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Abstract While sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HCM) is due to arrhythmias, the guidelines for pre-
diction of SCD are based solely on non-electrophysiological methods. This study aims to stimulate thinking about whether 
the interests of patients with HCM are better served by using current, ‘risk factor’, methods of prediction or by further 
development of electrophysiological methods to determine arrhythmic risk. Five published predictive studies of SCD in 
HCM, which contain sufficient data to permit analysis, were analysed to compute receiver operating characteristics together 
with their confidence bounds to compare their formal prediction either by bootstrapping or Monte Carlo analysis. Four are 
based on clinical risk factors, one with additional MRI analysis, and were regarded as exemplars of the risk factor approach. 
The other used an electrophysiological method and directly compared this method to risk factors in the same patients. 
Prediction methods that use conventional clinical risk factors and MRI have low predictive capacities that will only detect 
50–60% of patients at risk with a 15–30% false positive rate [area under the curve (AUC) = ∼0.7], while the electrophysio-
logical method detects 90% of events with a 20% false positive rate (AUC = ∼0.89). Given improved understanding of com-
plex arrhythmogenesis, arrhythmic SCD is likely to be more accurately predictable using electrophysiologically based 
approaches as opposed to current guidelines and should drive further development of electrophysiologically based methods. 
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Introduction 
The majority of sudden cardiac deaths (SCD) in hypertrophic 
cardiomyopathy (HCM) are due to malignant arrhythmias1 and so 
are an electrophysiological problem, but the European Society of 
Cardiology guidelines recommends prediction of an arrhythmia, and 
implantable cardioverter defibrillator (ICD) implantation, through 
non-electrophysiological means, a combination of clinical ‘risk factors’2 

(RFs) based on a regression model.3 

If RFs are used to predict SCD in HCM, there presumably must be a 
close relationship between the mechanism of arrhythmogenesis and 
the RFs in question. The components of the electrophysiological sub-
strate for ventricular arrhythmias, including ventricular fibrillation 

(VF), have been known for many years. They are temporary conduction 
block with slowed conduction that gives tissue ahead of the re-entrant 
wavefront sufficient time to repolarize. It is also known that the sub-
strate arises dynamically.4 In contrast, the relationship between clinical 
RFs and the causal chain of events underlying SCD is unclear, but were 
there a strong causal chain, RFs should have similar predictive capacity 
to electrophysiological approaches in assessing patients’ risk of SCD. 

The purpose of this paper is to scrutinize models for the prediction 
of SCD, their clinical consequences, and to explain intelligibly the stat-
istical reasoning and how they translate to informing clinical decisions. 
We conclude that these methods, which are based on regression be-
tween clinical RFs and risk, have predictive capacities that are at the 
lower limit of acceptability and that new approaches through 
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electrophysiology may be more promising and warrant further devel-
opment. The RF studies analysed have enough primary data to allow 
statistical analysis and are regarded as exemplars of the RF approach. 
One is the first multiple RF study for prediction of SCD,5 another in 
which a multiple regression model3 was further tested and validated6 

and a model combining late gadolinium enhancement (LGE) on MRI 
combined with RFs.7 A further study using multiple RFs in paediatric pa-
tients with a similar methodology to O’Mahony et al. and O’Mahony 
et al.3,6 is analysed.8 

These RF studies are compared to an electrophysiological method, 
‘paced electrogram fractionation analysis (PEFA)’, described in multiple 
prior studies9,10,11,12 and was designed to expose explicitly the electro-
physiological (EP) effects of disarray that could form one component of 
the re-entrant EP substrate: delayed intramyocardial conduction as a 
result of slowed or tortuous conduction and/or temporary block, 
which allows repolarization of refractory tissue before being re-excited 
by the advancing re-entrant wavefront. Although disarray had been 
speculatively associated with a re-entrant substrate,13–16 the challenge 
was to demonstrate its effects. The method involves detection of small, 

