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Abstract

Background: Von Willebrand factor (VWF) and VWF propeptide (VWFpp) are stored in

eccentric nanodomains within platelet alpha-granules. VWF and VWFpp can undergo

differential secretion following Weibel-Palade body exocytosis in endothelial cells;

however, it is unclear if the same process occurs during platelet alpha-granule exocy-

tosis. Using a high-throughput 3-dimensional super-resolution imaging workflow for

quantification of individual platelet alpha-granule cargo, we studied alpha-granule

cargo release in response to different physiological stimuli.

Objectives: To investigate how VWF and VWFpp are released from alpha-granules in

response to physiological stimuli.

Methods: Platelets were activated with protease-activated receptor 1 (PAR-1) acti-

vating peptide (PAR-1 ap) or collagen-related peptide (CRP-XL). Alpha-tubulin, VWF,

VWFpp, secreted protein acidic and cysteine rich (SPARC), and fibrinogen were imaged

using 3-dimensional structured illumination microscopy, followed by semiautomated

analysis in FIJI. Uptake of anti-VWF nanobody during degranulation was used to

identify alpha-granules that partially released content.

Results: VWFpp overlapped with VWF in eccentric alpha-granule subdomains in

resting platelets and showed a higher degree of overlap with VWF than SPARC or

fibrinogen. Activation of PAR-1 (0.6-20 μM PAR-1 ap) or glycoprotein VI (GPVI) (0.25-

1 μg/mL CRP-XL) signaling pathways caused a dose-dependent increase in alpha-

granule exocytosis. More than 80% of alpha-granules remained positive for VWF,

even at the highest agonist concentrations. In contrast, the residual fraction of alpha-

granules containing VWFpp decreased in a dose-dependent manner to 23%, whereas
o this study.
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SPARC and fibrinogen were detected in 60% to 70% of alpha-granules when stimu-

lated with 20 μM PAR-1 ap. Similar results were obtained using CRP-XL. Using an

extracellular anti-VWF nanobody, we identified VWF in postexocytotic alpha-granules.

Conclusion: We provide evidence for differential secretion of VWF and VWFpp from

individual alpha-granules.
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blood platelets, exocytosis, hemostasis, secretory vesicles, von Willebrand factor
Essentials

• Activated platelets secrete hemostatic proteins from

alpha-granules.

• We investigated how von Willebrand factor (VWF) and

VWF propeptide (VWFpp) are released from

platelet alpha-granules.

• VWF and VWFpp are localized in the same eccentric

alpha-granule subdomain in resting platelets.

• VWF and VWFpp are differentially secreted from indi-

vidual alpha-granules upon activation.
1 | INTRODUCTION

During thrombopoiesis, several types of secretory granules from

bone marrow megakaryocytes are packaged into budding platelets.

Release of their content enables platelets to rapidly respond to

changes in their environment, such as during injury, inflammation, or

when encountering pathogens. Alpha-granules are the most abundant

platelet secretory organelle and contain various proteins and mole-

cules involved in the hemostatic response [1,2]. Among these is

von Willebrand factor (VWF), a key hemostatic adhesive glycoprotein

whose main roles are to facilitate platelet adhesion to vascular injury

sites and to stabilize coagulation factor VIII in the circulation [3].

VWF is also produced by endothelial cells and stored in Weibel-Palade

bodies (WPBs), where it can be released via exocytosis following

cellular activation. Circulating VWF levels in plasma are primarily

maintained through basal secretion of WPBs from the endothelium

[4].

Our knowledge of VWF biosynthesis primarily comes from

studies utilizing endothelial cells and heterologous expression systems

as cellular models. As it progresses through the secretory pathway,

VWF undergoes several posttranslational processing steps, which

include dimerization, glycosylation, and multimerization into long

platelet-adhesive concatemers [3]. Within the acidifying milieu of the

Golgi, VWF multimers condense into helical VWF tubules that lend

WPBs their characteristic rod-like shape [5]. Here, a large N-terminal

moiety called VWF propeptide (VWFpp) is proteolytically cleaved

from the mature VWF chain. In endothelial cells, cleaved VWFpp re-

mains noncovalently associated with VWF due to prevailing condi-

tions in the Golgi and beyond (low pH and high Ca2+), leading to its

copackaging in the developing WPBs [6]. VWFpp is essential for VWF

multimerization, tubulation, and WPB biogenesis [7–9] and becomes

an integral part of VWF tubules in vitro and in vivo [10,11]. During

exocytosis, the vesicle interior neutralizes, leading to rapid decon-

densation of VWF tubules [12,13] and loss of noncovalent association

between VWF and VWFpp [14]. Depending on the type of exocytosis

(full fusion, lingering kiss, or compound fusion) [4] and extracellular

environment, VWF, VWFpp, and other WPB cargo molecules undergo

divergent fates postrelease [14–17].

