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Abstract: Platelets are essential for the formation of a haemostatic plug to prevent bleeding, while
neutrophils are the guardians of our immune defences against invading pathogens. The interplay
between platelets and innate immunity, and subsequent triggering of the activation of coagulation
is part of the host system to prevent systemic spread of pathogen in the blood stream. Aberrant
immunothrombosis and excessive inflammation can however, contribute to the thrombotic burden
observed in many cardiovascular diseases. In this review, we highlight how platelets and neutrophils
interact with each other and how their crosstalk is central to both arterial and venous thrombosis and
in COVID-19. While targeting platelets and coagulation enables efficient antithrombotic treatments,
they are often accompanied with a bleeding risk. We also discuss how novel approaches to reduce
platelet-mediated recruitment of neutrophils could represent promising therapies to treat thrombosis
without affecting haemostasis.

Keywords: platelets; neutrophils; arterial thrombosis; deep vein thrombosis; neutrophil extracellular
traps

1. Introduction

Platelets and neutrophils are abundant cells in peripheral blood. Classically, platelets
exert an essential haemostatic role, while neutrophils are important for innate immune
responses. The essential role of platelets in haemostasis is consistent with the bleeding
diathesis associated with thrombocytopenia and platelet function disorders [1,2]. Similarly,
neutropenia and loss of neutrophil function have been linked to severe, life-threatening
bacterial infections [3,4]. Beside their classical roles, the involvement of platelets and
neutrophils in thrombosis and inflammation has received considerable attention within the
past decade. It is clear that, unwanted/excessive platelet–neutrophil interactions can occur
in certain inflammatory conditions, such as atherothrombosis, atherosclerosis, stroke, deep
vein thrombosis (DVT), diabetes, heart failure, sepsis, transfusion-related acute lung injury
(TRALI), inflammatory bowel disease [5–13]. In 2013, Engelmann and Massberg formulated
the term immunothrombosis to describe the physiological process by which the coagulation
pathway is activated to limit the spread of a pathogen within the bloodstream [14]. The main
drivers of immunothrombosis are platelets and innate immune cells including neutrophils,
monocytes and macrophages. Whereas immunothrombosis is beneficial to prevent the
invading pathogens entering the bloodstream, in certain inflammatory conditions such as
atherosclerosis or DVT, it can lead to collateral damage of organs by excessive thrombus
formation. In this review, we describe the various receptors and ligands involved in platelet–
neutrophil interactions and highlight how mutual activation of platelets and neutrophils can
influence various inflammatory pathological conditions, focusing on thrombosis. Finally,
current and future approaches to target thrombosis where the formation of the thrombus
constitutes a fatal endpoint will also be discussed.
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2. Platelet–Neutrophil Complexes Drive Thrombosis and Inflammation

Haemostasis is a highly regulated physiological process that has evolved to main-
tain the integrity of the cardiovascular system and prevent blood loss. It is defined by
two distinct stages, primary and secondary haemostasis. Primary haemostasis is com-
prised of the accumulation, activation, and aggregation of platelets at the site of vessel
injury, whereas secondary haemostasis refers to the activation of an enzymatic cascade,
resulting in deposition of fibrin. Despite these being distinct processes, they occur simulta-
neously and are mechanistically interdependent. Captured platelets at the site of injury
are exposed and respond to a plethora of agonists (e.g., VWF, collagen, thrombin, ADP,
thromboxane, fibrin) and, as a result, become activated depending on the agonist(s) and
their concentration [15,16]. Platelet response is therefore “tuneable” to ensure the forma-
tion of the haemostatic plug. Haemostasis is tightly regulated, but under pathological
conditions can lead to arterial, venous and microvascular thrombosis. Classical under-
standing of the differences between these historical disorders suggests that arterial thrombi
appear at regions of vessel injury, most commonly following rupture of atheromas, where
sub-endothelial matrix proteins such as collagen are exposed to components of blood that
can initiate thrombosis. This process occurs at high shear rates where platelets are quickly
recruited to the site of injury. Thrombi that form are therefore described as predominantly
platelet-rich or ‘white clots’. In comparison, venous thrombi form on top of an intact
endothelial layer over longer periods of time and at lower shear rates. These are classi-
cally described as fibrin-rich or ‘red clots’ and can be heterogenous with areas of both red
and white thrombi. As such, current therapy consists primarily of anti-platelet agents for
arterial thrombosis and anticoagulant treatment for venous thrombosis. However, the mech-
anisms behind the formation of both arterial and venous thrombi are complex and involve
inflammatory processes that result in more intricate mechanisms that drive thrombosis.

Platelet–neutrophil interactions are known to be important for the normal haemo-
static response, refs. [17,18] in innate immunity to facilitate bacterial infection clearance,
refs. [19,20] and perhaps more importantly to pathological thrombus formation [6,21,22].
In circulation, platelets and neutrophils do not readily interact. Therefore, known platelet–
neutrophil interactions require the platelet and/or the neutrophil to be activated or primed
to promote cell–cell binding (Figure 1). For example, activated platelets undergo degranu-
lation and through this process present important leukocyte receptors on their surface, e.g.,
P-selectin and CD40 ligand (CD40L) that will interact with their respective receptors con-
stitutively expressed on the surface of neutrophils, P-selectin glycoligand-1 (PSGL-1) and
CD40 [9,23–27]. Engagement of P-selectin with PSGL-1 leads to activation of integrins (Mac-
1 and LFA-1 also termed CD11b/CD18/αMβ2 and αLβ2, respectively) via downstream
signalling of tyrosine kinases [28,29]. Once activated, Mac-1 stabilises platelet–neutrophil
interactions by binding directly to platelets through GPIbα, as well as JAM-3 and ICAM-
2, or indirectly to activated αIIbβ3 via a fibrinogen bridge (Figure 1) [30–34]. Activated
platelets also facilitate neutrophil recruitment and activation through the release of soluble
mediators from granules including chemokines (CCL5/RANTES, CXCL4/PF4, CXCL5,
CXCL7), serotonin, but also the damage-associated molecular pattern (DAMP) high motil-
ity group protein B1 (HMGB1) [35–38]. Vice-versa, neutrophil activation leads to granule
release including cathelicidin (LL-37), myeloperoxidase (MPO), production of reactive
oxygen species (ROS), and release of neutrophil extracellular traps (NETs) all promoting
platelet activation and thrombus formation [22,39,40]. It is clear that platelet–neutrophil
interactions lead to reciprocal activation of either cell type and can influence thrombus
formation (Figure 1).
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Figure 1. Known interactions between platelets and neutrophils. These can be mediated by direct 
contact between platelet and neutrophil receptors or indirectly via secreted ligands or molecules 
present in plasma. Most of these interactions require either the platelet and/or the neutrophil to be 
activated. Neutrophils can interact via PSGL-1 or CD40 with P-selectin and CD40L, respectively, on 
activated platelets. PSGL-1 binding to P-selectin triggers downstream signalling in neutrophils 
(black solid lines) leading to Mac-1 integrin conformational change from a closed to open confor-
mation (dotted black line). These events can be enhanced by cooperative signals from CXCL1/4/7 
immobilised by proteoglycans binding to CXCR2 or Mac-1. Activated Mac-1 can further promote 
binding to platelets directly via GPIbα or ICAM-2 or indirectly via fibrinogen-bound αIIbβ3. Addi-
tional depicted interactions are granule-release HMGB1 from platelets with neutrophil RAGE re-
ceptor promoting further neutrophil activation and LL-37 released from neutrophils (dotted red 
line) activating platelets via GPVI. Lastly, direct binding of activated αIIbβ3 to neutrophil receptor 
SLC44A2 can trigger neutrophil activation and NET formation. GPIbα- glycoprotein Ibα; GPVI- gly-
coprotein VI; ICAM-2- intracellular adhesion molecule 2; CD40L- CD40 Ligand; P-sel- P-selectin 
(CD62P); CXCL- C-X-C Motif Chemokine Ligand; HMGB1- High mobility group box 1 protein; 
PSGL-1- P-selectin glycoprotein ligand; SLC44A2- solute carrier family 44 member 2 or CTL-2; 
MAC-1- macrophage 1 antigen or CD11bCD18 or αMβ2; LL-37—human cathelicidin antimicrobial 
peptide; RAGE- receptor of advanced glycation end products. Created by Biorender.com. 

