
Computer vision quantification of whole-body Parkinsonian

bradykinesia using a large multi-site population

Gareth Morinan MSc1,†, Yuriy Dushin MSc1,†,*, Grzegorz Sarapata MSc1, Samuel
Rupprechter PhD1, Yuwei Peng MSc1, Christine Girges PhD2, Maricel Salazar2,

Catherine Milabo2, Krista Sibley MSc2, Thomas Foltynie MD, PhD2, Ioana Cociasu
MD, PhD3, Lucia Ricciardi MD, PhD3, Fahd Baig MD, DPhil3, Francesca Morgante
MD, PhD3,4, Louise-Ann Leyland PhD5, Rimona S Weil MD, PhD5, Ro’ee Gilron

PhD6, and Jonathan O’Keeffe MD, PhD7,*

1Machine Medicine Technologies Ltd., The Leather Market Unit 1.1.1 11/13 Weston
Street, London SE1 3ER, UK

2Department of Clinical and Movement Neurosciences, Institute of Neurology,
University College London, Queen Square, London WC1N 3BG, UK

3Neuroscience Research Centre, Molecular and Clinical Sciences Research Institute, St
George’s, University of London, Cranmer Terrace, London SW17 0RE, UK

4Department of Clinical and Experimental Medicine, University of Messina, Messina,
Italy, Via Consolare Valeria, 98165, Messina, Italy

5Dementia Research Center, Institute of Neurology, University College London, Queen
Square, London WC1N 3AR, UK

6The Starr Lab, University of California San Francisco, 513 Parnassus Ave, HSE-823,
San Francisco, CA 94143, USA

7Machine Medicine Technologies Ltd., The Leather Market Unit 1.1.1 11/13 Weston
Street, London SE1 3ER, UK

*Corresponding authors: yuriy, jonathan@machinemedicine.com
†These authors contributed equally to this work

Contents

• Supplementary Note 1: Individual classifier results

• Supplementary Note 2: Patient characteristics analysis

• Supplementary Note 3: Disease laterality analysis

• Supplementary Note 4: Height estimation model

1



Supplementary Note 1: Individual classifier results

Supplementary Figure 1: The confusion matrices, between clinical ratings and model es-
timates, for each of the MDS-UPDRS classifiers; finger tapping (a), hand movements (b),
pronation-supination (c), toe tapping (d), leg agility (e) and finally all items (f).
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Supplementary Figure 2: The confusion matrices, between clinical ratings and model esti-
mates, for each of the binary classifiers (ratings {0 or 1} vs {2, 3 or 4}); finger tapping (a),
hand movements (b), pronation-supination (c), toe tapping (d), leg agility (e) and finally all
items (f).
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Supplementary Note 2: Patient characteristics analysis

Supplementary Figure 3: The association between the residuals of the composite bradykinesia
score (clinician score minus model score) and the additional patient characteristics that were
available (see main manuscript for full breakdown). The difference in mean residual (error
bars indicate standard error of the mean) for sex (a), medication status (b), and DBS surgery
(c), as tested by a Mann-Whitney’s U. This difference was significant for sex (p-value = 0.01),
and for medication status (p-value < 0.0001), but not for whether the patient had undergone
DBS surgery (p-value = 0.26). The correlation between the mean residual for patient age
(d), disease duration (e), and clinician UPDRS (f), as tested by Pearson’s r. This correlation
was not significant for patient age (r = 0.08, p-value = 0.05), or for disease duration (r =
0.06, p-value = 0.14), but it was for disease severity (r = -0.29, p < 0.0001). A significant
correlation is to be expected for disease severity, given that MDS-UPDRS ratings are bounded
(below by 0, above by 4); if a patient is given a clinical rating of 0, it is only possible for the
model to match or over-estimate (it cannot under-estimate as this would mean estimating
a value of -1), and vice versa for clinical ratings of 4. Similarly, the significant difference
between the off- and on-medication assessments is also to be expected, as patients will exhibit
significantly lower disease severity when on-medication. The significant difference in sex
groups is unexpected; this could be explained by a systematic sex difference in the way in
which MDS-UPDRS examination instructions are interpreted, or alternatively a difference in
how these assessments are rated, but a larger dataset would be required to investigate this
matter further.
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Supplementary Figure 4: Composite bradykinesia score (sum of items 3.4-3.8) estimation.
(a, b) Scatterplots of composite bradykinesia scores for clinicians versus models for defined
ON and OFF medication states. (c, d) Scatterplots of composite bradykinesia scores for
clinicians versus models for assessments of patients with and with DBS surgery. The size
of dots corresponds to the number of patients with that combination of clinician and model
ratings. Red dashed lines indicate the large clinically important difference (CID) band.
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Supplementary Note 3: Disease laterality analysis