In platelets, VWF is zonally packaged within eccentric alpha-

granule nanodomains, which also contain short VWF tubules

[18–20], and can be released upon stimulus [21]. Platelets also contain
VWFpp [22] and are able to secrete the protein following stimulation

with various agonists that induce alpha-granule release [23]. However,

the organization of VWFpp in alpha-granules or its release from alpha-

granules has not been documented in detail. Similar to endothelial

WPBs, platelet alpha-granules can undergo single and compound

exocytosis depending on the type and magnitude of stimulus [24,25].

Following activation, alpha-granule cargo such as VWF, fibrinogen,

chemokines, and other mediators are not released uniformly but can

vary significantly between proteins in terms of release kinetics and in

the proportions that are released or retained after degranulation

[26–28]. Many of these cargo proteins are nonhomogenously

distributed within alpha-granules [20,27,29–31], which has led to the

hypothesis that their differential release is the result of uneven sol-

ubilization of alpha-granule cargo clusters [26]. It is unclear how these

processes influence the efficiency of release of VWF and VWFpp

specifically or whether VWF and VWFpp release from platelet alpha-

granules is comparable to their release from endothelial cell storage

organelles.

In this study, we investigated the storage and release of VWF and

VWFpp in platelets using 3-dimensional structured illumination mi-

croscopy (3D-SIM). We show that VWF and VWFpp reside in a

distinct alpha-granule subdomain not occupied by other alpha-granule

proteins such as fibrinogen. Using quantitative 3D-SIM analysis of

residual VWF and VWFpp in activated platelets, we demonstrate that

VWFpp is efficiently released from platelets in a dose-dependent

manner and, even at maximal activation, the bulk of VWF remains

associated with platelets in postfusion structures. Our study sheds
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new light on divergent outcomes of VWF and VWFpp following

release from platelet alpha-granules.
2 | METHODS

2.1 | Platelet isolation

All steps were performed at room temperature (RT) unless otherwise

stated. Whole blood was drawn from consenting healthy donors in

citrate tubes. Washed platelets were prepared as described previously

[20]. In brief, platelet-rich plasma was generated by centrifugation at

120 x g for 20 minutes with low acceleration (maximum 5) and low

brake (maximum 3). Platelet-rich plasma was washed once in 10%

acid-citrate dextrose buffer (85 mM Na3-citrate, 71 mM citric acid,

and 111 mM glucose) with 111 μM prostaglandin E1 (Sigma) and twice

in washing buffer (36 mM citric acid, 103 mM NaCl, 5 mM KCl, 5 mM

EDTA, and 5.6 mM glucose, pH 6.5) with 11 μM and 0 μM prosta-

glandin E1, respectively, and then resuspended at 250 x 103 platelets/

μL in assay buffer (10 mM HEPES, 140 mM NaCl, 3 mM KCl, 0.5 mM

MgCl2, 10 mM glucose, and 0.5 mM NaHCO3, pH 7.4).
2.2 | Platelet activation

Washed platelets at 250 x 103 platelets/μL were stimulated with 0 to

20 μM of protease-activated receptor 1 activating peptide (PAR-1 ap,

Peptides International) or 0 to 1 μg/mL of collagen-related peptide

(CRP-XL, CambCol Labs) for 30 minutes at 37 ◦C. Reactions were

stopped by adding 1% paraformaldehyde (final concentration) for 5

minutes and then quenched with 50 mM NH4Cl for 5 minutes. Sam-

ples were diluted in a large volume of washing buffer, washed once,

and resuspended in assay buffer at approximately 250 x 103/μL.
2.3 | VWF nanobody internalization assay

Washed platelets were incubated with nanobodies directed against

the VWF C-terminal cystine knot domain or control nanobodies (s-

VWF and R2, respectively [32]; kindly supplied by Dr Coen Maas,

UMCU, The Netherlands) at a final concentration of 1 μg/mL and were

stimulated as described above. Internalized nanobodies were detected

using goat anti-Alpaca IgG-AF488 (Jackson ImmunoResearch).
2.4 | Flow cytometry

Small aliquots were used for quality control of platelet activation by

flow cytometry. Samples were stained with CD61-APC (BD Bio-

sciences, 1:400) and CD62P-PE (BD Biosciences, 1:100) or with sec-

ondary anti-Alpaca IgG-AF488 (Jackson ImmunoResearch, 1:400) for

15 minutes at RT, diluted in assay buffer, and immediately read on a

FACS Canto II flow cytometer (BD Biosciences). In some cases, fixed
platelets were permeabilized with 0.05% saponin before staining.