Alongside platelets, neutrophils play a central role in venous and arterial thrombosis 
where they have been reported to be recruited early and to represent the most abundant 
leukocytes at the thrombus site [10,41]. Neutrophils can contribute to the initiation of 
thrombosis through a number of mechanisms, in particular with the release of highly 
thrombotic NETs [10,22,40]. Both animal and human studies have demonstrated the pres-
ence of NETs within a variety of thrombi, refs. [10,42–45] although in many cases it is 
difficult to ascertain whether their formation occurred during or post thrombus for-
mation. Evidence suggests that NETs may be an important driver of thrombus develop-
ment favouring red blood cell entrapment, platelet aggregation and activation of the co-
agulation cascade. NETs can bind VWF and fibrinogen to which platelets can bind and 
become activated [46,47]. Platelet activation could also be mediated by histones, as his-
tones H3 and H4 have been shown to trigger platelet activation and aggregation both di-
rectly via toll-like receptors (TLR) 2 and 4, and indirectly via fibrinogen [45,48]. Moreover, 
NETs are negatively charged and, as such, can bind and activate FXII, initiating the intrin-
sic coagulation cascade [10]. The importance of the contact pathway activation in throm-
bosis is exemplified by several promising anticoagulants targeting FXI (downstream of 

Figure 1. Known interactions between platelets and neutrophils. These can be mediated by direct
contact between platelet and neutrophil receptors or indirectly via secreted ligands or molecules
present in plasma. Most of these interactions require either the platelet and/or the neutrophil to be
activated. Neutrophils can interact via PSGL-1 or CD40 with P-selectin and CD40L, respectively, on
activated platelets. PSGL-1 binding to P-selectin triggers downstream signalling in neutrophils (black
solid lines) leading to Mac-1 integrin conformational change from a closed to open conformation
(dotted black line). These events can be enhanced by cooperative signals from CXCL1/4/7 immo-
bilised by proteoglycans binding to CXCR2 or Mac-1. Activated Mac-1 can further promote binding
to platelets directly via GPIbα or ICAM-2 or indirectly via fibrinogen-bound αIIbβ3. Additional
depicted interactions are granule-release HMGB1 from platelets with neutrophil RAGE receptor pro-
moting further neutrophil activation and LL-37 released from neutrophils (dotted red line) activating
platelets via GPVI. Lastly, direct binding of activated αIIbβ3 to neutrophil receptor SLC44A2 can
trigger neutrophil activation and NET formation. GPIbα- glycoprotein Ibα; GPVI- glycoprotein VI;
ICAM-2- intracellular adhesion molecule 2; CD40L- CD40 Ligand; P-sel- P-selectin (CD62P); CXCL-
C-X-C Motif Chemokine Ligand; HMGB1- High mobility group box 1 protein; PSGL-1- P-selectin
glycoprotein ligand; SLC44A2- solute carrier family 44 member 2 or CTL-2; MAC-1- macrophage 1
antigen or CD11bCD18 or αMβ2; LL-37—human cathelicidin antimicrobial peptide; RAGE- receptor
of advanced glycation end products. Created by Biorender.com.

Alongside platelets, neutrophils play a central role in venous and arterial thrombosis
where they have been reported to be recruited early and to represent the most abundant
leukocytes at the thrombus site [10,41]. Neutrophils can contribute to the initiation of throm-
bosis through a number of mechanisms, in particular with the release of highly thrombotic
NETs [10,22,40]. Both animal and human studies have demonstrated the presence of NETs
within a variety of thrombi, refs. [10,42–45] although in many cases it is difficult to ascertain
whether their formation occurred during or post thrombus formation. Evidence suggests
that NETs may be an important driver of thrombus development favouring red blood cell
entrapment, platelet aggregation and activation of the coagulation cascade. NETs can bind
VWF and fibrinogen to which platelets can bind and become activated [46,47]. Platelet
activation could also be mediated by histones, as histones H3 and H4 have been shown
to trigger platelet activation and aggregation both directly via toll-like receptors (TLR)
2 and 4, and indirectly via fibrinogen [45,48]. Moreover, NETs are negatively charged
and, as such, can bind and activate FXII, initiating the intrinsic coagulation cascade [10].
The importance of the contact pathway activation in thrombosis is exemplified by several
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promising anticoagulants targeting FXI (downstream of FXIIa) currently in Phase II clinical
trials [49]. Finally, NETs may also modulate anticoagulant pathways via histones targeting
thrombomodulin (TM)-mediated activation of protein C or via their neutrophilic granular
content [50,51]. This includes neutrophil elastase (NE), which was associated with the
ability to inactivate tissue factor pathway inhibitor (TFPI) [50,51].

NET release has been considered to be a host innate immune response to entrap
and kill pathogens entering the bloodstream. Locally, initiating haemostatic mechanisms
may serve to prevent systemic spread. However, if these mechanisms are aberrantly or
excessively activated, these same protective processes can augment thrombus formation.
For this reason, understanding the mechanisms underlying platelet–neutrophil interactions
and what drives NET production are of particular interest.

