --- --- 

1-month 
prevalence 

Alt  0.22 -0.60 (-1.05, -0.16) 

Age ≥ 50 0.13 0.16 (-0.10, 0.43) 
Male 0.29 0.01 (-0.57, 0.59) 

1-week prevalence Alt 0.46 -1.51 (-2.42, -0.59) 
Age < 20 0.47 -0.29 (-1.34, 0.76) 
Male 0.00 0.38 (0.15, 0.60) 

 

The methods for modelling supply-side-level data were changed substantially from those used in GBD 2017. The raw 
data are domestic supply (WHO GISAH; FAO) and retail supply (Euromonitor) of litres of pure ethanol consumed. 
Domestic supply is calculated as the sum of production and imports, subtracting exports. The WHO and FAO sources 
were combined, so that FAO data were only used if there were no data available for that location-year from WHO. 
This was done because the WHO source takes into consideration FAO values when available. Since the WHO data are 
given in more granular alcohol types, the following adjustments were made: 

𝐿𝐿𝐿𝐿𝐿𝐿 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.13 ∗ �
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
0.973

� 

𝐿𝐿𝐿𝐿𝐿𝐿 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.05 ∗ �
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
0.989

� 

𝐿𝐿𝐿𝐿𝐿𝐿 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.4 ∗ �
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

0.91
� 

 

Three outliering strategies are used to omit implausible datapoints and data that created implausible model 
fluctuations. First, estimates from the current drinking model  are used to calculate the grams of alcohol consumed 
per drinker per day. A point is outliered if the grams of pure ethanol per drinker per day for a given source-location-
year is greater than 100 (approximately ten drinks). These thresholds were chosen by using expert knowledge about 
reasonable consumption levels. In the second round of outliering, the mean liters per capita value over a ten-year 
window is calculated. If a point is over 70% of that mean value away from the mean value, it is outliered. The 70% 
limit was chosen using histograms of these distances. Additionally, some manual outliering is performed to account 
for edge cases. Finally, data smoothing is performed by taking a three-year rolling mean over each location-year. 

Next, an imputation to fill in missing years is performed for all series to remove compositional bias from our final 
estimates. Since the data from our main sources cover different time periods, by imputing a complete time series for 
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each data series, we reduce the probability that compositional bias of the sources is leading to biased final estimates. 
To impute the missing years for each series, we model the log ratio of each pair of sources as a function of an 
intercept and nested random effects on super-region, region, and location. The appropriate predicted ratio is 
multiplied by the source that we do have, which generates an estimated value for the missing source. For some 
locations where there was limited overlap between series, the predicted ratio did not make sense, and a regional 
ratio was used. 

Finally, variance was calculated both across series (within a location-year) as well as across years (within a location-
source). Additionally, if a location-year had one imputed point, the variance was multiplied by 2. If a location-year 
had two imputed points, the variance was multiplied by 4. The average estimates in each location-year were the 
input to an ST-GPR model. This uses a mixed-effects model modelled in log space with nested location random 
effects. 

We obtained data on the number of tourists and their duration of stay from the UNWTO.3 We applied a crosswalk 
across different tourist categories, similar to the one used for the litres per capita data, to arrive at a consistent 
definition (ie, visitors to a country). 

We obtained estimates on unrecorded alcohol stock from data available in WHO GISAH database,2 consisting of 189 
locations. For locations with no data available, the national or regional average was used.  

For relative risks, in GBD 2016 we performed a systematic literature review of all cohort and case-control studies 
reporting a relative risk, hazard ratio, or odds ratio for any risk-outcome pairs studied in GBD 2016. Studies were 
included if they reported a categorical or continuous dose for alcohol consumption, as well as uncertainty measures 
for their outcomes, and the population under study was representative.  
 
 

Modelling strategy 
While population-based surveys provide accurate estimates of the prevalence of current drinkers, they typically 
underestimate real alcohol consumption levels.10-12 As a result, we considered the litre per capita input to be a better 
estimate of overall volume of consumption. Per capita consumption, however, does not provide age- and sex-specific 
consumption estimates needed to compute alcohol-attributable burden of disease. Therefore, we use the age-sex 
pattern of consumption among drinkers modelled from the population survey data and the overall volume of 
consumption from FAO, GISAH, and Euromonitor to determine the total amount of alcohol consumed within a 
location. In the paragraphs below, we outline how we estimated each primary input in the alcohol exposure model, 
as well as how we combined these inputs to arrive at our final estimate of grams per day of pure alcohol. We 
estimated all models below using 1000 draws. 

For data obtained through surveys, we used spatiotemporal Gaussian process regression (ST-GPR) to construct 
estimates for each location/year/age/sex. We chose to use ST-GPR due to its ability to leverage information across 
the nearby locations or time periods. We also modelled the alcohol litres per capita (LPC) data, as well as the total 
number of tourists, using ST-GPR.  