fractionated potentials at the end of the paced electrogram that appear 
and are delayed as the coupling interval of the extrastimuli is reduced 
(see Saumarez et al.9 and Figure 3). This fractionation is not seen during 
sinus rhythm and shows the capacity for dynamic delayed conduction as 
the myocardium is perturbed. The PEFA technique quantifies these ef-
fects by using two parameters, the increase in electrogram duration and 
the S1S2 coupling interval at which delay increases, and so is a physio-
logical, rather than a regression, model. This was developed using 143 
patients and resulted in a discriminant criterion with 18 VF patients (8 
prospective) and 13 non-VF patients being test positive and 2 VF patients 
and 110 non-VF patients being test negative. (Subsequent data showed 
that prospective and retrospective PEFA values in VF patients were 
from the same distribution.) This criterion was tested prospectively in 
a study of 179 patients designed to determine if PEFA had superior pre-
dictive capacity to RFs by measuring both in the same patients,17 and 2 fur-
ther patients who had events following publication are included in the 
analysis below. These studies were designed to use the minimum number 
of patients (since they are invasive) to achieve statistically significant re-
sults. However, they form a large electrophysiological series, and they 
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Figure 1 ROCS from two normal distributions whose means are separated by 0.5, 1.0, 1.5, and 2.0 SDs of the lowest valued distribution. (A) The SDs 
are the same and (B) the SD of the higher valued distribution is reduced to 0.3, thus decreasing the overlap of the distributions and improving the 
predictive value. The "poor test" curve marked in (A) is an example of poor predictive capacity (AUC = 0.63), while the "good test" in (B) is an example 
of high predictive capacity (AUC = 0.97). The points of 90% sensitivity are marked on the curves, and their corresponding false positive rates are shown 
by the arrows projected on the abscissa. The lower curves show how the AUC varies with the difference in means.   
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suggest that electrophysiological methods with further development may 
give substantially better risk prediction. The purpose of this paper is to 
stimulate research into, and to provoke discussion over, the merits of 
risk factor and EP-based risk prediction. 

Prediction 
‘Prediction is very difficult, especially if it’s about the future’ (Niels 
Bohr). Prediction of SCD risk and ICD implantation revolve around 
the statistical models that have been used to determine the relationship 
between the risk and the variables measured to infer that risk. Thus, 
ICD prescription is related to the performance of the statistical models, 
and so the methods used in this paper are explained so as to be intel-
ligible to the general reader. 

A useful tool for analysing this problem is the ‘receiver operating 
characteristic’ (ROC) curve, which is a method of quantifying the over-
lap of two sets of data. A predictor, which varies from, say, zero to 100, 
is calculated for a population. For each value of the predictor, the num-
ber of events and non-events below that value is determined, which al-
lows the sensitivity (true positive rate) to be calculated as well as the 
false positive rate (1-specificity). This yields a curve that shows what 
fraction of patients will be truly and falsely identified for any value of 
the predictor. Examples of these curves are shown in Figure 1. The crit-
ical measurement from the point of SCD is the number of false posi-
tives for a given true positive rate. If one is trying to detect 90% of 
events, then the false positive rate can be determined from the inter-
section of the ROC (Figure 1) with 90% sensitivity projected on the ab-
scissa. There is a difficulty with ROCs when the data are categorical 
rather than continuous. While on a continuous curve, one can deter-
mine the false positive rate for any sensitivity, when using an ROC based 
on categories, one can only determine the sensitivity and false positive 
for each category, and it is meaningless to ask, if one is using the number 
of clinical RFs as categories, ‘what is the sensitivity of one and a half RFs’? 

Thus, the ROCS for categorical data are plotted as discrete points ra-
ther than a continuous curve. 