Supplementary Figure 5: The association between the composite bradykinesia score and
laterality of the items and disease laterality. The laterality of items is defined through the
sum of items on the corresponding side. Disease laterality is defined through a dominant side.
A side is defined as dominant if the sum of scores on that side was greater than the opposite
side by 2 or more [1]. If no side satisfies the criteria, the patient is defined as bilateral. (a)
The difference in mean residual for left and right items (error bars indicate standard error
of the mean), as tested by a Mann-Whitney’s U. This difference was significant (p-value <
0.001). Observed clinician scores were higher on the left (mean: 6.79, sem: 0.133) than
the right (mean: 5.69, sem: 0.119) side. Model tendency to overestimate lower scores is a
likely cause of the difference and not laterality itself. (b) Distribution of disease laterality in
the assessments. Both the clinician and the model show prevalence of left-dominant disease
over right. (c) Confusion matrix of agreement between clinician and model estimated disease
laterality. The model was able to detect the laterality with a balanced accuracy of 50% (33%
random chance accuracy).
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Supplementary Note 4: Height estimation model

Model development

Signals from each patient were normalised by their estimated standing height in pixels. The
height was estimated on a frame-by-frame basis using a linear model developed during previous
research [2, 3]. This model was developed as follows.

OpenPose [4, 5] was used to extract 25 body key-points for the last frame of 356 “gait”
videos (patient in full view, facing camera) and the first and last frame of the 322 “arising
from chair“ videos (i.e. the first frame in which patients were fully sitting and the last frame
in which patients were fully standing). Frames of arising from chair videos were used as
training data, and gait videos were used as validation data. These videos were recorded as
part of MDS-UPDRS assessments (item 3.10 Gait and item 3.9 Arising From Chair) using
the KELVIN™ platform [6].

The 300 possible distances between any two body key-points were computed for each
frame. These distances (i.e. the features) were then ranked and included in a series of linear
regression models. First, we divided each feature by the true body height and computed the
variation of these values across all frames. Features were then ranked from lowest to highest
variation, based on the idea that features with high variability would likely be less useful for
prediction (e.g. the distance from left toe to right shoulder is vastly different depending on
whether a patient is sitting or standing). Second, we computed the correlation of each feature
with true body height and ranked them from highest to lowest correlation coefficient. This
was based on the idea that the most predictive features should have a high correlation with
body height.

For each of these two rankings we estimated 300 linear regression models. Starting with a
model including only the “best” (highest ranked) feature, we then repeatedly added the next
highest ranked feature. For each model we computed the mean absolute error on both training
and validation data. Including additional features will always decrease the training error, but
validation error will only decrease in the beginning and at some point start to increase as
the model starts to over-fit. Through visual inspection of the training and validation error
curves (Supplementary Figure 6) the point at which validation error was minimal was chosen.
Twenty-seven features were selected from each approach.

For the final set of features we set two conditions: (a) Only features selected by both
feature-ranking approaches were selected for the final classifier. (b) Only features for which
both left and right version were selected were included in the final classifier (e.g. if right knee
to right toe was included, left knee to left toes also needed to be included).

In the final classifier we also included torso length (“mid-hip” to “neck” key-points) as
a feature even though it was not selected by both approaches. This was done because an
earlier model had also included that distance, and we felt the feature might have been
unfairly penalized because patients were often already leaning forward at the start of the
video as they were preparing to arise from the chair. The final model included the follow-
ing distances: Neck-RShoulder, Neck-LShoulder, MidHip-RHip, MidHip-LHip, Neck-MidHip,
RKnee-RAnkle, LKnee-LAnkle.

The model was estimated on the full training set and then coefficients were averaged across
left and right side, i.e. featureR (e.g. “neck to right shoulder”) and featureL (“neck to left
shoulder”) were both set to the value (featureR + featureL) / 2.
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Supplementary Figure 6: Summary of height estimation model performance. Training (n =
322) and test (n = 356) set performance (mean absolute error across videos) during the first
100 step-wise inclusion of distances ranked by correlation (a) or variation (b).

Smoothing and confidence weighting

Height estimation was smoothed across frames within a video by replacing the estimation at
each frame with the mean estimation of the 15 previous frames.

In addition to the coordinates of each key-point, OpenPose also estimates a confidence
score between 0 and 1. We calculate the confidence for each distance as the minimum of the
confidence scores of its two endpoints and included this score in the height estimation model.
Before passing the distances to the linear regression model, each distance xi was re-estimated
as

xi ← ci × xi + (1− ci)× zi, (1)

where ci is the confidence of distance i and zi is the prediction of xi using all the other
distances xj ̸=i. This prediction was estimated as

zi =
1∑
j rj

∑
j

x
(i)
j × w

(i)
j × ri,j , (2)
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where ri,j is the Pearson correlation coefficient between distances i and j, and w
(i)
j is the

coefficient of the linear prediction of xi using xj , so that xi ≈ xj × w
(i)
j . The correlation

coefficients r were estimated across a large number of frames and videos and are set as
constant within the model, while the coefficients w are estimated on a per-video basis as the
average prediction across all frames, meaning

xi = xjwj + ϵ, (3)

where xi and xj are vectors containing all the distances xi and xj within a video (one distance
x per frame).
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