3. Arterial Thrombosis

Arterial thrombi generally form following an atherosclerotic plaque rupture, through
an inflammatory process known as atherothrombosis. Platelets play a particular important
role both in the initiation and progression of atherogenesis and in the aftermath of the
plaque rupture [52,53]. This is exemplified by the success of anti-platelet therapies in
the treatment and prevention of myocardial infarction (MI) and stroke [54]. The rupture
of an atherosclerotic plaque leads to the exposure among other things of collagen and
TF that trigger platelet adhesion and potent platelet activation together with coagulation
initiation [55,56]. Activated platelets release secondary mediators including ADP, TxA2,
leading to further platelet activation and aggregation. This ultimately, but not always, leads
to a vaso-occlusive thrombi mostly formed of platelets that promote the deposition of large
amounts of fibrin (Figure 2) [57].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 26 
 

 

FXIIa) currently in Phase II clinical trials [49]. Finally, NETs may also modulate anticoag-
ulant pathways via histones targeting thrombomodulin (TM)-mediated activation of pro-
tein C or via their neutrophilic granular content [50,51]. This includes neutrophil elastase 
(NE), which was associated with the ability to inactivate tissue factor pathway inhibitor 
(TFPI) [50,51].  

NET release has been considered to be a host innate immune response to entrap and 
kill pathogens entering the bloodstream. Locally, initiating haemostatic mechanisms may 
serve to prevent systemic spread. However, if these mechanisms are aberrantly or exces-
sively activated, these same protective processes can augment thrombus formation. For 
this reason, understanding the mechanisms underlying platelet–neutrophil interactions 
and what drives NET production are of particular interest. 

3. Arterial Thrombosis 
Arterial thrombi generally form following an atherosclerotic plaque rupture, through 

an inflammatory process known as atherothrombosis. Platelets play a particular im-
portant role both in the initiation and progression of atherogenesis and in the aftermath 
of the plaque rupture [52,53]. This is exemplified by the success of anti-platelet therapies 
in the treatment and prevention of myocardial infarction (MI) and stroke [54]. The rupture 
of an atherosclerotic plaque leads to the exposure among other things of collagen and TF 
that trigger platelet adhesion and potent platelet activation together with coagulation in-
itiation [55,56]. Activated platelets release secondary mediators including ADP, TxA2, 
leading to further platelet activation and aggregation. This ultimately, but not always, 
leads to a vaso-occlusive thrombi mostly formed of platelets that promote the deposition 
of large amounts of fibrin (Figure 2) [57]. 

 
Figure 2. Platelet–neutrophil interactions in atherothrombosis. Atherothrombosis is characterised 
by atherosclerotic plaque rupture or erosion, exposing collagen-rich plaque material to the blood 
and causing subsequent thrombus formation. 1- Upon plaque rupture the subendothelial matrix 

Figure 2. Platelet–neutrophil interactions in atherothrombosis. Atherothrombosis is characterised
by atherosclerotic plaque rupture or erosion, exposing collagen-rich plaque material to the blood
and causing subsequent thrombus formation. 1- Upon plaque rupture the subendothelial matrix
becomes exposed, allowing VWF to bind collagen and exposing TF, initiating the extrinsic coagulation
pathway. 2- Upon the shear forces of the blood, VWF unravels and binds platelets via GPIbα. The fast
on and off rates of the VWF-GPIbα interaction allow the deceleration of platelets and their binding to
collagen receptors. 3- Platelets become activated and start forming aggregates while releasing their
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granule content. 4- This promotes the recruitment of additional platelets but also neutrophils to
the site of vascular injury via HMGB1 binding to neutrophil RAGE receptor. 5- Once recruited,
neutrophils become activated and release their granule content which further activates platelets
(e.g., LL-37 activating GPVI platelet receptor). Blood born TF from monocyte microvesicles further
augments the extrinsic coagulation pathway leading to thrombin release in the milieu. 6- Progres-
sively, the thrombus grows, mostly composed of platelets and fibrin that consolidate the thrombus
but with the presence of neutrophils. Platelet-induced activation of neutrophils triggers the formation
of NETs that further augment the coagulation system via activation of the contact pathway and
inhibiting anticoagulant TFPI. Ultimately, the overwhelming activation of the coagulation pathways
and platelets lead to excessive thrombus formation and arterial occlusion in myocardial infraction
and stroke. Created by Biorender.com.

Monocytes play an important role in atherogenesis where platelets facilitate their adhesion
and extravasation through the endothelium [53,56]. The role of neutrophils and platelet–neutrophil
interactions in this process and acute coronary events have not been studied as extensively as for
monocytes, but recent studies suggest they may facilitate some of these processes.

First, neutrophil counts were found to be directly correlated to MI size and left ventric-
ular function in patients undergoing percutaneous coronary intervention (PCI) for acute
ST-segment elevation MI (STEMI) [58]. The large clinical study CALIBER also suggests that
the neutrophil count was associated with the incidence of some cardiovascular diseases
including MI [59]. Secondly, neutrophils and NETs were found in human carotid atheroscle-
rotic lesions and are thought to be associated with a plaque instability phenotype [60,61]. A
recent study using mouse models of atherosclerosis, suggests that activated smooth muscle
cells (SMC) recruit and activate neutrophils in the plaque to form NETs and that histone H4
lyses SMC destabilizing the plaque [62]. Inhibition of Peptidyl arginine deiminase 4 (PAD4),
an enzyme required for NET formation, reduced plaque burden and thrombosis [61,63,64].
Thirdly, NETs were identified in human coronary thrombi from patients undergoing PCI as
well as in thrombi retrieved from mouse arterial thrombi [65–68]. Disrupting NET forma-
tion by blocking PAD4 function or by DNase prevented endothelial injury and reduced
thrombus formation [61,64,65]. Finally, the crosstalk between neutrophils and platelets
in arterial thrombosis has been highlighted by several studies, mostly in mouse models.
Neutrophil derived cathelicidin LL-37 was highly abundant in thrombi from acute MI
patients and its mouse homologue CRAMP was shown to activate the GPVI-signalling
pathway and facilitate further platelet aggregation [39]. Next, platelet derived HMGB1
activated both platelets via the TLR4-Myd88 pathway and neutrophils via RAGE promoting
NET formation [68,69]. The inhibition of platelet-HMGB1 reduced neutrophil infiltrates
and NETs, providing protection against thrombosis in an arterial thrombosis model [69].
An elegant study analysing the platelet proteome from MI patients, showed that elevated
levels of the neutrophil-derived DAMP S100A8/9 found in patient plasma influenced
platelet reactivity [70]. Additional mechanisms of interaction between neutrophils and
platelets may involve the P-Selectin/PSGL1 axis or GPIbα/MAC-1 and will be discussed
in “Targeting platelet–neutrophil interaction for thrombosis treatment” section.