The performance of prediction is measured by the AUC. ‘In general, an 
AUC of 0.5 suggests no discrimination (i.e. ability to diagnose patients 
with and without the disease or condition based on the test), 0.7 to 
0.8 is considered acceptable, 0.8 to 0.9 is considered excellent, and 
more than 0.9 is considered outstanding’.18 While it is accepted that 
an AUC of 0.9 represents an ‘outstanding’ test, this lacks intuitive mean-
ing. As an example, UK adult height data19 were used to calculate the 
ROC for distinguishing men from women on the basis of height. The 
AUC is 0.90 and so (astonishingly) the majority of medical tests are sub-
stantially less accurate than distinguishing men from women on the basis 
of their height! However, this is age dependent and comparing the heights 
of 16-year-old girls with those of 14-year-old boys, the AUC is 0.5, 0.7 for 
15-year-old boys, and 0.83 for 16-year-old boys, and these comparisons 
should be borne in mind when considering the studies described below. 
For normal distributions with equal variances, an AUC = 0.7 implies a dif-
ference in the means of ∼0.75 σ, and an AUC = 0.9 corresponds to a dif-
ference in means of 1.8 σ. If the variance of the SCD group is less than the 
non-SCD group, the AUC will be increased for a given difference be-
tween the means of groups as shown in Figure 1, and this effect is import-
ant in enhancing predictive accuracy. 

Given that an ROC has been calculated from a single set of data, how 
can its errors be estimated? There are two approaches, which are wide-
ly used in statistics, diagnostics, and artificial intelligence: the first is the 
‘bootstrap’,20 which is a method of making a generalization about the 
population from which a single group is drawn and involves generating 
a new data set by random sampling of the data. The second is to gen-
erate a sample of the population based on random sampling of its 
underlying statistics and then apply the risk model to the sample 
(‘Monte Carlo’ method). By repeating these methods many times, 
the limits of the ROC can be established. 

A problem with using data taken from publications is that it is rarely 
complete. One major issue is that each patient has been followed for 
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Figure 2 Mean convex hull ROCs for non-electrophysiological risk prediction together with the 2.5% and 97.5% confidence limit. (A) Curve 1 — 
O’Mahony ‘Model A’, Curve 2 Monte Carlo analysis using estimated 5-year survival for Elliott et al.,5 and Curve 3 from Norrish.8 (B) O’Mahony (2017) 
‘Model B’ with ±2.5% limits for 2147 patients. The dashed lines show the limits when calculated for 250, 500, and 1000 patients.   
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different lengths of time, ‘censored’, and this requires correction. The 
EP and RF data in Saumarez et al.17 are not censored, each patient 
was followed for 5 years, and the ROC can be constructed directly. 
In censored data (where the length of follow-up of each patient is 
not specified), an indirect approach is used. The mortality of each group 
in a study at 5 years is quoted,5,6,7,9 having been calculated through 
Kaplan–Meier (KM) statistics, which is specifically designed to calculate 
mortality rates while compensating for censoring. Given the number of 
patients in each group and their mortality, the ROC can be calculated 
and its limits determined by Monte Carlo simulation (Figure 2). 
Receiver operating characteristics generated from raw, censored data 
and those calculated from KM result in difference in an AUC of 
∼0.03. The AUC for censored data can be calculated and is the con-
cordance or ‘C-index’21 and is quoted in the studies discussed below. 

Methods 
Each ROC was calculated with convex hull correction and the confidence 
limits determined via a bootstrap or from Monte Carlo simulation with 
10 000 simulations. For categorical ROCs, the results of simulation were 
checked analytically. The t-bootstrap was used to determine significance le-
vels of the bootstrapped AUC. The ROC for Elliott et al.5 was taken from 
RF frequencies and SCDs in each group in the text, and the Monte Carlo 
analysis was performed using the estimated 5-year mortalities of each 
group. The survival curves in O’Mahony et al.6 were used to calculate the 
survival rates of each group (high, medium, and low) and their proportions 
of the population (Table 46). The ROC was calculated at 5 years (i.e. non- 
censored) by simulation of 2147 patients with these proportions (‘Model 
A’). The regression equation in O’Mahony et al. and O’Mahony et al.3,6 