Given the heterogeneous nature of the estimates on unrecorded consumption, as well as the wide variation across 
countries and time periods, we took 1000 draws from the uniform distribution of the lowest and highest estimates 
available for a given country. We did this to incorporate the diffuse uncertainty within the unrecorded estimates 
reported. We used these 1000 draws in the equation below.  

We adjusted the alcohol LPC for unrecorded consumption using the following equation: 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿

(1 − % 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)
 

 

We then adjusted the estimates for alcohol LPC for tourist consumption by adding in the per capita rate of 
consumption abroad and subtracting the per capita rate of tourist consumption domestically.   
 
  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
− 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖 =  
∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖,𝑙𝑙 ∗ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝑙𝑙 ∗ 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖,𝑙𝑙
365  ∗  𝑙𝑙

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑
  

where: 

𝑙𝑙 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒 Domestic consumption abroad 𝑜𝑜𝑜𝑜 Tourist consumption domestically, 

𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. 

 

After adjusting alcohol LPC by tourist consumption and unrecorded consumption for all location/years reported, sex-
specific and age-specific estimates were generated by incorporating estimates modelled in ST-GPR for percentage of 
current drinkers within a location/year/sex/age, as well as consumption trends modelled in the ST-GPR grams per 
day model. We do this by first calculating the proportion of total consumption for a given location/year by age and 
sex, using the estimates of alcohol consumed per day, the population size, and the percentage of current drinkers. 
We then multiply this proportion of total stock for a given location/year/sex/age by the total stock for a given 
location/year to calculate the consumption in terms of litres per capita for a given location/year/sex/age. We then 
convert these estimates to be in terms of grams/per day. The following equations describe these calculations: 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎

=  
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜  𝑔𝑔/𝑑𝑑𝑑𝑑𝑑𝑑  𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 ∗  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 ∗  % 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎

∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜  𝑔𝑔/𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎  ∗  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 ∗  % 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 𝑠𝑠,𝑎𝑎
 

 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 =  
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝑙𝑙,𝑦𝑦  ∗  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙,𝑦𝑦  ∗  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎

 % 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎
 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝑔𝑔/𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 ∗
1000
365

 

 
where: 
 𝑙𝑙 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑦𝑦 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦, 𝑠𝑠 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔. 
 
We then used the gamma distribution to estimate individual-level variation within location, year, sex, age drinking 
populations, following the recommendations of other published alcohol studies.7,8 We chose parameters of the 
gamma distribution based on the mean and standard deviation of the 1,000 draws of alcohol g/day exposure for a 
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given population. Standard deviation was calculated using the following formula.15 We tested several alternative 
models using our data and found this model performed best.  
 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ (0.087 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 +  1.171 ) 
 

Theoretical minimum-risk exposure level 
We calculated TMREL by first calculating the overall risk attributable to alcohol. We did this by weighting each 
relative risk curve by the share of overall DALYs for a given cause. We then took the minimum of this overall-risk 
curve as the TMREL of alcohol use. More formally,  
 

𝑇𝑇𝑇𝑇𝑅𝑅𝐸𝐸𝐸𝐸 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝜔𝜔(𝑔𝑔/𝑑𝑑𝑑𝑑𝑑𝑑) 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝜔𝜔(𝑔𝑔/𝑑𝑑𝑑𝑑𝑑𝑑) =  �𝑅𝑅𝑅𝑅𝑖𝑖(𝑔𝑔/𝑑𝑑𝑑𝑑𝑑𝑑) ∗
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖

∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝜔𝜔
𝑖𝑖

𝜔𝜔

𝑖𝑖

 

Where:  
 𝜔𝜔 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑜𝑜, 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠,  
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 2010,𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  
𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑛𝑛 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑. 
 
In other words, we chose TMREL as being the exposure that minimises your risk of suffering burden from any given 
cause related to alcohol. We weight the risk for a particular cause in our aggregation by the proportion of DALYs due 
to that cause (eg, since more observed people die from ischaemic heart disease [IHD], we weight the risk for IHD 
more in the above calculation of average risk compared to, say, diabetes, even if both have the same relative risk for 
a given level of consumption). 
 

Relative risks 
We used the studies identified through the systematic review to calculate a dose-response, modelled using DisMod 
ODE. We chose DisMod ODE rather than a conventional mixed effects meta-regression because of its ability to 
estimate nonparametric splines over doses (ie, for most alcohol causes, there is a non-linear relationship with 
different doses) and incorporate heterogeneous doses through dose-integration (ie, most studies report doses 
categorically in wide ranges. DisMod ODE estimates specific doses when categories overlap across studies, through 
an integration step.). We used the results of the meta-regression to estimate a non-parametric curve for all doses 
between zero and 150 g/day and their corresponding relative risks.  
 
Table 4: Data inputs for relative risks for alcohol use. 