Together with MI, one of the most serious clinical outcomes that can arise as a conse-
quence of atherothrombosis is stroke. Stroke is a leading cause of cardiovascular morbidity
and mortality worldwide. About 80% of strokes are caused by cerebral ischaemia, resulting
from a thrombus occluding cerebral blood vessels. Acute treatments of stroke involve
thrombus removal by thrombectomy, or thrombolysis with tissue plasminogen activator
(tPA). However, even after successful reperfusion the infarct sizes can increase due to
inflammatory responses (e.g., inflammatory cytokines release and ROS production) [8].
Therefore stroke is now defined as a thrombo-inflammatory condition, as a link has been
found between the initial thrombotic cause and the downstream inflammatory response in
the severity of infarct size and ischaemia-reperfusion [8]. Although platelet involvement in
stroke has previously been well characterised as part of the underlying thrombotic cause, it
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recently became apparent that platelets also play a crucial role in the subsequent stroke-
related inflammatory pathology. This was shown to be linked to the ability of platelets
to release pro-inflammatory chemokines, such as interleukin 1α (IL-1α), [71] but also to
platelet capacity to bind endothelial cells and help in the recruitment of neutrophils and
monocytes to the stroke site. The inflammatory involvement of platelets in stroke is thought
to be mediated via GPVI, as well as the VWF A1-GPIbα axis, but not αIIbβ3 [72–74]. In
line with this, recent clinical trials with GPVI antagonists showed promising outcomes in
the treatment of acute ischemic stroke [75–77]. Neutrophils were detected within hours of
stroke onset and their numbers correlated with the infarct size in humans and mice [78–80].
Another recent study revealed the importance of neutrophils in downstream microvas-
cular thrombosis post middle cerebral artery occlusion in rats [81]. The involvement of
neutrophils in ischaemic stroke has gained further support from studies analysing thrombi
from ischaemic stroke patients revealing that NETs were an important component of the
thrombi [66,67,82,83]. Interestingly, platelet-rich areas in stroke thrombi were accompanied
with fibrin rich-structures embedded with VWF, leukocytes and DNA in and around these
platelet-rich regions [84]. The importance of neutrophil–platelet interactions in stroke was
further demonstrated by several human studies where neutrophil–platelet aggregates were
associated with a higher risk of stroke or worse stroke outcome [79,85,86]. Lastly, mouse
models of stroke certainly have unequivocally demonstrated the importance of platelet-
mediated NET formation via release of HMGB1, and their pro-coagulant potential [78,87].

Although there is ample evidence that neutrophils are present in arterial thrombi
and through NETs participate in the formation of an occlusive thrombus perhaps their
reported stabilising effect on clots/resistance to thrombolysis may be of greater sig-
nificance [77,88–90]. A recent study suggests that NETs could play an important role
in the peri-infarct region during neovascularisation and that stroke recovery could be
improved by inhibiting NET formation with DNase or blocking PAD4 [91]. Improved
thrombolytic therapy by using DNase treatment has been observed in several studies,
but there is yet a clinical trial to target NETs for the treatment of cerebral and coronary
thrombolysis [41,77,92,93]. Interestingly, Carminita et al. reported antithrombotic prop-
erties of DNase on platelet and fibrin formation in a laser-induced thrombosis model in
mice as a result of the cleavage of ADP/ATP into adenosine by DNase, inhibiting not
only neutrophil functions but also platelets [94].

4. Deep Vein Thrombosis

Venous thromboembolism (VTE), which comprises deep vein thrombosis (DVT) and
pulmonary embolism (PE), is a leading cause of cardiovascular morbidity and mortality
worldwide and is identified as an inflammatory disorder [95]. The yearly costs associated
with the treatment of VTE-related incidents were estimated to be $7–10 billion in the US
in 2016 and £640 million in the UK in 2004, representing a great economic burden to their
respective healthcare systems, which has likely risen in recent years [96,97]. Compared to
other cardiovascular diseases, the incidence of DVT and its associated complications, such
as PE, continues to increase [98]. In both the UK and the US, DVT occurs in 1/1000 people
per year and this rises to 1/100 in people over the age of 50 years old [98]. Numerous risk
factors have been identified including genetic predisposition, obesity, smoking, sedentarism,
long-term immobility, and surgery/trauma [99]. Virchow described, over 150 years ago,
three factors contributing to thrombosis: blood hypercoagulability, stasis and vessel wall
irritability that still stand today [100].

DVT develops in the venous system and in the absence of overt vessel damage, most
frequently around venous valves (Figure 3) [101–103]. Alterations to flow patterns within
venous valves pockets has been associated with DVT risk factors such as immobility or
paralysis [102–104]. In this instance, within the deep recesses of the pocket, there are regions
of disturbed flow and most notably, stasis [101]. Hence, this alteration to flow patterns
within valve pockets has been hypothesised as a driver of DVT. As the endothelium can
sense shear stress, EC phenotype is influenced by such changes to blood flow patterns,
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altering levels of anticoagulant proteins and leukocyte adhesion molecules on the cell
surface [105]. Studies have highlighted that ECs within healthy valve pockets have a more
antithrombotic phenotype than those lining the vein lumen. This includes higher levels
of TM, endothelial protein C receptor (EPCR) and TFPI, alongside lower levels of VWF,
ICAM-1 and P-selectin [104]. However, this phenotype was lost upon flow-restriction in
mice as well as at sites of primary DVT in humans [104]. Therefore, the switch from an
anticoagulant to a prothrombotic endothelial phenotype is associated with disturbed flow
and initiation of thrombosis. Disturbances in venous flow, particularly stasis, are also
associated with hypoxia and can alter levels of plasma proteins and blood cells due to lack
of influx or efflux. Although the mechanisms associated with thrombus initiation are not
fully understood, endothelial activation is believed to be an early event and contributes to
the recruitment of platelets and leukocytes that participate together with red blood cells
and coagulation factors to the initiation and growth of the thrombus [106].
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Figure 3. Platelet–neutrophil crosstalk in venous thrombosis. Venous thrombosis initiates in the pock-
ets of venous valves where disturbed flow creates a prothrombotic environment: hypoxia, endothelial
dysfunction and blood hypercoagulability. 1- These flow patterns/stasis induces downregulation of
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antithrombotic factors of the endothelium thrombomodulin (TM), endothelial protein C receptor
(EPCR) and tissue factor pathway inhibitor (TFPI) and concomitant upregulation of procoagulant
proteins von Willebrand Factor (VWF), P-selectin and other cell adhesion molecules. Mast cells are
also thought to be involved in this process by releasing histamine. 2- Under these flow disturbance
and pro-coagulant conditions, VWF can become tangled and unravel, exposing its A1 domain
enabling platelet binding via GPIbα. 3- The VWF-GPIbα interaction under flow induces the mechano-
unfolding of the mechanosensitive domain of GPIbα leading to signalling events, Ca2+ release from
intracellular stores and activation of αIIbβ3. 4- Primed platelets via activated αIIbβ3 can bind SLC44A2
on neutrophils under flow. Shear forces in the neutrophil induce calcium- and NADPH-mediated NET
formation. 5- Activated neutrophils can directly activate platelets through release of granules (e.g., LL-
37) or indirectly by generating thrombin via NETs. NETs can directly activate the intrinsic coagulation
pathway by binding to FXII and inhibit the anticoagulant protein TFPI, augmenting thrombin
generation. Granule content from both platelets and neutrophils further stimulates the endothelium
leading to increased expression of P-selectin and other adhesion molecules. 6- Monocytes and
neutrophils are recruited to the endothelium via PSGL-1 binding to endothelial P-selectin. Activated
platelets are able to bind activated neutrophils and monocytes and further stimulate them by release
of their content (e.g., HMGB1, cytokines). NETs promote thrombus development by binding red
blood cells, VWF and platelets, activating of both intrinsic and extrinsic coagulation pathways, and
also facilitate thrombus stability by providing fibrinolytic resistance. Ultimately venous thrombi
rich in red blood cells and fibrin obstruct the valve and upstream vein, causing DVT. Created by
Biorender.com.