was used to compute the ROC in Figure 2B, and the data given in Table 2 
of O’Mahony et al.6 were used for Monte Carlo analysis (‘Model B’) . The 
maximum wall thickness, left atrial diameter, and age were assumed to be 
normally distributed and the incidence of non-sustained ventricular tachy-
cardia (NSVT), a family history of SCD, and the presence of syncope bino-
mially distributed and changed for each simulated ROC to create a wide 
range of risk profiles for the population. The LV outflow tract gradient 
was assumed to be from a gamma distribution (α = 1.75, β = 7.0 fitted to 
conform to the mean and extrema quoted). A sensitivity analysis was per-
formed by varying the incidence of the family history of sudden death 
(FHSD), NSVT, and syncope from 5 to 35% of the population since these 
three predictors dominate the regression function. The confidence limits 
were also calculated for populations of 250 500 and 1000 patients as well 
as the 2147-patient study population. The data from Norrish8 were ana-
lysed in a similar way to Model A in O’Mahony et al.6 using the initial pro-
portions of the 0–4%, 4–6%, and >6% mortality patient groups. 

The LGE data were taken from Chan et al.7 and divided in the four groups 
specified, 0 LGE, 1–9, 10–19, and ≥20, and these classes, together with data in 
Table 2, were used to form the censored ROC, together with a ROC for the 
effect of risk factors. The convex hull AUC distribution was determined for RFs 
with random association with 37 events. A Monte Carlo model, with 1293 sub-
jects, was constructed from the distribution of LGE, which was assumed among 
the 42% of patients with LGE to be from an exponential distribution (λ = −8.6, 
median 6, and quartiles 3 and 12). A sensitivity analysis was performed by per-
turbations of this distribution. The survival from SCD was obtained by interpol-
ation of the 5-year event rate of patients without RFs (Table 3 in Chan et al.7) 
using a cubic polynomial. The RFs of each subject were computed from their 
frequencies in Table 17 and assumed to be randomly distributed throughout 
the population. The increases in hazard due to risk factors were taken from 
Table 5,7 and their potentiation by LGE was applied as a continuous function 
of 1.5/10% increase in LGE (Table 57) was applied as Cox proportional hazards 
to the interpolated survival curve, thus enabling the probability of survival of 
each simulated ‘patient’ to be computed. 

The electrophysiological and risk factor data from Saumarez et al.17 have 
been recalculated using similar methods except that the electromagnetic 
interference in the signals, which varies between different laboratories 
and at different times in the same laboratory, has been reduced to a stand-
ard level using the discrete wavelet transform22 and Bayesian discrimination. 
During the 5-year follow-up period, two further events occurred in patients 
with no clinical risk factors and a high degree of fractionation, and these are 

included in the analysis. The RF ROC was generated using the method of 
Elliott et al.,5 and its limits were obtained by direct two-dimensional integra-
tion of its smoothed distributions, and comparison of the EP and risk factor 
methods in the same patient was performed via the ROC bootstrap. 

Results 
Figure 2A shows the ROCs for RFs in the case of number of RFs for Elliott 
et al.5 and survival according to low-, medium-, and high-risk groups for 
the O’Mahony ‘Model A’6 and for Norrish.8 The sensitivities for the 
O’Mahony Model A are 50% and 63%, respectively, with false positive 
rates of 14% and 30% (marked in Figure 2 with “high” and “medium” 
risk arrows, respectively), which correspond to the ESC guidelines2 for 
implantation and the paediatric study by Norrish,8 having sensitivities of 
0.75 and 0.9 for false positives of 0.45 and 0.65, respectively. Since these 
are not continuous variables, no further improvement is possible, and to 
improve on these sensitivities, the entire population would require an 
ICD. Figure 2B shows the ROC for O’Mahony ‘Model B,’ and the dashed 
lines show the confidence bands obtained when applied to a population of 
250, 500, and 1000 patients. The AUC for the model with 2147 patients is 
0.67, and the upper limits of the AUCs for 250, 500, and 1000 patients are 
0.9, 0.84, and 0.79, respectively. This wide variation of confidence 
limits explains the results from studies using the method of O’Mahony 
et al. and O’Mahony et al.3,6 with a relatively small number of patients. 
The AUC of the O’Mahony Model A is 0.71, which is compatible with 
the C-index of 0.7 quoted in O’Mahony et al.,6 the AUC of the Norrish 
model was 0.67, which is compatible with quoted C-index of 0.69,9 and 
that of the Elliott Monte Carlo model is 0.68. The ROCs are similar, which 
is due to the methods of O’Mahony et al.3 and O’Mahony et al.6 being de-
rived from that developed in Elliott et al.,5 and the regression equation in 
O’Mahony et al. and O’Mahony et al.3,6 is dominated by predictors: NSVT, 
FHSD, LV wall thickness, and syncope, which were used in Elliott et al.5 