Forward scatter (FSC) and side scatter (SSC) parameters were used to

gate platelets and single cells, whereas single stains and isotype

controls were used to determine fluorescence gating.
2.5 | Platelet seeding and immunofluorescence

Seeding and staining were performed as described previously [20]. In

brief, all unique sample conditions were seeded on poly-D-lysine

coated 9-mm diameter 1.5H high-precision coverslips (Marienfeld),

permeabilized, and stored in PBS supplemented with 0.2% gelatin,

0.02% azide, and 0.02% saponin (PGAS). Primary and secondary

antibody staining was performed in PGAS for 30 minutes at RT and

washed 3 times with PGAS following incubations. The antibodies used

are listed in Supplementary Table S1. Finally, slides were dipped in

PBS, mounted in Mowiol, and imaged within 1 week.
2.6 | Structured illumination and confocal

microscopy and image analysis

All samples were imaged with SIM (Elyra PS.1, Zeiss) and confocal

microscopy (SP8, Leica). Three representative fields of view were

collected per donor, using 40 Z-slices with an interval of 110 nm (4.4

μm in total). Raw SIM images were reconstructed with state-of-the-art

Zen Software (Zeiss). Due to very bright alpha-tubulin signals and

relatively broad emission filters, crosstalk between far-red and red

channels was observed, which was corrected equally in all applicable

images by subtracting the far-red channel (alpha-tubulin) from the red

channel. The number of 3D granular structures per platelet was

separately quantified for VWF, VWFpp, secreted protein acidic and

cysteine rich (SPARC), and Fbg. SIM images were analyzed through

ImageJ-based processing workflows as described in detail previously

[20]. In brief, individual platelets were segmented based on alpha-

tubulin staining, and individual 2D and 3D granular structures were

quantified based on individual staining (eg, VWF/VWFpp) by auto-

mated thresholding. Platelets in which 2D and 3D granule counts

within the same channel differed by more than 15 were excluded from

analysis.

For analyzing the nanobody internalization assay, images without

alpha-tubulin were segmented in individual platelets based on local

differences in signal intensity using in-house written macrocode

(available from our https://github.com/Clotterdam repository). VWF+
granules were identified with 3D Object Counter [33] and converted

into a mask in which the presence of VWFpp and/or VWF nanobody

was measured.
2.7 | Immunoblotting

Human umbilical vein endothelial cells (grown as previously described

[34]) and washed platelets were lysed in NP-40 buffer (0.5% NP-40,

https://github.com/Clotterdam
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150 mM NaCl, 10 mM Tris, and 5 mM EDTA, pH 8.5). Lysate samples,

normalized for VWF concentration, were separated on 4% to 12% Bis-

Tris NuPAGE gels (Invitrogen) under reducing conditions and trans-

ferred to 0.2 μm nitrocellulose membranes. Membranes were probed

with rabbit anti-VWF (DAKO) and rabbit anti-VWFpp [17], followed

by LT680-labeled donkey anti-rabbit secondary antibodies (Li-COR).

The membranes were scanned on an Odyssey scanner (Li-COR).
2.8 | Platelet secretion assay and VWF and VWFpp

ELISA

Washed platelets (5.6 x 106 platelets in a final volume of 200 μL) of 4

independent, healthy donors were stimulated with 0 to 20 μM of PAR-1

activating peptide (Peptides International) or 0 to 1 μg/mL collagen-

related peptide (CRP-XL, CambCol Labs) for 30 minutes at 37 ◦C.
Releasates and platelets were separated by centrifugation (13 000 x g),