Animal models of thrombosis have shed light on the involvement of platelets and
neutrophils in venous thrombosis. In a mouse stenosis thrombosis model, neutrophils were
observed as early as 1 h after inferior vena cava (IVC) restriction and observed to carpet the
endothelium within 5–6 h [10]. The analysis of the subsets of leukocytes accumulating in the
venous thrombus in the IVC stenosis model revealed that the majority (~70%) of these were
neutrophils. A small proportion of leukocytes were monocytes (~30%), ref. [10] although
the timeline of their recruitment in relation to neutrophils has not been determined. TF
present on circulating monocytes and TF-positive microvesicles are thought to potentially
contribute to thrombus development. This provides an important source of intravascular
TF that can initiate the extrinsic coagulation cascade (Figure 3) [101].

Additionally, neutrophils significantly contribute to the development of DVT through
their ability to release highly thrombotic NETs [44,47,107]. During VTE and for at least
1 year post event, patients exhibit increased levels of activated neutrophils and circulating
MPO-DNA complexes [108]. In mice, depleting neutrophils, administering DNase for the
dissolution of NETs or inhibiting the process of NET formation by knocking out Pad4,
have all been associated with DVT protection [10,44,107,109]. Taken together, such studies
suggest that NETs have numerous roles in thrombus propagation. Histological analysis
of human venous thrombi indicated NETs are predominantly detected in thrombi in the
organisation phase compared with mature thrombi, suggesting they may be important for
the early stage of thrombus formation [43]. As previously mentioned, they are involved
in thrombus growth by entrapping red blood cells and binding additional platelets. They
can activate endothelial cells through the release of proteases (e.g., cathepsin G), increase
further leukocyte recruitment to the vessel wall, [110,111] and propagate inflammasome
activation, enhancing monocyte pyroptosis [112,113]. NETs can also initiate the intrinsic
coagulation cascade through activation of coagulation factor XII, promoting fibrin forma-
tion (Figure 3) [10,44,47,107]. FXI-knockout mice showed reduced thrombotic burden in
the ferric chloride-induced vena cava model [114]. Similarly, mice deficient in FXII also
displayed reduced thrombus formation in IVC restriction models although, interestingly,
no thromboprotective effects were observed with FXI deficiency in this study [10]. This
also highlights the variability between different models of DVT and different mechanisms
underlying thrombus formation. Finally, several studies demonstrated a role for neu-
trophils/NETs in modulating the anticoagulant function of the endothelium via histones
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or NE [50,51]. The importance of NE in NET and thrombus formation via modulation of
natural anticoagulants remain unclear in light of animal studies showing no protection
of NE deficient mice in DVT [115]. Similar to their role in arterial thrombosis, it is still
unclear whether NETs are more important for the initiation or propagation of DVT or if
they represent a key factor to thrombus stability and resistance to fibrinolysis. They may, in
fact, be important in for all these different thrombogenic mechanisms.

The data implicating the importance of platelet-mediated recruitment of leukocytes,
especially neutrophils, in the setting of DVT has been particularly compelling, at least
in mouse models. Similar to neutropenia, platelet depletion in mice is protective in the
mouse stenosis model and importantly also diminishes leukocyte numbers, suggesting that
platelets are of major importance in the recruitment of leukocytes in this DVT model [10].
There is also a large body of evidence highlighting the specific importance of the VWF
A1-GPIbα interaction in DVT. Numerous studies have reported that blockade of this in-
teraction is thrombo-protective. Vwf−/− mice have reduced platelet adhesion to venous
thrombi, and smaller sized clots in vivo [42,116]. In addition, pharmacological inhibition
with small molecules such as snake venom-derived antibatide, or antibodies against GPIbα
are protective against thrombus formation [42,117,118]. Furthermore, mice lacking the
extracellular domain of GPIbα on platelets were protected from venous thrombosis upon
flow-restriction of the IVC [10]. Importantly, disrupting the VWF A1-GPIbα interaction
greatly diminished leukocyte/neutrophil recruitment in the stenosis model [10,42]. Ad-
ditional studies have highlighted the important role of platelet releasates (e.g., HMBG1)
in leukocyte recruitment, activation and NET formation for DVT propagation [38,119].
Finally, within venules, neutrophils have been shown to influence the local rheology, pro-
moting platelet aggregation and platelet–neutrophil interactions, subsequently facilitating
thrombus formation [120].

5. Novel Concepts in DVT Initiation—VWF-Primed Platelets Recruit Neutrophils

Given recent evidence suggesting that Vwf -deficient mice, ref. [42] as well as mice
lacking the extracellular domain of GPIbα exhibited diminished leukocyte recruitment
following stenosis of IVC and were protected against DVT, ref. [10] it can be inferred that
an appropriate proportion of leukocyte capture at sites of DVT occurs in a VWF- and
platelet-dependent manner. Previous studies have highlighted a role for P-Selectin and
HMBG1 released from activated platelets in NETosis during the formation of a venous
thrombus [10,38,119,121,122]. However, the initial interactions taking place in DVT be-
tween platelets and neutrophils/leukocytes on the endothelium are not fully understood
as, given the lack of endothelial denudation, platelets are not exposed to potent agonists
(i.e., collagen, thrombin) that classically drive robust platelet activation and initiate sec-
ondary messenger release. Therefore, stimuli capable of inducing P-selectin exposure on
their surface appear not to be significant in the early phases of DVT. In line with this, studies
show that whereas endothelial P-selectin in part contributes to the development of DVT,
platelet P-selectin plays a non-significant role [10]. On the other hand, platelet depletion or
disruption of the VWF–GPIbα axis also protect against DVT and prevent recruitment of
leukocytes to the endothelium (and therefore subsequent NET formation) implying that
VWF-dependent platelet recruitment is necessary for the initiation of DVT. Together, these
data also potentially make it unlikely that endothelial P-selectin exposure is the primary
event that leads to leukocyte recruitment. As neutrophils as well as most other leukocytes
express PSGL-1 (e.g., lymphocytes, monocytes) [24], this mechanism is not selective for a
particular leukocyte subset. Moreover, neutrophils appear to represent the major leukocyte
population during the early stages of DVT, suggesting a more specific mode of recruit-
ment [10]. Considering that all the previously characterised platelet–leukocyte interactions
generally require the platelets to be activated, the selective interaction between platelets
and leukocytes responsible for the early recruitment warrants careful consideration.