The sensitivity analysis showed a change in an AUC of less than 0.03 for 
a 5–30% change in prevalence of NSVT, syncope, and FHSD. 

Figure 3A shows the ROCs and bootstrapped limits comparing EP 
and RFs in the same patients. The EP method, which has a continuous 
variable predictor, has better predictive capacity than risk factors, sug-
gesting that 20% (11–30%) of the population would need implantation 
to protect 90% of the patients who would suffer events. The difference 
in convex hull AUCs (0.89 vs. 0.71) is significant at P < 0.02 (Delong) 
and 0.01 (t-bootstrap) for a Type I error of 0.05. The RF curve is indis-
tinguishable from that of Elliott et al. and O’Mahony et al.5,6 

Results from Chan et al.7 are shown in Figure 4. The raw, censored, 
ROC curve for LGE (2) is plotted in Figure 4A and has an AUC of 0.67, 
while the risk factors (1) have no predictive capacity (AUC = 0.521, con-
vex hull AUC of 0.55; Monte Carlo range for random events: 0.5 to 0.58). 
The ROC using 5-year mortality and LGE with risk factors but no LGE en-
hancement of risk is shown in Curve 3 (AUC = 0.66), and the result of cor-
rection of LGE computed risk by additional interaction between risk 
factors and LGE is shown in Curve 4, with AUC = 0.7 (the AUC is quoted 
as 0.74, page 489 in Chan et al.7). The AUC of the latter varies from 0.68 to 
7.6 when computed with the upper and lower limits of the risk factor cor-
rection. Curve 5 is calculated from the data in Figure 2B of Chan et al.7 

Finally, Figure 5 shows the limits of the AUC estimates. The distribu-
tion calculated from the EP study17 is distinct. The mean AUCs for the 
RF methods are 0.67–0.72, while the mean AUC for the EP method is 
0.89 and at least 0.8. 

Discussion 
The results of this statistical treatment covering the five studies suggest 
that prediction methods that use conventional clinical risk factors and 
MRI have low predictive capacities that will only detect 50–60% of pa-
tients at risk with a 15–30% false positive rate (AUC = ∼0.7), while the  

4                                                                                                                                                                                             R. Saumarez et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/europace/advance-article/doi/10.1093/europace/euad045/7081432 by guest on 30 M
arch 2023



electrophysiological method, evaluated in small but statistically rigorous 
studies, detects 90% of events with a 20% false positive rate (AUC  
= ∼0.89), justifying the re-examination and development of the elec-
trophysiological methods. 

Does identification of a high-risk group 
necessarily imply prediction? 
A common misconception is that if a subgroup of patients can be iden-
tified with a high incidence of SCD, this necessarily implies good predic-
tion. Consider 2600 patients in which there is a subgroup of 200 
‘high-risk’ patients with an SCD incidence of 10% at 5 years, a subgroup 
of 600 with a 4% SCD incidence, while the remainder have an SCD 

incidence of 1.5%. This entire group is followed for 5 years, i.e. non- 
censored. Formal comparison of the survival curves using the 
Mantel–Haenszel test leads to a highly significant result (P < 0.001). 