Input data Relative risk 
Sources (total) 495 

 
  

Population attributable fraction 
 
For all causes, we defined PAF as: 
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𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥) =  
𝑃𝑃𝐴𝐴+∫ 𝑃𝑃(𝑥𝑥)150

0  ∗ 𝑅𝑅𝑅𝑅𝐶𝐶(𝑥𝑥) 𝑑𝑑𝑑𝑑 − 1

𝑃𝑃𝐴𝐴+∫ 𝑃𝑃(𝑥𝑥)150
0  ∗ 𝑅𝑅𝑅𝑅𝐶𝐶(𝑥𝑥) 𝑑𝑑𝑑𝑑

  

 

𝑃𝑃(𝑥𝑥) = 𝑃𝑃𝐶𝐶 ∗ Γ(𝒑𝒑) 

 

where:  

𝑃𝑃𝐶𝐶  𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑃𝑃𝑎𝑎 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑅𝑅𝑅𝑅𝑐𝑐(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑎𝑎𝑎𝑎𝑎𝑎 𝒑𝒑 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   

 
We performed the above equation for 1000 draws of the exposure and relative risk models.  
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Input data and modelling strategy 
 
Case definition 
The exposure of non-optimal temperature is defined as the same day exposure to ambient temperature that is either 
warmer or colder than the temperature associated with the minimum mortality risk. Specifically, we define the 
theoretical minimum risk exposure level (TMREL) for temperature as the temperature that is associated with the lowest 
overall mortality attributable to the risk, in a given location and year. Given varying exposure-response curves for 
different mean annual temperature zones, as well as spatially and temporally varying cause compositions, we estimate 
TMRELs by year and location and are not using a globally uniform TMREL. High temperature (heat) exposure is defined 
as exposure to temperatures warmer than this TMREL and low temperature (cold) is defined as temperatures colder 
than this TMREL.  

Exposure  

ERA5 data  

We derived exposure estimates from the ERA5 reanalysis dataset from the European Centre for Medium-Range 
Weather Forecasts (ECMWF). ECMWF produced ERA5 estimates using their Integrated Forecast System (IFS). Hourly 
values of surface temperature are available for a spatial resolution of 0.25°x0.25°. Uncertainty estimates for these 
temperature values, ie, the ensemble spread (standard deviation) is available for every 3 hours (00:00, 03:00, 06:00, 
09:00, 12:00, 15:00, 18:00, 21:00) for a spatial resolution of 0.5°x0.5°. At the time of analysis, data were available from 
1979 to June 2019.1,2 We calculated daily averages of temperature and spread for each pixel and then assigned an 
uncertainty value to each daily temperature value. Based on the spread we derived 1,000 draws of each daily 
temperature pixel.  
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Population data  
Population data for calculating population-weighted location means were derived from WorldPop, which is an open 
source project initiated in 20133.  Multi-temporal, globally consistent, high-resolution human population data at 1 km 
x 1 km resolution can be downloaded from http://www.worldpop.org.uk/ for 2000, 2005, 2010, 2015, and 2020. For 
the purpose of our work, we interpolated in-between the 5-year estimation bins to obtain annual data. Further, we 
extrapolated until 1990 by using the 2000-2005 growth rate for back-casting.  
 

Table 1: Data inputs for exposure for non-optimal temperature. 

 Input data Exposure 

Source count (total) 203 

Number of countries and territories with data 204 

 

Exposure-response modelling  
Mortality data  
Deaths at the individual-level that included information regarding the cause (ie, ICD code), date, and the location at 
the second administrative level (admin2) or finer were collected from the GBD cause-of-death (CoD) database for 
vital registration data sources. We adapted the GBD standard procedure for garbage code redistribution to 
redistribute daily mortality data rather than annual data and mapped ICD causes to GBD causes for level 3. In total, 
we analysed 58.9 million deaths from eight different countries and 15,197 administrative units. For Brazil, the data 
covers a period from 1999 to 2016 for 5,570 municipalities and 19.9 million deaths. For Chile, the data covers the 
period from 1990 to 1996 and 2009 to 2011 for 15 regions and 2.46 million deaths. For Colombia, the data covers a 
period from 2001 to 2005 for 1,125 municipalities and 0.95 million deaths. For Guatemala, the data covers a period 
from 2009 to 2016 for 333 municipalities and 0.49 million deaths. For Mexico, the data covers a period from 1996 to 
2015 for 2,438 municipalities and 9.88 million deaths. For New Zealand, the data covers a period from 1988 to 2014 
for 20 district health boards and 0.76 million deaths. For the United States, the data covers a period from 1980 to 
1988 for 3,124 municipalities and 18.3 million deaths. For China, the data covers the year 2016 for 2,556 counties 
and 6.1 million deaths.  
 