We recently discovered a novel interaction between platelets and neutrophils, which
may be key to the initiation of DVT (Figure 3). Our results show that platelets captured by
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VWF can become ‘primed’ under flow. This involves activation of αIIbβ3 on the platelet
surface but does not induce appreciable degranulation/P-selectin exposure. These ‘primed’
platelets were able to recruit neutrophils under venous shear rates, with more interactions
occurring in regions of disturbed flow. The receptors involved in this novel interaction are
activated αIIbβ3 on platelets and SLC44A2 on neutrophils [123]. Importantly, neutrophils
interacting with VWF-‘primed’ platelets undergo phenotypic changes, including Ca2+

release and culminating with the formation of NETs [123]. We also demonstrated the
importance of shear forces for the trigger in this process, as neutrophils captured on
activated αIIbβ3 under static conditions were unable to form NET [123].

Also known as choline transporter-like protein-2 (CTL-2) or human neutrophil
antigen-3 (HNA-3), SLC44A2 is a transmembrane protein with ten membrane-spanning
domains [124,125]. It is highly expressed in neutrophils and, in lower levels, in en-
dothelial cells and platelets (http://immprot.org, accessed on 7 January 2022). Given
its homology with choline-transporter protein 1 (CTL1), SLC44A2 is suggested to have
a transporter function, aiding the transport of choline, especially in the mitochon-
dria [125–128]. A more recent study also suggests that SLC44A2 is important for the
correct localisation of cellular adhesion proteins [129]. However, the cellular function
of SLC44A2 is not well-defined. Its deficiency has been associated with hair cell loss,
spiral ganglion degeneration and hearing loss in mice, [125,130] and with Meniere’s
disease and TRALI in humans [124,131,132].

GWAS studies identified SLC44A2 as a susceptibility locus for VTE, despite the lack of
any known links between SLC44A2 and thrombosis/coagulation [133–135]. Recent studies
by Tilburg et al. also revealed that Slc44a2−/− mice exhibit normal haemostasis, but are
protected against DVT [136,137]. They showed that Slc44a2−/− mice have venous thrombi
with reduced weight and length in the IVC stenosis model, with a more profound effect
being observed at earlier timepoints. A recent paper recapitulated some of these results in
the stenosis thrombosis model of the IVC [128]. However, unlike previous studies where no
effect of Slc44a2 deficiency was reported on platelet function, the protection in thrombosis
was partly attributed to defective platelet activation via lack of ADP/ATP production by
mitochondria [128]. All these data clearly suggest the importance of SLC44A2 in DVT
with a more prominent role in the initiation phase, rather than in the propagation phase of
DVT [123,128,137].

Furthermore, GWAS studies identified a single nucleotide polymorphism (SNP) in
SLC44A2 (rs2288904-G/A), providing a 30–50% protection in VTE patients homozygous
for the SNP [130]. This SNP is located in codon 461 of the gene, based on a substitution
(G>A) that causes a missense mutation, R154Q in the first and longest extracellular loop of
SLC44A2 [133,135,138–140].

We recently showed that neutrophils homozygous for the rs2288904-A SNP have an
impaired ability to interact with VWF-‘primed’ platelets. These findings could, therefore,
provide a causative link between the rs2288904-G/A polymorphism and the development of
DVT [123]. Another recent study by Zirka et al. also shows that neutrophils homozygous for
the SNP have a reduced ability to release NETs under venous shear rates, although under
their experimental conditions they suggest that neutrophils can directly interact with VWF
via this receptor which remains to be ascertained in vivo [141]. It is clear, however, from all
these recent studies, that SLC44A2 is an important target to consider for future therapeutic
strategies against DVT and that its molecular function warrants further investigation to
shed more light upon the intricate mechanisms involved in the initiation of DVT.

At sites of disturbed venous flow, such as around venous valves, secreted VWF likely
has an increased propensity to unravel and tangle. In tangling into cables, it in turn becomes
more resistant to cleavage/removal by ADAMTS13. As a result, platelets could be captured
via GPIbα and become ‘primed’ (Figure 3). VWF-‘primed’ platelets can, subsequently,
recruit neutrophils via activated αIIbβ3-SLC44A2 and trigger NETosis, providing a nidus
for thrombus formation if these structures are not cleared. Neutrophils from individuals
homozygotes for the SLC44A2 rs2288904-A polymorphism, (minor allele frequency of
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22%), exhibited a diminished ability to bind VWF-‘primed’ platelets, and could therefore
explain the reduction in the thrombus burden in these individuals. These findings provide
mechanistic insights for understanding the link between this polymorphism and DVT pro-
tection, as well as offering important prospects for possible novel prophylactic/therapeutic
strategies against DVT [123].

GpIbα−/− and Vwf−/− mice already exist, but Vwf deficiency also influences the release
of both FVIII and P-selectin [142,143]. However, in both cases, VWF-platelet recruitment is
completely abolished, making it impossible to study the A1-GPIbα downstream signalling
events. The presence of the extracellular domain of GPIbα, as well as the VWF A1 domain
are crucial for studying the role of this interaction. Moreover, it is important to preserve the
filamin-binding site (a.a. 665–683 in mouse GPIbα) to prevent platelet cytoskeletal defects
that could influence platelet phenotype. Indeed, complete deletion of GPIbα in mice, as
well as GPIbα deficiency in humans, known as Bernard–Soulier syndrome, is associated
with the presence of giant platelets (size increase from 1–2 µm to 4–10 µm) within the
vasculature and abnormalities in proplatelet production [143–145]. Previous attempts to
ablate the VWF A1-GPIbα mediated signalling without affecting platelet binding to VWF
or disrupting the filamin-binding site were endeavoured. Kanaji et al. introduced a human
GpIba transgene lacking the last six amino acids of the intracellular tail of GPIbα in GpIbα−/−

mice [146]. However, although these mice displayed impaired thrombus formation in a
ferric chloride carotid thrombosis model, [147] the authors reported no overt platelet defect
or defective haemostasis [146].