At 5 years, a mean of 27 patients in the low-risk subgroup will have 
died, 24 in the medium-risk subgroup, as opposed to 20 in the high-risk 
group, so only 20 out of 71 deaths will have occurred in the high-risk 
subgroup giving a sensitivity of ∼28%. The ROC has an AUC of 0.66, 
such that if the high- and medium-risk patients received an ICD, 44 pa-
tients would be protected and 27 would die at the expense of 736 non- 
discharging ICDs. If, however, the SCD rate in the low-risk subgroup is 
lowered to 0.2%, the predictive capacity of the high- and medium-risk 
groups is substantially increased with an AUC of 0.84. Thus, apparent 
high predictive ability, on the basis of a high-risk subgroup, is dependent 
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are processed to identify each potential, and in high-risk patients, the electrograms become prolonged with multiple delayed potentials as the S1S2 
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on the size and mortality of the low-risk subgroup and may be substan-
tially reduced by a large low-risk, but not no-risk, group. Had there been 
a formal hypothesis in which predictive measures are explicitly stated, 
for example, the lower limit of the AUC will be greater than a specified 
value, this study would fail. 

Adequacy of statistical power 
Construction of regression models require, as a rule of thumb, 10 
events for every predictor in the model, and therefore database stud-
ies3,5,6,7,8 which are used to construct regression models must have a 
large number of patients to achieve a numerically reliable regression 

model irrespective of the predictive capacity of the model in question. 
Therefore, one should not automatically assume that a study containing 
a larger number of patients is a ‘better’ study than one with a smaller 
number without qualifying the predictive capacity. While the paced 
fractionation method17 was designed using substantially less patients 
(179), Figures 3 and 5 show that it had adequate statistical power be-
cause it was measuring large effects. 

Differences in recruitment and risk factors 
Patients in the PEFA studies17 were recruited in order of presentation, 
and this led to a lower proportion of patients with zero risk factors than 
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Figure 4 ROC curves for LGE calculated from Chan et al.7 Panel (A) is the primary data. Curve 1 is computed from the number of risk factors, while 
Curve 2 is the raw (censored) LGE data. Panel (B) shows the model outputs. Curve 3 (dotted line) is the simulation of survival using LGE only, and Curve 
4 is the result of applying the non-linear interaction between risk factors and LGE. Curve 5 is plotted from the data shown in Figure 2B of Chan et al.7 

Note that Curves 1, 2, and 5 are based on categories and Curves 3 and 4 are based on a continuous variable: risk.  
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Figure 5 Distributions (0.025–0.975) and means of AUCs computed via bootstraps and Monte Carlo analysis for convex hull ROCs. The mean AUC 
for non-EP methods is ∼0.67–0.72 and for EP ∼0.89.   
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database studies, and this may have been influenced by the report that 
patients with zero or 1 RFs were low risk5 although more than half the 
SCD occurred in these groups.5 However, this does not invalidate the 
physiological relationship between slowed conduction and SCD. The 
regression equation used in O’Mahony et al., O’Mahony et al., Maron 
et al., Zegkos et al., Dong et al., Vriesendorp et al., Fernández et al., and 
Leong et al.3,6,23–29 is dominated by four factors, NSVT, syncope, LV 
wall thickness, and FHSD, and these RFs were measured in the PEFA 
study17 although LV thickness was recorded as a categorical variable. 
The similarity between the bootstrapped ROCs and AUCs for Elliott 
et al., O’Mahony et al., and Saumarez et al.5,6,17 shown in Figure 5 sug-
gests that the results not substantially affected by RF selection. 

‘All models are wrong—some are useful’: 
what is a useful level of prediction? 
The level of prediction by RFs with AUCs ∼0.67–0.74 from five studies 
is at the lower limit of the definition of acceptability18 and implies that 
only half of the at-risk patients are identified for a 20% implantation 
rate. This was reported in a database study,23 which appears to be with-
in the limits of O’Mahony et al.,6 the ACC/AHA and ESC guidelines 
have poor specificity24 for a reasonable sensitivity, the ESC guidelines 
had an AUC of 0.68 in a study of 511 Chinese patients,25 and a study 
comparing the ESC guidelines to the ACC guidelines had a C-index of 
0.69.26 However, with an AUC of 0.89, the EP method appears to 
have useful predictive capacity. Since both the original study on which 
the ESC guidelines are based3 and the validation study6 have quoted 
C-index (Uno’s) of 0.7 and the paediatric study 0.698 (and 0.71 in a val-
idation study27), it is not surprising that there should be a wide variation 
in results when the guidelines are used predictively. Nevertheless, a 
study of 502 patients28 reported using the ESC guidelines that the 
AUC for deaths was 0.92. This high AUC is due to zero mortality in 
the low-risk group (348 patients), while applying the estimates from 
O’Mahony et al. and O’Mahony et al.3,6 between 3 and 9 deaths or 3 
to 315 would be expected, which would have lowered the AUC. 
Events occurred in low-risk patients in most studies3,5,6,7,8,22,23,24 and 
are in the 2–4% event range, and so the high predictive accuracy in 
this study28 stems from an unlikely event. The C-index of 0.86 for 
ESC method in 288 patients29 is within the 2.5% limits of 0’Mahony 
‘Model B’ (288 patients, AUC = 0.57–0.87) (as shown in Figure 2B) 
and has a 50% sensitivity. 