Exposure-response modelling (MR-BRT)  
 
To estimate cause-specific mortality, based on average daily temperature and temperature zone (defined by mean 
annual temperature), we used a robust meta-regression framework, implemented through the MR-BRT (Bayesian, 
regularised, trimmed) tool. The tool allows three features that are essential to the analysis:5 

• A meta-analytic framework that can handle heterogeneous data sources 

• A robust approach to outlier detection and removal (trimming)  

• Specification of the functional dependence of outcome vs. average daily temperature and temperature zone 
as a 2-dimensional surface through a spline interface.  

http://www.worldpop.org.uk/
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The use of trimming in a vast array of inference and machine learning problems is standard.6,7,8 The use of high-
dimensional splines has been proposed before,9 but the methods used for estimation go beyond prior work, and we 
explain them below.  

The functional relationship between any outcome y and input variables (t1, t2) models y as a linear combination of 2d 
spline basis elements. Each spline basis element is a product of individual basis elements for 1D splines for t1 and t2. 
Therefore, the inference problem looks for a combination of simple curvilinear 2D elements that fit the data while 
preserving smoothness across element boundaries. The MR-BRT tool also allows prior information to influence the 
shape of the spline, particularly in areas with sparse data.  
 

For the purpose of modelling the relationship between mortality and mean annual and daily temperature we imposed 
monotonicity in the direction of daily temperature. For all J-shaped curves that depicted an increase in mortality above 
and below a threshold, we forced the curve to monotonically decrease at the lower end of the temperature distribution 
and to monotonically increase at the upper end. For all external causes that displayed a monotonic increase over the 
entire temperature range, we imposed monotonicity only in the direction of warmer temperatures. We placed 2 knots 
of degree 3 in the direction of mean annual temperature when fitting the surface. In the direction of daily mean 
temperature, we placed 3 knots of degree 3 for J-shaped causes and 2 knots of degree 1 for external causes that 
monotonically increase over temperature range. Figure 1 shows an example of a relative risk (RR) surface along daily 
and annual mean temperature for drowning.  

We estimated uncertainty using a two-step approach. First, we derived the uncertainty of the mean surface from the 
measurement error using the fit-retrofit error. Second, we added uncertainty from the random effects by sampling it 
separately from the cold and warm side.  

 

 

Figure 1: Log relative risk of death from lower respiratory infection along mean annual temperature (mean temp cat) 
and daily mean temperature (daily temp cat). The red dotted line depicts minimum mortality temperature along 
mean annual temperature zones. Green and blue lines depict isopleths, ie, lines of equal log RR of mortality 
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Table 2: Data inputs for relative risks for non-optimal temperature 

 Input data Relative risk 

Source count (total) 112 

Number of countries with data 8 

 

Cause selection 
We excluded all causes with fewer than 100,000 deaths as well as causes of death that did not represent a particular 
entity but rather a summary category (eg, other cardiovascular diseases). Further, dementia and protein energy 
malnutrition were not considered in this analysis due to inconsistencies in data classification. The remaining causes 
were selected based on significance. For this, for each cause and each mean temperature zone we determined the 
widest range of consecutive daily temperatures with statistically significant relative risks, expressed as a percentage 
of the full range of daily temperatures in that mean temperature zone. Figure 2 gives an example of the temperature-
mortality relationship for three selected slices (mean annual temperature of 6 °C, 17 °C and 21 °C). Significant areas 
along the exposure-response curves are marked in grey. We included all causes where at least 30% of zones had a 
consecutive significance range that spanned at least 5% of the full range of daily temperatures. Twelve causes met 
these criteria and were included as outcomes associated with non-optimal temperature: ischaemic heart disease, 
stroke, hypertensive heart disease, diabetes, chronic kidney disease, lower respiratory infection, chronic obstructive 
pulmonary disease, homicide, suicide, mechanical injuries, transport-related injuries, and drowning.  

 

Figure 2: Selected exposure-response curves for the relationship between daily mean temperature and log RR of lower 
respiratory infection mortality for mean annual temperature categories of 6 °C, 17 °C and 21 °C. Temperatures where 
associations are significant are displayed in grey.  

Theoretical minimum risk exposure level (TMREL) 
For the purpose of this analysis, the TMREL was defined as the temperature associated with the lowest mortality for 
all included causes. We calculated a death-weighted average of the cause-specific exposure-response curves with the 
minimum of this average curve being the TMREL. This was done for each year and each of the 990 GBD locations 
using CoD estimates produced for the GBD 2019 study. As climate zones or mean annual temperature can vary within 
a location, we calculated the TMREL for every mean annual temperature, assuming a consistent cause composition 
within a location. This approach represents the first use of spatially and temporally varying TMRELs within the GBD 
study.  