after which platelet pellets were lysed in 50 μL lysis buffer (1% Triton X-

100, 10% glycerol, 50 mM Tris-HCL, 100 mMNaCl, and 1mM EDTA, pH

7.4). VWF and VWFpp secretion was determined using sandwich ELISA

as described earlier [35], using rabbit polyclonal anti-human VWF

(DAKO; 0.5 μg/well) or mouse monoclonal anti-human VWFpp (CLB-

Pro35; 1.0 μg/well) as coating antibodies and horseradish peroxidase

(HRP)-conjugated rabbit polyclonal anti-human VWF (DAKO; 0.5 μg/

mL) or HRP-conjugated mouse monoclonal anti-human VWFpp (CLB-

Pro14-3; 0.125 μg/mL) for detection. Blocking, washing, and detection

steps were performed in PBS supplemented with 0.1% Tween-20, 0.2%

gelatin and 1 mM EDTA. HRP activity was measured by colorimetric

detection of 3,3’,5,5’-tetramethylbenzidine conversion using a Victor X4

microplate reader (Perkin Elmer). All samples were measured in dupli-

cate in 3 different dilutions. Concentrated conditioned media from

HEK293Ts stably expressing human wildtype VWF and VWFpp [36],

which was calibrated against a normal plasma pool of >30 donors, was

used as a standard.
2.9 | Statistical analysis

Individual stimulation conditions were compared with resting platelets

by 2-way analysis of variance (ANOVA). Multiple comparisons were

corrected using Sidak’s multiple comparisons test. All statistical ana-

lyses were performed using GraphPad Prism (version 8). Data are

presented as mean ± 95% CI unless stated otherwise. A P value of

<.05 was considered statistically significant.
3 | RESULTS

3.1 | VWFpp colocalizes with mature VWF in

eccentric alpha-granule nanodomains

Localization of VWF and VWFpp in resting platelets was studied using

3D-SIM [20]. VWF- and VWFpp-immunoreactivity were localized to
discrete regions within the platelet (Figure 1A, Supplementary

Figure S1) that were encapsulated by a P-selectin-positive mem-

brane (Supplementary Figure S2). In the presence of SPARC and

fibrinogen, these regions were identified as alpha-granules within

platelet cytoplasm (Figure 1B, C). Consistent with previous ultra-

structural studies [18–20,31], close inspection of our images showed

that VWF and VWFpp were colocated in a subdomain within the alpha

granule (Figure 1A), whereas SPARC or fibrinogen showed a more

homogenous distribution and appeared to be excluded from these

VWF containing nanodomains (Figure 1B, C). Colocalization analysis

confirmed striking overlap between VWF- and VWFpp-

immunoreactivity within individual alpha-granules (Pearson’s

colocalization coefficient (PCC)VWFpp: 0.521; Manders’ colocalization

coefficient (MCC)1VWFpp: 0.590; MCC2VWFpp: 0.548), (Figure 1D),

whereas the overlap between VWF and SPARK or fibrinogen was

lower, as expected (SPARC: PCCSPARC 0.336, MCC1SPARC 0.386,

MCC2SPARC 0.498; fibrinogen: PCCFibrinogen 0.369, MCC1Fibrinogen

0.467, MCC2Fibrinogen 0.571) (Figure 1D–E). In these experiments, a

rabbit polyclonal antibody that specifically recognizes the cleaved and

processed carboxyterminal octapeptide of VWFpp was used to visu-

alize endogenous VWFpp [17]. Immunoblot analysis confirmed that in

both endothelial and platelet lysates, this VWFpp antibody exclusively

recognizes a 100 kDa protein corresponding to the size of VWFpp

(Supplementary Figure S3). Probing for VWF, it was clear that plate-

lets, unlike endothelial cells, contain only mature VWF and no

detectable proVWF (Supplementary Figure S3), suggesting that pro-

teolytic processing of proVWF into mature VWF and VWFpp is

completed before or during the formation of alpha-granules in

megakaryocytes and does not continue after budding of platelets.

Thus, the striking overlap of VWF and VWFpp in our SIM analysis

suggests that both proteins are incorporated into the same supra-

molecular structures within alpha-granules and are not the result of

cross-reaction of the VWFpp antibody with unprocessed proVWF.
3.2 | Differential loss of VWF and VWFpp from

post-exocytotic alpha granules of activated platelets

We next investigated VWF and VWFpp secretion from individual

platelet alpha granules following strong activation of PAR-1 (20 μM

PAR-1 ap) or GPVI (1 μg/mL CRP-XL) signaling pathways to drive a

high level of platelet activation and degranulation (Supplementary

Figures S4 and S5). We quantified the number of VWF+ and

VWFpp+ structures (alpha-granules) before and after stimulation

using 3D-SIM. After PAR-1 stimulation, we observed little change in

the number of VWF+ structures; however, there was a dramatic

reduction in VWFpp+ structures consistent with secretion of VWFpp

(Figure 2A). The remaining VWF staining was confined to P-selectin

(CD62P) labeled structures, suggesting that the protein mostly resides

in postexocytotic alpha-granules (Supplementary Figure S6). Stimula-

tion with 1 μg/mL CRP-XL gave similar results to PAR-1 ap

(Figure 2C). These data suggest that VWF and VWFpp may be



F I GUR E 1 VWF and VWFpp localization in resting platelets. (A, B) Resting platelets were stained for alpha-tubulin (magenta), VWF (red,

mouse monoclonal anti-VWF, CLB-RAg20), and (A) VWFpp (green), or (B) fibrinogen (green). (C) Resting platelet stained for alpha-tubulin