To devise a strategy for ICD implantation, the maximum acceptable 
rate of failed predictions must be defined and viewed against the num-
ber of implants that will deliver therapy. If 90% of potentially lethal ar-
rhythmias, aborted by ICD implantation, is a reasonable goal, risk 
factors cannot achieve this without implanting the entire population. 
A judgement about what is effective prediction depends on the severity 
of the effect in question and the potential complications of therapy 
guided by the predictor as well as the actual SCD rate. For example, gi-
ven a 3% 5-year SCD rate, the ESC implant guidelines would expect 15 
deaths/1000 and 1 discharge for every 10 implantations (12/1000 
deaths and 1 discharge/17 ICDs for ‘consider implantation’), while 
the EP method would suggest 3/1000 deaths and 1 discharge/8 ICDs. 
One might argue that EP is too elaborate and expensive to use in the 
population, or alternatively one might argue that it identifies more pa-
tients with events and prevents life-changing and expensive ICD im-
plantation in young patients who do not need one. 

Therefore, the use of EP becomes a policy decision, which may vary 
between countries (e.g. there is a four-fold difference in total implanta-
tions between Germany and the UK), on the costs of preventing an 
SCD and the costs and the risks of EP testing, as well as those of non- 
discharging ICDs and their complications, which are roughly the same 
level as the appropriate discharge rate.30,31 In the case of SCD, and in 
view of potential ICD complications, a strategy based on marginal levels 
of prediction seems questionable, although ATP therapy for prodromal 

VT and increased safety of the Subcutaneous ICD may mitigate compli-
cations and improve matching of the device to the patient.32,33 

Causality in prediction 
Prediction can be developed by regression or causality. Regression3,5,6,8 

attempts to link a set of variables through a function to an observation 
(SCD) without any inference about the mechanisms involved, and any 
assertion about the relationship between risk factors and the mechan-
isms of SCD is speculative. Causality uses a mechanistic model of the 
process to infer a result and may be more powerful as it directs attention 
towards what variables should be measured to perform prediction. The 
basis of the EP method17 is that lethal arrhythmias are re-entrant, 
and re-entrant arrhythmias require slowed conduction as the substrate 
for their initiation, and this could be caused by disarray. Thus, the hy-
pothesis was raised that patients who are at risk of an arrhythmia 
should have slowed conduction velocities demonstrable in their ven-
tricular myocardium without inducing an arrhythmia. This was tested 
by measuring conduction delay following paced stimuli at various sites 
in the ventricles,9,10 which raised the hypothesis for formal prospective 
testing17 as described in the introduction. However, the delays seen in 
multiple diseases,11 including dilated cardiomyopathy (DCM), idiopathic 
VF, the long QT syndrome (LQTS),34 and paroxysmal atrial fibrilla-
tion,35 indicated that the mechanism of VF in HCM, assumed to be 
due to disarray, is a subset of a more general mechanism of arrhythmo-
genesis and the precise mechanisms in HCM are not fully understood.36 

The consistent association between fractionated paced electrograms 
and arrhythmias from multiple studies suggests that electrophysiology, 
rather than risk factors, measures something close to the causal chain of 
events in SCD, implying that substantially better prediction is possible. 