Population attributable fractions  
The population attributable fraction (PAF) was calculated for each temperature pixel and each day of the year (ie, 
pixel-day). Subsequently, we population-weighted each pixel using the fraction of the population living in a given 
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pixel relative to the GBD location. Depending on whether the daily mean temperature was below or above the 
TMREL, the effect was assigned to either low or high temperature. Daily population-weighted high and low 
temperature PAFs were then aggregated for the location and the year. Temperature effects can be either harmful or 
protective depending on whether the RR is above or below 1. For harmful temperature effects, ie, effects with a RR 
above 1, we used the following equation to derive PAFs: PAF=(RR-1)/RR; For temperature effects exhibiting a 
protective effect the equation was adapted by implementing the reverse RR: PAF=-((1/RR)-1)/(1/RR). The PAF 
associated with non-optimal temperature exposure is an aggregate of heat and cold effects in each location and year. 
We estimated the temperature attributable burden as the product of the total burden for that cause and the 
corresponding PAF for each GBD location, year, age group, and sex.  

 

Figure 3: Schematic illustration of the exposure-response relationship between temperature and mortality and 
associated low temperature (cold) and high temperature effects beyond the theoretical minimum exposure level 
(TMREL). The blue line depicts the exposure-response curve with blue shaded line showing 95% uncertainty range. The 
black solid line depicts the TMREL with dashed black lines displaying 95% uncertainty range. Effects left of the TMREL 
are counted towards cold PAFs and right of the TMREL towards heat PAFS.  
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Calculating the burden of multiple risk factors 
 

Validation studies have reported congruency between the true risk associated with multiple risk factors affecting the 
same outcome and a multiplicative aggregation of the PAFs of the individual risk factors (formula below).1   

𝑃𝑃𝑃𝑃𝑃𝑃1..𝑖𝑖 = 1 −  �(1 −  𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖)     
𝑛𝑛

𝑖𝑖=1

 

 

where PAF is the population attributable fraction and i is each individual risk factor.  

The same validation studies also found that the overestimation from ignoring the covariance between risk factors is 
small. This small overestimation was important to note because few data sources exist from which we can draw 
information on covariance.  
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Inclusion of a risk–outcome pair in the GBD 
 

Inclusion of a risk–outcome pair in the GBD was determined based on the World Cancer Research Fund criteria for 
convincing or probable evidence.1,2  Convincing evidence requires the following: evidence from more than one study 
type; evidence from at least two independent cohort studies; no substantial unexplained heterogeneity within or 
between study types; good-quality studies to exclude the possibility of confounding, measurement error, and 
selection bias; and a biologically plausible dose–response relationship. Probable evidence requires: evidence from at 
least two independent cohort studies or five or more case-control studies; no substantial unexplained heterogeneity 
within or between study types; good-quality studies to rule out the possibility of confounding, measurement error, 
and selection bias; and biological plausibility. 

 

The GBD also needed evidence based on past research on the likelihood of importance of a risk factor to disease 
burden or policy; the availability of adequate data and methodologies for estimating exposure distributions by 
country; adequate data to estimate outcome-specific effect sizes per unit of exposure; and evidence that effect sizes 
may be extrapolated to populations other than those studied in epidemiological studies or methods for doing so.3 
Lastly, for a newly evaluated risk–outcome pair, the GBD needed a statistically significant association (p<0·05) after 
accounting for sources of potential bias.4 
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Lower Respiratory Infection ICD-9 and ICD-10 Codes and Definitions  
ICD-9  