In light of these studies, we generated a novel transgenic mouse, GpIbα∆sig/∆sig, by
introducing an early stop codon after Pro694 by CRISPR-Cas9 technology, leading to the
deletion of the last 24 amino acids of the intracellular tail of GPIbα (a.a. 695-718) [148].
This was hypothesised to completely (rather than partially) ablate the ability of 14-3-3 and
phophoinositide 3-kinase (PI3K) to bind and mediate signalling events within platelets,
while the filamin-binding site and ability of platelets to bind to the VWF A1 domain
remain intact. Indeed, characterisation of these mice revealed that GpIbα∆sig/∆sig platelets
bind normally to VWF under flow and have normal haemostasis [148]. Platelet responses
were unaffected upon stimulation with thrombin or ADP, although platelets exhibited
diminished GPVI-mediated signalling in response to CRP. As predicted, their platelets had
an impaired ability to undergo VWF-GPIbα dependent signalling, as they formed fewer
filipodia on VWF in the presence of botrocetin, and had reduced activation of αIIbβ3 under
flow [148]. These mice will allow formal investigation of the importance of VWF-GPIbα
mediated signalling in vivo in thrombosis models.

As already mentioned, Slc44a2−/− mice have also been recently generated and studies
suggests that these mice exhibit a normal haemostatic response, and, notably, a reduced
risk of developing DVT [128,136,137]. However, SLC44A2 is also expressed, although at
appreciably lower levels, in platelets and endothelial cells. Generating platelet/neutrophil/
endothelial Slc44a2 knockout mice to ascertain the role of SLC44A2 in DVT and other
disease models would be an avenue of research to pursue in the future. Moreover, mice
expressing the rs2288904-A variant of SLC44A2 could also be generated in order to establish
the mechanistic link between this polymorphism and the protection against DVT.

6. Targeting Platelet–Neutrophil Interaction for Thrombosis Treatment

Currently, DVT thromboprophylaxis involves anticoagulant treatment primarily com-
posed of low molecular weight heparin and/or vitamin K antagonists (e.g., warfarin).
DOACs including apixaban, dabigatran or rivaroxaban are now increasingly given to VTE
patients as an alternative due to their favourable pharmaco-kinetics, oral availability and
the lack of need of monitoring [99,149–152]. However, whereas effective, anticoagulant ther-
apy poses an increased risk of serious bleeding in treated individuals [99,150–153]. Dual
antiplatelet therapies (usually aspirin in combination with a P2Y12 inhibitor) are widely
used for the treatment of coronary artery disease but in some instances oral anticoagulants
such as vitamin K antagonists can also be prescribed [154,155]. However, the increased
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benefit in reducing cardiovascular events with anti-platelet and anticoagulant combinations
very often is accompanied by an increased bleeding risk [156]. Similarly, administering the
current anti-platelet regimen in combination with the standard anticoagulation treatment
in DVT/VTE has received some interest but the benefits are still unclear [157–159]. Interest-
ingly, the SPATA-DVT study showed that the VTE risk is low in individuals with inherited
platelet disorders that undergo surgery, suggesting there may be scope to target platelets
for the treatment of VTE [160].

Consequently, the identification of novel strategies to target DVT or coronary arterial
disease without affecting the bleeding risk is crucial. Due to its involvement, the intrinsic
pathway has also been investigated as a potential target for VTE therapeutic agents [161],
as this should be associated with a lower bleeding risk compared to the conventional antico-
agulant therapies currently used. Both small molecule inhibitors and inhibitory antibodies
have been assessed in animal models [162]. Dose-dependent effects on thrombus formation
were observed with an anti-FXIa antibody in a vein thread-induced rabbit model, with
no concurrent increases in bleeding [163]. Using a monoclonal antibody against FXI also
proved to be effective in thrombus resolution within the early stages of DVT in mouse mod-
els [164]. Additionally, an inhibitory antibody against FXI, Abelacimab, as well as a selective
inhibitor for FXI, Milvexian, were shown to be effective in preventing postoperative VTE in
patients who had undergone knee arthroplasties [165,166]. Analogously, targeted depletion
of FXII in mice with antisense oligonucleotides (ASO) resulted in reduced thrombus burden
without alterations in haemostasis [167]. These preclinical studies have resulted in progres-
sion to clinical trials; both an ASO against FXI and an anti-FXIa antibody were shown to be
superior to enoxaparin for VTE prevention in humans [168,169]. A small molecule inhibitor
against FXIa is also undergoing clinical evaluation, with promising safety, pharmacokinetics
and pharmacodynamics profile in a first-in-human study [170,171].

Inhibiting platelet–neutrophil interactions is a potential therapeutic avenue to ex-
plore for managing thrombosis without an increased risk of bleeding with for example
targeting the P-selectin/PSGL-1 axis. Indeed, Mac-1 deficient mice exhibited protection
in models of thrombosis of the micro- and macro-circulation without altered haemostasis,
with similar effects on thrombosis also observed with antibodies or glucosamine target-
ing the Mac-1/GPIbα interaction [172]. Moreover, Wong et al. showed that a PSGL-1
peptidomimetic reduced venous thrombus formation without influencing the normal
haemostatic response [173]. Monoclonal antibodies or aptamers targeting P-selectin
have also proven as efficacious as enoxaparin in reducing thrombosis in primate mod-
els of DVT [174–176].Very few clinical trials however, have been reported efficacious
to date [177–179]. Infusion of Inclacumab—a recombinant monoclonal anti-P-selectin
antibody—before PCI in non-STEMI patients reduced myocardial damage compared to
placebo, holding promise that inhibiting P-selectin to PSGL-1 can be further explored
therapeutically [178,179]. Indeed, a recent study showed that nanoparticles targeting
PSGL-1 clustering on neutrophils showed efficacy in reducing both venous and ar-
terial thrombosis in an antiphospholipid syndrome model, suggesting targeting the
P-selectin/PSGL-1 axis may be beneficial in a broad range of thrombotic disorders [180].

Given the crucial role of NETs in both venous and arterial thrombosis, it is possible
that an inhibitor of NET formation or enhancing NET dissolution would be beneficial. As
already mentioned, recent studies in animal models propose the use of PAD4 inhibitors
or DNases in the treatment of DVT or MI, to help prevent NET release or promote their
dissolution, respectively [10,46,61,64,65,107,109,181–183]. Similarly, experimental mouse
stroke models suggest that DNase alone or in combination with thrombolytic agents also
have promising outcomes for stroke treatment [82,92,93]. More recently, asebogenin, a Syk
phosphorylation inhibitor, was shown to reduce arterial thrombosis by decreasing platelet
accumulation and fibrin formation, as well as venous thrombosis, by reducing neutrophil
recruitment and subsequent NET formation [184]. However, all these approaches to target
NET formation might equally affect physiological NETosis, which may impair the normal
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innate immune response. Clinical trials will ascertain if treated individuals might become
more susceptible to infections.