(magenta), VWF (red, rabbit polyclonal anti-VWF, DAKO), and SPARC (green). Imaging was performed by SIM, and representative high-

resolution single-plane, magnified images are shown. Areas within yellow squares that contain single granules are magnified on the right

(yellow square). The scale bar represents 1 μm. (D, E) Colocalization analysis for VWF with alpha-granule proteins VWFpp, SPARC, and

fibrinogen. (D) Pearson’s colocalization coefficients (PCC) and (E) pairwise Manders’ colocalization coefficients (MCC) for individual platelet

images (VWF-VWFpp n = 239, VWF-SPARC n = 199, VWF-Fibrinogen n = 73) show VWF has a higher overlap with VWFpp than with SPARC

or fibrinogen. Bars indicate means with 95% CIs and mean PCC and MCC values are at the top of the graph. SIM, structured illumination

microscopy; SPARC, secreted protein acidic and cysteine rich; VWF, von Willebrand factor; VWFpp, VWF propeptide.
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F I GUR E 2 Release of VWF and VWFpp from alpha granules. Platelets were stimulated for 30 minutes with vehicle or 20 μM PAR-1 ap (A, B)

or 1 μg/mL CRP (C) and stained for alpha-tubulin (magenta), VWF (red, CLB-RAg20) and VWFpp (green). Single-plane magnified images are

shown (A, C), as well as a panel of single-plane magnified images of 10 random platelets (B). The scale bar represents 1 μm. CRP, collagen-

related peptide; PAR-1 ap, protease-activated receptor 1 activating peptide; VWF, von Willebrand factor; VWFpp, VWF propeptide.
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differentially released by activated platelets despite their close prox-

imity within alpha-granules in resting platelets.

Differences in VWF and VWFpp release in relation to agonist

responsiveness may be explained by the large differences in size be-

tween VWF and VWFpp (VWFpp is a 100-kDa protein, whereas

ultralarge VWF multimers can be in excess of 100 MDa), but we also

looked at exocytosis of other alpha-granule constituents. SPARC (40

kDa) immunoreactivity was decreased more extensively than for VWF

(Figure 3A); however, changes in fibrinogen (�340 kDa) immunoreac-

tivity were qualitatively similar to that of VWF (Figure 3B). This would

suggest that additional factors other than protein size play a role in

facilitating differential agonist responsiveness of VWF vs VWFpp.
3.3 | Differential release of VWF and VWFpp

relates to agonist responsiveness

Having established that strong platelet stimulation results in differential

release of VWF and VWFpp, we next asked whether this phenomenon

was influenced by stimulus strength. For this, we used a semiautomated

quantitative workflow on 3D-SIM images [20] of platelets activated

with a broad concentration range of PAR-1 and CRP-XL that partially or

fully trigger alpha-granule release (Supplementary Figure S4). We found

that differential release of VWF and VWFpp was apparent at all stim-

ulus concentrations of PAR-1 ap (Figure 4A); however, it was clear that

less VWFpp was retained in postexocytosis alpha-granules as the



F I GUR E 3 Release of SPARC and fibrinogen from alpha-granules. Platelets were stimulated with 20 μM PAR-1 and compared with resting

platelets for release of alpha-granule proteins. Immunofluorescent staining for alpha-tubulin (magenta) in combination with (A) VWF (red,

DAKO) and SPARC (green) or (B) VWF (red, CLB-RAg20) and fibrinogen (green). Single-plane, representative magnified images are shown. The

scale bars represent 1 μm. PAR-1, protease-activated receptor 1; SPARC, secreted protein acidic and cysteine rich; VWF, von Willebrand

factor; VWFpp, VWF propeptide.
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stimulus strength was increased. At 0.625 μM PAR-1 ap, the fraction of

VWFpp+ alpha granules was 76.8% compared with control platelets

(p < .0001, 2-way ANOVA), and this fraction reduced to 23.4% at 20

μM PAR-1 ap (p < .0001, 2-way ANOVA). In contrast, for 20 μM PAR-1

ap, the fraction of VWF+ alpha granules was 80.9% of the control (p <

.0001, 2-way ANOVA). This difference between the retention of VWF
and VWFpp was significant at all stimulus strengths. Similar findings

were obtained using CRP-XL (Supplementary Figure S7A, B). Consistent

with our 3D-SIM-based exocytosis assay, biochemical analysis showed

that VWFpp and VWF were differentially secreted following dose-

dependent activation of PAR-1 or GPVI signaling (Figure 4C, D,

Supplementary Figure S7C, D).