ICD-9 
Code   Definition   
079.6   Respiratory syncytial virus (RSV)   
466   Acute bronchitis and bronchiolitis  
466.0   Acute bronchitis  
466.1   Acute bronchiolitis  
466.11   Acute bronchitis and bronchiolitis due to respiratory syncytial virus (RSV)  
466.19   Acute bronchitis and bronchiolitis due to other infectious organisms  
466.9   Acute bronchitis and bronchiolitis due to other infectious organisms  
467   Acute bronchitis and bronchiolitis due to other infectious organisms  
468   Acute bronchitis and bronchiolitis due to other infectious organisms  
469   Acute bronchitis and bronchiolitis due to other infectious organisms  
470.0   Acute bronchitis and bronchiolitis due to other infectious organisms   
480  Viral pneumonia  
480.0  Pneumonia due to adenovirus  
480.1  Pneumonia due to respiratory syncytial virus  
480.2  Pneumonia due to parainfluenza virus  
480.3  Pneumonia due to SARS-associated coronavirus  
480.8  Pneumonia due to other virus not elsewhere classified  
480.9  Viral pneumonia unspecified  
481  Pneumococcal pneumonia [Streptococcus pneumoniae pneumonia]  
481.0  Pneumococcal pneumonia [Streptococcus pneumoniae pneumonia]  
481.2  Pneumococcal pneumonia [Streptococcus pneumoniae pneumonia]  
481.9  Pneumococcal pneumonia [Streptococcus pneumoniae pneumonia]  
482  Other bacterial pneumonia  
482.0  Pneumonia due to Klebsiella pneumoniae  
482.1  Pneumonia due to Pseudomonas  
482.2  Pneumonia due to Hemophilus influenzae [H. influenzae]  
482.3  Pneumonia due to streptococcus  
482.30  Pneumonia due to Streptococcus, unspecified  
482.31  Pneumonia due to Streptococcus, group A  
482.32  Pneumonia due to Streptococcus, group B  
482.39  Pneumonia due to other Streptococcus  
482.4  Pneumonia due to staphylococcus  
482.40  Pneumonia due to Staphylococcus, unspecified  
482.41  Methicillin susceptible pneumonia due to Staphylococcus aureus  
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482.42  Methicillin resistant pneumonia due to Staphylococcus aureus  
482.49  Other Staphylococcus pneumonia  
482.8  Pneumonia due to other specified bacteria  
483.0  Pneumonia due to mycoplasma pneumoniae  
483.1  Pneumonia due to chlamydia  
483.8  Pneumonia due to other specified organism  
483.9  Pneumonia due to other specified organism  
484.1  Pneumonia in cytomegalic inclusion disease  
484.2  Pneumonia in ornithosis  
484.6  Pneumonia in aspergillosis  
484.7  Pneumonia in other systemic mycoses  
487  Influenza  
487.0  Influenza with pneumonia  
487.1  Influenza with other respiratory manifestations  
487.8  Influenza with other manifestations  
487.9  Influenza with other manifestations  
488  Influenza due to certain identified influenza viruses  
488.0  Influenza due to identified avian influenza virus  
488.01  Influenza due to certain identified influenza viruses with pneumonia  
488.02  Influenza due to certain identified influenza viruses with other respiratory manifestations  
488.09  Influenza due to certain identified influenza viruses with other manifestations  
488.1  Influenza due to identified 2009 H1N1 influenza virus  
488.11  Influenza due to identified 2009 H1N1 influenza virus with pneumonia  
488.12  Influenza due to identified 2009 H1N1 influenza virus with other respiratory manifestations  
488.19  Influenza due to identified 2009 H1N1 influenza virus with other manifestations  
488.8  Influenza due to novel influenza a  
488.81  Influenza due to identified novel influenza A virus with pneumonia  
488.82  Influenza due to identified novel influenza A virus with other respiratory manifestations  
488.89  Influenza due to identified novel influenza A virus with other manifestations  
489  Influenza due to identified novel influenza A virus with other manifestations  

ICD-10  
ICD-10 
Code   Definition   
A48.1   Legionnaires' disease   
A70   Chlamydia psittaci infections(Psittacosis)   
B97.4   Respiratory syncytial virus as the cause of diseases classified elsewhere  
B97.5   Reovirus as the cause of diseases classified elsewhere  
B97.6   Parvovirus as the cause of diseases classified elsewhere  
J09   Influenza due to certain identified influenza viruses  
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J10   Influenza due to other identified influenza virus  
J10.0   Influenza due to other identified influenza virus with pneumonia  
J10.00   Influenza due to other identified influenza virus with unspecified type of pneumonia  

J10.01   
Influenza due to other identified influenza virus with the same other identified influenza virus 
pneumonia  