Several GWAS studies have identified SLC44A2 as a susceptibility locus associated
with VTE [133,135,139]. Individuals bearing the rs2288904-A polymorphism in SLC44A2
may be protected against DVT due to the impaired ability of their neutrophils to bind to
activated αIIbβ3 as shown by our data [123] and therefore to form NETs [123,141]. It can,
therefore, be assumed that disrupting the interaction between VWF-‘primed’ platelets and
neutrophils may contribute to DVT prophylaxis. Targeting the ‘primed’ platelet receptor,
activated αIIbβ3 with existing antiplatelet agents (e.g., Eptifibatide/Integrilin, Tirofiban)
would affect platelet function and increase the risk in bleeding due to the implicit inability
of platelets to aggregate. Intervening with the VWF-GPIbα binding (e.g., Caplacizumab)
may be efficacious but would lead to a noticeable risk in bleeding [185]. Targeting the VWF-
GPIbα signalling without disrupting the platelet capture may be achievable with small
permeable inhibitors if selective targeting within the platelet could be achieved [186,187].
In contrast, SLC44A2 has little influence on the haemostatic function [136,137]. Thus,
targeting SLC44A2 would not be predicted to be associated with a bleeding risk in treated
individuals and therefore represents an attractive target for thromboprophylaxis potentially
as an adjunctive approach [123].

7. Platelet and Neutrophil Interactions in COVID-19

As of November 2022, there have been more than 600 million confirmed cases of
coronavirus and over 6.5 million deaths worldwide. The coronavirus disease (COVID-19) is
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which initially
manifests as flu-like symptoms. However, in severe cases, there is excess generation of
pro-inflammatory cytokines (cytokine storm) leading to acute respiratory disease syndrome
and in those worst affected, multi-organ failure [188]. Alongside characteristic symptoms
affecting the respiratory system, venous and arterial thrombotic complications have been
implicated in COVID-19 pathology and mortality. These include platelet and fibrin mi-
crothrombi in the lung, heart, liver and kidney microvasculature, alongside high rates of
DVT and stroke [189,190]. Additionally, thrombocytopenia has been associated with worse
outcomes in COVID-19 patients [191]. As highlighted throughout this review, the interplay
between thrombosis and inflammation is becoming ever-more apparent. Hence, activa-
tion of platelets and leukocytes, particularly neutrophils, via inflammatory mediators has
become a key line of investigation in understanding thrombotic mechanisms in COVID-19.

Initial studies highlighted the link between SARS-CoV-2 infection and platelet hyperac-
tivity [192–194]. Platelet activation in COVID-19 has been identified through plasma mark-
ers of alpha and dense granule release, activation of αIIbβ3 and presence of platelet-derived
extracellular vesicles [192,193,195–197]. Furthermore, platelets isolated from COVID-19
patients exhibited increased activation and aggregation in response to agonists, as well as
spreading on collagen/fibrinogen [192,193,195,198,199]. In line with platelet hyperactivity,
the propensity of platelets to release of inflammatory molecules may also be increased in
COVID-19. Levels of numerous inflammatory cytokines, including those important for
recruitment and activation of neutrophils (e.g., CD40L, RANTES), were increased in plasma
and reduced in platelet lysates from patients, in response to low dose thrombin [192,200].
This highlights the increased reactivity of platelets and their possible contribution to the
inflammatory milieu observed in COVID-19.

As neutrophils are involved in the first line of host defence against pathogens and their
association with lung injury, alterations to neutrophil function and activation of NET forma-
tion were an immediate focus for research in COVID-19 pathogenesis. COVID-19 patients
exhibited elevated levels of leukocytes, particularly neutrophils, while neutrophils/NETs
were identified within thrombi throughout the pulmonary, hepatic and renal vasculature,
with the highest burden observed in the lungs [201–205]. Consistent with this, plasma
extracellular DNA, MPO-DNA, DNA-NE complexes and CitH3, all markers of NETs, were
elevated in COVID-19 patients [200,206,207]. Finally, anti-NET antibodies which may
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impair NET clearance have been identified in COVID-19 patients and were correlated
with the disease severity [208]. All together these studies highlight the contribution of
NET-releasing neutrophils to the COVID-19 pathology.

Due to the importance of platelet–neutrophil interactions in NET formation, it is
unsurprising that several studies reported increased numbers of platelet–neutrophil
aggregates in COVID-19 patients [193,200,201,204,209]. In one study, these platelet–
neutrophil aggregates correlated with disease severity [193]. Studies on influenza and
HIV have previously delineated signalling pathways starting with internalisation of
virions by platelets to platelet–neutrophil interactions via P-selectin and CD40L surface
expression [210]. Indirect stimulation of NETosis via this mechanism may also occur
through platelet TLR7 activation by virion uptake, resulting in complement component
3 release and stimulation of NET formation [210]. However, it is still debated whether
platelets internalise SARS-CoV-2 [192,193,211,212]. The signalling mechanisms between
platelets and neutrophils to induce NET formation within COVID-19 have not been
entirely elucidated. Thrombin-PAR1 and complement signalling have been implicated,
with inhibition of thrombin or blockade of C5aR1 attenuating platelet-mediated NETo-
sis [213]. A recent elegant study also revealed a novel mechanism by which S100A8/A9
(released from myeloid cells including neutrophils) can bind GPIbα, drive the forma-
tion of procoagulant platelets and facilitate fibrin formation. As previously shown in
other studies, [205,214–216] elevated plasma levels of S100A8/A9 correlated with the
severity of the disease [204]. All together in COVID-19 patients, platelet and neutrophil
hyperreactivity and crosstalk participate in excessive immunothrombosis resulting in
coagulopathy, thrombosis and respiratory failure.

8. Conclusions

Although platelets have classically been classified as key players in haemostasis and
neutrophils as vital cells of our innate immune system that fight infections, it is clear
that platelets carry important immune functions and neutrophils via NET formation fa-
cilitate thrombus development. There is compelling evidence for an important role for
platelet–neutrophil interactions in both arterial and venous thrombosis. The influence of
their activation state on each other and how it feeds the vicious circle of inflammation–
coagulability–thrombosis is central to the aetiology of many cardiovascular diseases. Un-
derstanding initial events leading to platelet–neutrophil interactions and subsequent NET
formation in vivo in various disease settings will be important to develop additional ther-
apies to prevent thrombosis without increasing the bleeding risk or compromising the
immune responses of patients. The αIIbβ3-SLC44A2 axis in the context of DVT represents a
potential candidate to develop such a therapy in the future, although we are just beginning
to understand the molecular mechanisms downstream of this interaction. Can the con-
cept of platelet priming be mediated by factors other than VWF? What are the signalling
pathways involved downstream of the binding of SLC44A2 to αIIbβ3 that triggers NET
formation? Is αIIbβ3 the only ligand for SLC44A2? Identifying the precise binding site(s) of
SLC44A2 on αIIbβ3 will also greatly facilitate the design of SLC44A2 inhibitors. Ultimately,
identifying additional molecular targets of immunothrombosis is warranted to provide
additional therapeutic approaches to complement anti-platelet, anti-coagulant and anti-
inflammatory treatments to fight thrombosis including in the context of infections such as
COVID-19.
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