A further concept raised by the EP studies is that recordings made in 
sinus rhythm do not show the effects associated with SCD. This is con-
sistent with the arrhythmia substrate arising dynamically, with the per-
turbation of the myocardium that leads to an arrhythmia being 
mimicked by pacing, and it is therefore unlikely that meaningful mea-
surements relating to risk can be made in resting sinus rhythm. This 
concept is supported by a recent study on the EP mechanisms in the 
initiation of induced VF, which directs further attention to the key de-
terminants of SCD,37 while the role of PES remains controver-
sial,10,38,39 may be non-specific with aggressive stimulation, and does 
not reveal an arrhythmia mechanism per se. A recent study in a small 
number of patients has shown that ECG-I during and immediately after 
exercise (but not at rest) discriminates VF and non-VF patients on the 
basis of abnormal ventricular activation,40 which is consistent with 
PEFA measurements. The relative merits of myocardial perturbation 
through exercise or pacing and ECG or intracardiac recordings remain 
an open question in studies designed not to induce an arrhythmia. 

Testing prediction 
Crucially, predictive models need testing. Clinical predictive models 
constructed from databases are rapidly evolving,41,42 but database 
use and selection has drawbacks, particularly of inhomogeneity and 
that key predictive variables may not be included in the database.43,44 

Ideally patients should be recruited prospectively and the formal pre-
dictive hypothesis tested by predicting the patients’ risk in advance as 
was the case in Saumarez et al.17 The use of databases to test a predict-
ive hypothesis is possible and is easier to perform. However, if the ad-
vantage of having a large number of subjects from multiple databases is 
not reflected in a substantial improvement in prediction statistics, the 
data may be only distantly related to the effect in question and valid-
ation fails. A further important issue in validation and comparison of 
models is that different models, constructed from the same data, 
may yield substantially different results, as has recently been described 
in the computation of the reproduction number (‘R’) in the recent 
Covid pandemic.45  
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A number of studies using MRI have suggested that there may be 
SCD markers, but it is unclear how these markers are related to the 
fundamental processes involved in arrhythmogenesis. While fibrosis is 
revealed, this gives no information about the potential for re-entrant 
pathways or change in tissue refractoriness. The study analysed here re-
ported that LGE was associated with increased mortality in HCM,7 

when combined with RFs (AUC = 0.74, page 489 in Chan et al.7). 
Despite the RFs in this study having no predictive capacity, per se, 
they apparently enhance the risk associated with LGE, although the pre-
dictive capacity remains low. The model that computes the data shown 
as Curve E in Figure 4 (Figure 2B in Chan et al.7) is not sufficiently well 
described to be analysed, and it is not clear how such enhancement 
of prediction can be related to the primary data. If MRI has potential 
for non-invasive risk prediction, it is essential that experiments are de-
signed with prediction in mind, rather than identifying high- and low-risk 
groups, which can be misleading. 

Given modern electrophysiological knowledge, the prediction of an 
arrhythmia by proxies is an extraordinary claim, and extraordinary 
claims require extraordinary evidence. This analysis challenges the cur-
rent approach of using risk factors and imaging and implies they are the 
wrong predictors to achieve a high and clinically useful risk assessment 
and that their use to create guidelines for patient management is ques-
tionable.2 The argument about non-EP proxies also applies to heart fail-
ure where the use of left ventricular ejection fraction is used as a 
predictor. Using data from Curtis’ study of the relationship between 
prognosis and LVEF in 7788 patients,46 the calculated AUC for SCD 
against LVEF is ∼0.61, which, despite forming part of national guidelines, 
implies that it has little value for prediction and appropriate ICD 
implantation.47 

Finally, this study implies that the prediction of SCD and ICD im-
plantation needs to be reassessed and refined, using statistical techni-
ques which genuinely reflect prediction,48 and that we need to 
refocus our efforts on the insights gained by cardiac electrophysi-
ology17,37 into the mechanisms of arrhythmogenesis to develop ration-
al, physiologically based, models for SCD prediction. The aim of this 
paper is to open this debate. 
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