J10.08   Influenza due to other identified influenza virus with other specified pneumonia  
J10.1   Influenza due to other identified influenza virus with other respiratory manifestations  
J10.2   Influenza due to other identified influenza virus with gastrointestinal manifestations  
J10.8   Influenza due to other identified influenza virus with other manifestations  
J10.81   Influenza due to other identified influenza virus with encephalopathy  
J10.82   Influenza due to other identified influenza virus with myocarditis  
J10.83   Influenza due to other identified influenza virus with otitis media  
J10.89   Influenza due to other identified influenza virus with other manifestations  
J10.9   Influenza due to other identified influenza virus with other manifestations  
J11   Influenza due to unidentified influenza virus  
J11.0   Influenza due to unidentified influenza virus with pneumonia  
J11.00   Influenza due to unidentified influenza virus with unspecified type of pneumonia  
J11.08   Influenza due to unidentified influenza virus with specified pneumonia  
J11.1   Influenza due to unidentified influenza virus with other respiratory manifestations  
J11.2   Influenza due to unidentified influenza virus with gastrointestinal manifestations  
J11.8   Influenza due to unidentified influenza virus with other manifestations  
J11.81   Influenza due to unidentified influenza virus with encephalopathy  
J11.82   Influenza due to unidentified influenza virus with myocarditis  
J11.83   Influenza due to unidentified influenza virus with otitis media  
J11.89   Influenza due to unidentified influenza virus with other manifestations  
J12   Viral pneumonia, not elsewhere classified  
J12.0   Adenoviral pneumonia  
J12.1   Respiratory syncytial virus pneumonia  
J12.2   Parainfluenza virus pneumonia  
J12.3   Human metapneumovirus pneumonia  
J12.8   Other viral pneumonia  
J12.81   Pneumonia due to SARS-associated coronavirus  
J12.89   Other viral pneumonia  
J12.9   Viral pneumonia, unspecified  
J13   Pneumonia due to Streptococcus pneumoniae  
J14   Pneumonia due to Hemophilus influenzae  
J15   Bacterial pneumonia, not elsewhere classified  
J15.0   Pneumonia due to Klebsiella pneumoniae  
J15.1   Pneumonia due to Pseudomonas  
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J15.2   Pneumonia due to staphylococcus  
J15.20   Pneumonia due to staphylococcus, unspecified  
J15.21   Pneumonia due to staphylococcus aureus  
J15.211   Pneumonia due to Methicillin susceptible Staphylococcus aureus  
J15.212   Pneumonia due to Methicillin resistant Staphylococcus aureus  
J15.29   Pneumonia due to other staphylococcus  
J15.3   Pneumonia due to streptococcus, group B  
J15.4   Pneumonia due to other streptococci  
J15.5   Pneumonia due to Escherichia coli  
J15.6   Pneumonia due to other aerobic Gram-negative bacteria  
J15.7   Pneumonia due to Mycoplasma pneumoniae  
J15.8   Pneumonia due to other specified bacteria  
J16   Pneumonia due to other infectious organisms, not elsewhere classified  
J16.0   Chlamydial pneumonia  
J16.8   Pneumonia due to other specified infectious organisms  
J20   Acute bronchitis  
J20.0   Acute bronchitis due to Mycoplasma pneumoniae  
J20.1   Acute bronchitis due to Hemophilus influenzae  
J20.2   Acute bronchitis due to streptococcus  
J20.3   Acute bronchitis due to coxsackievirus  
J20.4   Acute bronchitis due to parainfluenza virus  
J20.5   Acute bronchitis due to respiratory syncytial virus  
J20.6   Acute bronchitis due to rhinovirus  
J20.7   Acute bronchitis due to echovirus  
J20.8   Acute bronchitis due to other specified organisms  
J20.9   Acute bronchitis, unspecified  
J21   Acute bronchiolitis  
J21.0   Acute bronchiolitis due to respiratory syncytial virus  
J21.1   Acute bronchiolitis due to human metapneumovirus  
J21.8   Acute bronchiolitis due to other specified organisms  
J21.9   Acute bronchiolitis, unspecified  
J91.0   Malignant pleural effusion   
P23.0   Congenital pneumonia due to viral agent  
P23.1   Congenital pneumonia due to Chlamydia  
P23.2   Congenital pneumonia due to staphylococcus  
P23.3   Congenital pneumonia due to streptococcus, group B  
P23.4   Congenital pneumonia due to Escherichia coli  
U04   Severe acute respiratory syndrome [SARS]                                      
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GATHER Compliance 
GATHER checklist of information that should be included in reports of global health estimates, with description of 
compliance and location of information for “Age-sex differences in the global burden of lower respiratory infections 
and risk factors: results from the Global Burden of Disease Study 2019”. 

# GATHER checklist item Description of compliance Reference 

Objectives and funding 

1 Define the indicators, populations, and time 
periods for which estimates were made. 

Narrative provided in paper and 
methods appendix describing 
indicators, definitions, and 
populations 

Main text 
(Introduction, pg. 4) 
and methods 
appendix (pg. 6-10) 

2 List the funding sources for the work. Funding sources listed in paper Main text (Methods; 
pg. 6) 

Data Inputs 

For all data inputs from multiple sources that are synthesized as part of the study: 

3 Describe how the data were identified and 
how the data were accessed. 

Narrative description of data 
seeking 

methods provided 

Main text (Methods; 
pg. 5-6) and methods 
appendix (pg. 6-10) 

4 Specify the inclusion and exclusion criteria. 
Identify all ad‐hoc exclusions. 

Narrative about inclusion and 
exclusion criteria by data type 
provided 

Methods appendix 
(pg. 7-8) 

5 Provide information on all included data 
sources and their main characteristics. For 
each data source used, report reference 
information or contact name/institution, 
population represented, data collection 
method, year(s) of data collection, sex and age 
range, diagnostic criteria or measurement 
method, and sample size, as relevant. 

An interactive, online data source 
tool that provides metadata for 
data sources by component, 
geography, cause, risk, or 
impairment has been developed 

Information provided 
in the following online 
data citation tools:   
Mortality sources: 
https://ghdx.healthda
ta.org/gbd-2019/data-
input-
sources?components=
4&causes=322&locati
ons=1 

Non-fatal sources: 
https://ghdx.healthda
ta.org/gbd-2019/data-
input-
sources?components=

https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=4&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=4&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=4&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=4&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=4&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=4&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=5&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=5&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=5&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=5&causes=322&locations=1
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5&causes=322&locati
ons=1 

 

 

6 Identify and describe any categories of input 
data that have potentially important biases 
(e.g., based on characteristics listed in item 5). 