F I GUR E 4 Dose-response release of VWF and VWFpp. (A) Platelets were stimulated with 0 to 20 μM PAR-1 ap and stained for alpha-

tubulin (magenta), VWF (red, CLB-RAg20), and VWFpp (green). Representative single-plane, magnified images are shown. Scale bars represent

1 μm. (B) VWF and VWFpp release was assessed by quantification of residual VWF+ or VWFpp+ structures in platelets normalized to resting

platelets. Counts are pooled from 3 independent, healthy donors: 0 μM PAR-1 ap n = 435; 0.625 μM PAR-1 ap n = 365; 2.5 μM PAR-1 ap

1974 - SWINKELS ET AL.



SWINKELS ET AL. - 1975
The release of SPARC and fibrinogen from alpha-granules showed a

different pattern (Supplementary Figure S8). The fraction of SPARC+ or

fibrinogen+ alpha granules present in stimulated platelets was reduced

to 60.7% and 67.6% of the control at 20 μMPAR-1 ap, respectively. The

data illustrated that the extent of cargo release was protein specific.

In conclusion, we observed a large disparity in alpha-granule

release of VWF versus VWFpp, where the former was partially

retained in alpha-granules, even under strong stimulatory conditions. In

contrast, VWFpp release was sensitive to lower agonist concentrations.
3.4 | Anti-VWF nanobody incorporates in

postexocytotic VWFþ structures in degranulation-

dependent manner

Finally, we wanted to study how and when individual alpha-granule

structures differentially release VWF versus VWFpp. As we clearly

identified granule populations that contained residual VWF but no

more VWFpp, this would suggest that individual alpha-granules

could perform a kiss-and-run type of exocytosis that facilitates

release of selective alpha-granule cargo. To investigate this theory

further, we performed a platelet degranulation experiment with an

anti-VWF nanobody added in suspension, assuming that opening an

alpha-granule during exocytosis would facilitate uptake of the

nanobody. We found that uptake of the nanobody was directly

dependent on the degree of platelet stimulation and, thus, degran-

ulation, whereas a control R2 nanobody nonspecific for VWF did not

show any signal by flow cytometry (Supplementary Figure S10A).

Additionally, permeabilized platelets showed an increasingly higher

mean fluorescent intensity at higher doses of PAR-1, suggesting

increasing amounts of nanobody specifically inside platelets

(Supplementary Figure S10A). We further confirmed this with

confocal imaging, where we observed accumulation of the nanobody

inside the tubulin ring at 20 μM PAR-1 ap but not in resting platelets

(Supplementary Figure S10B).

Additionally, the nanobody colocalized completely with residual

VWF+ structures, suggesting that all VWF+ granules are post-

exocytotic under these conditions. Together, these findings show that

the uptake of the VWF nanobody is degranulation dependent. Ulti-

mately, we analyzed individual alpha-granules that were able to take

up the VWF nanobody through 3D-SIM. In accordance with flow

cytometry and confocal data, we found an increasing population of

VWF nanobody+ structures colocalizing with residual VWF that was

directly related to the degree of stimulation. Most resting platelets

contained granules with overlapping VWF and VWFpp signals

(Figure 5A). At a low dose of PAR-1 ap (Figure 5B), only a minority of

granules was strongly positive for the nanobody. However, most

granules were VWF+ and VWFpp+ but revealed weak staining for the
n = 318; and 20 μM PAR-1 ap n = 280 platelets. Absolute platelet counts pe

retention (D) of VWF and VWFpp in PAR-1 ap stimulated platelets were m

Statistical analysis was performed by 2-way ANOVA with Sidak’s multiple

.0001. The bars show means with 95% CIs. PAR-1 ap, protease-activated r

VWF propeptide.
nanobody. At a maximum dose of PAR-1 ap, we found a majority of

VWF nanobody+ and VWF+ granules, but these did not contain any

VWFpp (Figure 5A, B), suggesting that this content has been released

during granule opening. Taken together, our findings imply that

increasing doses of PAR-1 ap trigger large-scale release of VWFpp

from alpha-granules, whereas VWF is partially retained in such post-

exocytotic granules as evidenced by PAR-1–dependent accumulation

of VWF nanobody in VWFpp-VWF+ structures. Our cumulative find-

ings show that alpha-granules may exclusively release content like

VWFpp while maintaining other cargo, like VWF, under the conditions

described in our work.
4 | DISCUSSION

Important biochemical and functional differences exist between

platelet and endothelial (plasma) VWF [37] that suggest dissimilarities

in biosynthesis of VWF between endothelial cells and megakaryo-

cytes: platelet VWF is composed of higher molecular weight multi-

mers and carries different N-linked glycan structures, which makes it

more resistant to proteolysis by ADAMTS13 [38] and has higher

binding affinity for alphaIIbβ3 integrin [39]. In this study, we investi-

gated the storage and exocytosis of VWF and VWFpp from

platelet alpha granules through quantitative super-resolution micro-

scopy. Our results showed that VWFpp was eccentrically localized

within alpha granules in close proximity to mature VWF. In endothelial

cells, VWFpp was integrated into tubules composed of helically

condensed VWF multimers found within WPBs. Given that similar

tubules, albeit shorter in length, have been observed in platelet alpha-

granules [19], we speculated that VWFpp is similarly arranged within

VWF tubules as in endothelial WPBs.