Summary of known biases 
included in methods appendix 

Main text (Discussion 
pg. 15)  Methods 
appendix (pg. 8) 

For data inputs that contribute to the analysis but were not synthesized as part of the study: 

7 Describe and give sources for any other data 
inputs. 

Included in online data source 
tool, http://ghdx.healthdata. 
org/gbd‐2019 

Information provided 
in the following online 
data citation tools:   
Mortality sources: 
https://ghdx.healthda
ta.org/gbd-2019/data-
input-
sources?components=
4&causes=322&locati
ons=1 

Non-fatal sources: 
https://ghdx.healthda
ta.org/gbd-2019/data-
input-
sources?components=
5&causes=322&locati
ons=1 

 

For all data inputs: 

https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=5&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=5&causes=322&locations=1
http://ghdx.healthdata/
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=4&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=4&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=4&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=4&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=4&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=4&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=5&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=5&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=5&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=5&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=5&causes=322&locations=1
https://ghdx.healthdata.org/gbd-2019/data-input-sources?components=5&causes=322&locations=1
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8 Provide all data inputs in a file format from 
which data can be efficiently extracted (e.g., a 
spreadsheet as opposed to a PDF), including 
all relevant meta‐data listed in item 5. For any 
data inputs that cannot be shared due to 
ethical or legal, reasons, such as third‐party 
ownership, provide a contact name or the 
name of the institution that retains the right 
to the data. 

Downloads of input data available 
through online tools, including 
data visualization tools and data 
query tools,   

http://ghdx.healthdata. org/gbd‐
2019; input data not available in 
tools will be made available upon 
request 

Online data 
visualization tools 
(https://vizhub.health
data.org/gbd-
compare/), data query 
tools 
(http://ghdx.healthdat
a.org/gbd-2019/data-
input-sources) , and 
the Global Health 
Data Exchange 
(http://ghdx.healthdat
a.org/gbd-2019) 

 

  

http://ghdx.healthdata/
https://vizhub.healthdata.org/gbd-compare/
https://vizhub.healthdata.org/gbd-compare/
https://vizhub.healthdata.org/gbd-compare/
http://ghdx.healthdata.org/gbd-2019/data-input-sources
http://ghdx.healthdata.org/gbd-2019/data-input-sources
http://ghdx.healthdata.org/gbd-2019/data-input-sources
http://ghdx.healthdata.org/gbd-2019
http://ghdx.healthdata.org/gbd-2019
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Data analysis 

9 Provide a conceptual overview of the data analysis 
method. A diagram may be helpful. 

Flow diagrams of the 
overall 
methodological 
processes, as well as 
cause‐specific 
modelling processes, 
have been provided 

Main text (Methods; 
pg. 5-6) and methods 
appendix (pg. 5-14) 

10 Provide a detailed description of all steps of the analysis, 
including mathematical formulae. This description should 
cover, as relevant, data cleaning, data pre‐processing, data 
adjustments and weighting of data sources, and 
mathematical or statistical model(s). 

Flow diagrams and 
methodological write‐ 
ups 

Main text (Methods; 
pg. 5-6) and methods 
appendix (pg. 7-11) 

11 Describe how candidate models were evaluated and how 
the final model(s) were selected. 

Provided in the 
methodological write‐ 
up 

Methods appendix 
(pg. 11) 

12 Provide the results of an evaluation of model 
performance, if done, as well as the results of any relevant 
sensitivity analysis. 

Provided in the 
methodological write‐ 
up 

Methods appendix 
(pg. 11) 

13 Describe methods for calculating uncertainty of the 
estimates. State which sources of uncertainty were, and 
were not, accounted for in the uncertainty analysis. 

Provided in the 
methodological write‐ 
up 

Methods appendix 
(pg. 8, 10-11) 

14 State how analytic or statistical source code used to 
generate estimates can be accessed. 

Access statement 
provided 

Code is provided in an 
online tool, 
http://ghdx.healthdat
a.org/gbd-2019/code 

 

 

 

Results and Discussion 

http://ghdx.healthdata.org/gbd-2019/code
http://ghdx.healthdata.org/gbd-2019/code
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15 Provide published estimates in a file format from which 
data can be efficiently extracted. 

Results are available 
through online data 
visualization tools, the 
Global Health Data 
Exchange, and the 
online data query tool 
(https://ghdx.healthd
ata.org/gbd-2019)  
  

Main text (table 1-2), 
methods appendix 
(etable 1-9), and 
online data tools (data 
visualization tools, 
data query tools, and 
the Global Health 
Data Exchange, 
http://ghdx.healthdat
a.org/gbd-2019) 

16 Report a quantitative measure of the uncertainty of the 
estimates (e.g. uncertainty intervals). 

Uncertainty intervals 
are provided with all 
results 

Main text (Table 1-2), 
methods appendix (1-
9), and online data 
tools 

 

Author Contributions 
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Primary responsibility for seeking, cataloguing, extracting, or cleaning data; designing or coding figures and 
tables 
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