In contrast to WPBs, where the tubular arrangement of VWF is

essential for its rapid and efficient release upon exocytosis, alpha-

granules only released a limited amount of their VWF, even at

agonist concentrations that elicited maximum surface exposure of P-

selectin and led to incorporation of anti-VWF nanobody into practi-

cally all the remaining VWF-positive structures. The latter is impor-

tant because it implies that all these granules have undergone a

granule fusion event that generated a fusion pore in contact with the

extracellular space. Additionally, we found evidence for differential

release of VWFpp and VWF, showing that individual alpha-granules

can preferentially release their VWFpp cargo while retaining VWF.

Differential release was dependent on stimulus strength but not

related to the type of agonist we used in our study. This contrasts

sharply with the 1:1 stoichiometry between VWF and VWFpp

released from endothelial cells [14].

What could explain the difference in secretion efficiency be-

tween VWF and VWFpp from alpha-granules? Earlier studies on the
r donor are stated in Supplementary Figure S9. The release (C) and

easured by ELISA and normalized to resting intracellular content.

comparisons test at significance levels of ***p < .001 and ****p <

eceptor 1 activating peptide; VWF, von Willebrand factor; VWFpp,



F I GUR E 5 SIM analysis of VWF nanobody uptake during alpha granule release. (A) Platelets were stimulated with 0 to 20 μM of PAR-1 ap in

the presence of 1 μg/mL VWF nanobody (magenta) and stained for VWF (red, CLB-RAg20) and VWFpp (green). A single-plane, representative

magnified image of granule content of a resting and maximum stimulated platelet. The magnified region shows single granule content. Scale bar

represents 1 μm. (B) Granule populations of positive VWF/VWFpp/VWF-nanobodies were quantified for each stimulus condition. Platelet

counts are pooled from 4 independent, healthy donors: 0 μM PAR-1 ap n = 835; 0.625 μM PAR-1 ap n = 696; 2.5 μM PAR-1 ap n = 748; and 20

μM PAR-1 ap n = 620 platelets. Granule counts were normalized to the number of platelets that were analyzed and indicated within their

respective boxes within the stacked bar graph. PAR-1 ap, protease-activated receptor 1 activating peptide; SIM, structured illumination

microscopy; VWF, von Willebrand factor; VWFpp, VWF propeptide.
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organization and exocytosis of different types of alpha-granule cargo

have resulted in several models of how platelets can (differentially)

release their content. Based on the localization of several alpha-
granule cargo proteins, including VWF, fibrinogen, and several

proangiogenic and antiangiogenic mediators, it was postulated that

subpopulations of alpha-granules exist based on the inclusion of
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cargo with opposing functions [29,40]. Preferential mobilization of

one of these subpopulations by specific agonists would then lead to

differential release of distinct functional classes of alpha-granule

cargo, allowing platelets to direct their secretory response in a

context-specific manner. However, this hypothesis was significantly

challenged by quantitative, high-resolution imaging showing that

alpha-granule cargo is stochastically packaged in alpha granules but

segregated within subdomains of the granule matrix [27,30,31]. Ki-

netic release studies also showed little evidence of specific alpha-

granule subpopulations but instead identified 3 classes of cargo

release based on their rate constants (fast, intermediate, and slow) in

which alpha-granule cargo distribution is random [26]. Several non-

mutually exclusive mechanisms have been proposed that can achieve

differential release of VWF and other cargo from the same granule,

such as exocytotic fusion mode (direct vs lingering kiss vs compound

fusion) [41,42] from WPBs, or differences in cargo solubilization

such as the polar release of nonhomogenously distributed cargo

from one side of the alpha granule [26]. The nearly perfect overlap

between VWF and VWFpp that we observed in resting platelets

(Figures 1 and 2, Supplementary Figure S2) suggests that both pro-

teins are localized in the same alpha granules and occupy the same

granule subdomains, which rules out that the differences in their

release were reflective of granule subpopulations or could have been

the result of polar release of cargo from one end of the granule.

Differential release through premature closure of the fusion pore,

such as in lingering kiss exocytosis [41], is also unlikely to serve as an

explanation since the size of VWFpp (�100 kDa) would require the

fusion pore to fully expand before release. Indeed, we did not find an

obvious correlation between releasability and size, as SPARC (40

kDa) was less sensitive to low-concentration stimulation and ach-

ieved lower maximal release than VWFpp (Supplementary

Figure S8).

In line with previous reports by others [25,43], we frequently

observed a clustering of VWF-positive structures in the central area

of activated platelets that were negative for VWFpp, especially at

higher agonist concentrations (Figure 4, Supplementary Figure S7). In

some cases, a continuous P-selectin staining enveloping several VWF-

positive structures (Supplementary Figure S6) was present, reminis-

cent of several alpha granules that had engaged in compound fusion.

This exocytotic fusion mode likely poses no obstacle for VWFpp but

does not favor the release of bulky, multimeric cargo, such as VWF,

for instance by preventing the orderly unfurling of VWF tubules

[42,44]. This may indirectly also relate to differences in solubility of

VWF and VWFpp, such as previously observed during loss from the

cell surface of endothelial cells following release from WPBs [15]. As a

result, VWF remains stuck in postfusion alpha granules, whereas

VWFpp is efficiently released.

While traces of VWFpp may stick to the D’D3 region of VWF

postrelease [45], it is likely that after exocytosis, its extracellular

course is primarily VWF-independent, as attested by the large dif-

ference in plasma survival between VWF and VWFpp [46]. However,

despite the well-documented pleiotropic roles of VWF, the biological

function of extracellular VWFpp remains unclear. Several in vitro
studies have demonstrated that bovine VWFpp can bind to collagen

type I [47], and this interaction can block collagen-induced platelet

aggregation [48]. VWFpp also contains an arginine-glycine-aspartic

acid (RGD) sequence, a motif that can serve as a ligand for a subfamily

of integrins that contain alpha-5, alpha-8, alpha-V, and alpha-IIb sub-

units. The VWFpp RGD motif is not strongly conserved between

species [49]; the integrin receptor for this site has not been identified,

and its significance remains uncertain as the RGD sequence appears

unfavorably arranged within the native conformation to support ad-

hesive interactions [48]. Bovine VWFpp can bind alpha4β1 and

alpha9β1 integrins, which are expressed on lymphocytes, monocytes,

and neutrophils via a sequence within the VWD2 domain conserved in

humans [50–52]. Another ligand for these integrins, coagulation factor

FXIII, has been shown to crosslink VWFpp to the extracellular matrix

protein laminin [52–54]. Focused release of VWFpp from degranu-

lating platelets during initial thrombus formation and incorporation in

the adhesive surface via laminin and collagen possibly provides a

mechanism to influence the adhesive properties of the exposed

extracellular matrix and direct hemostatic and immune

responses following vascular injury. Recent reports have emerged that

VWFpp can contribute to platelet adhesion to collagen surfaces

and enhance thrombus mass in a glycan-dependent manner [55],

and in a murine model of deep vein thrombosis, VWFpp

incorporates in venous thrombi near regions of active thrombus

formation [56].

We have recently shown that platelet factor 4 (PF4) levels in

plasma are positively correlated with the current severity of bleeding

phenotype in patients with VWD type 1 [57]. PF4 is a chemokine that

is mainly produced by megakaryocytes and stored in platelet alpha-

granules, which means that systemic PF4 levels are reflective of

platelet degranulation. One possible explanation for the observed

association with bleeding severity in this group is that apart from a

quantitative deficiency of VWF in plasma, hemostatic contribution of

platelets is impaired by premature release of alpha-granules. This

could lead to insufficient delivery of their hemostatic content, such as

platelet VWF and other alpha-granule cargo, to sites of vascular

injury. A number of studies have focused on the role of platelet-

derived VWF in hemostasis [58–62]. Patients with mild and severe

circulating VWF deficiencies with residual platelet VWF show a milder

clinical phenotype [20,63]. Platelet VWF has also been reported to be

important for DDAVP-related amelioration of bleeding times in sub-

groups of patients with type 1 VWD [64]. Together, this leads to the

notion that release of platelet VWF helps to establish hemostasis in

these patients. Our data suggest that following activation, most

mature VWF remains within the platelets, not supporting any in-

teractions that can contribute to the hemostatic functions of platelets,

such as adhesion or aggregation. This is in contrast to its proteolytic

cleavage product VWFpp, which is efficiently released from

platelet alpha-granules following activation and has its own capabil-

ities to interact with components of the extracellular matrix, cellular

adhesion receptors, and the thrombus. The question thus arises how

much of the perceived role of platelet VWF in hemostasis can be

attributed to mature VWF and how much (if not more) is actually
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dependent on VWFpp. More studies that focus on the extracellular

role(s) of VWFpp, from endothelial and platelet origin, are urgently

needed.
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