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Computer vision quantification of whole-body Parkinsonian
bradykinesia using a large multi-site population
Gareth Morinan 1,7, Yuriy Dushin 1,7✉, Grzegorz Sarapata 1, Samuel Rupprechter1, Yuwei Peng1, Christine Girges2, Maricel Salazar2,
Catherine Milabo2, Krista Sibley2, Thomas Foltynie 2, Ioana Cociasu 3, Lucia Ricciardi3, Fahd Baig 3, Francesca Morgante3,4,
Louise-Ann Leyland5, Rimona S. Weil 5, Ro’ee Gilron6 and Jonathan O’Keeffe1✉

Parkinson’s disease (PD) is a common neurological disorder, with bradykinesia being one of its cardinal features. Objective
quantification of bradykinesia using computer vision has the potential to standardise decision-making, for patient treatment and
clinical trials, while facilitating remote assessment. We utilised a dataset of part-3 MDS-UPDRS motor assessments, collected at four
independent clinical and one research sites on two continents, to build computer-vision-based models capable of inferring the
correct severity rating robustly and consistently across all identifiable subgroups of patients. These results contrast with previous
work limited by small sample sizes and small numbers of sites. Our bradykinesia estimation corresponded well with clinician ratings
(interclass correlation 0.74). This agreement was consistent across four clinical sites. This result demonstrates how such technology
can be successfully deployed into existing clinical workflows, with consumer-grade smartphone or tablet devices, adding minimal
equipment cost and time.
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INTRODUCTION
Bradykinesia, or slowness of movement, is one of the cardinal
symptoms of Parkinson’s Disease (PD)1 and is a major determinant
of patients’ quality of life2. The current gold standard for PD
assessments is the Movement Disorder Society-sponsored revision
of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)3.
The third part of the MDS-UPDRS consists of 18 items that

provide a measure of the severity of appendicular and axial motor
signs. A patient’s motor impairment is measured on an ordinal
5-point scale from 0 to 4. This section is often used in clinical
practice, especially for advanced therapies such as DBS (Deep-
Brain Stimulation). It is also frequently a primary outcome measure
in clinical trials4. Although health professionals are often highly
trained, subjective appraisals are inevitable and can lead to
undesirable consequences such as rater bias or rater drift5–8.
Notwithstanding issues of subjectivity, a large-scale manual
administration of the MDS-UPDRS requires a large number of
clinicians and is therefore inherently unscalable and associated
with high costs. An automated solution, that provided the same or
similar information via algorithmic analysis would enable innova-
tions such as large-scale remote clinical trials, comprising tens of
thousands of subjects, or accelerated data-driven DBS program-
ming through frequent patient re-assessment.
Wearable sensors have been extensively explored for disease

management9,10, as well as quantification of upper-body brady-
kinesia11 and even whole-body bradykinesia12,13. Non-wearable
sensors have demonstrated utility for disease management14 and
quantification of upper-body bradykinesia15. However, all of these
sensor-based approaches require additional dedicated hardware,

which can substantially increase inconvenience and cost, largely
preventing adoption in clinical practice.
The last decade has witnessed the widespread adoption of

smartphone and tablet devices, capable of capturing high-quality
videos16. Moreover, the video recording of neurological motor
assessments is well established and has been common practice at
many sites including those of the present study. Video-based
approaches are therefore viable and considerably easier to adopt
in the clinic17.
Several studies have explored using video data to measure

bradykinesia in PD patients18–21. However, these studies
addressed only upper-body bradykinesia and were limited by
small samples (less than 150 patients, although often assessed
multiple times) collected at a single clinical site. While upper- and
lower-body bradykinesia has been explored22, this was also done
with a limited sample from only two clinical sites in the same
country.
Previous works demonstrate the potential of such technology,

but not that it can generalise across multiple sites to a wider
patient population. Given that training and assessment practices
can vary between sites, multi-site validation is key to demonstrat-
ing efficacy for wider clinical use.
Here, we used a computer-vision-based approach to extract a

small set of clinically interpretable objective metrics of bradyki-
nesia in PD. We showed that the features could be used to train a
model capable of estimating ten MDS-UPDRS bradykinesia ratings
for each patient (left and right laterals, for the five limb-based
bradykinesia items).
We extended previous research by (a) developing a system that

delivered a single composite bradykinesia rating on a scale of
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0–40, and (b) using more than 10 times the number of data points
of previous vision-based studies, without the use of any manual
filtering. These videos were recorded using consumer-grade hand-
held devices, requiring only set-up (installation of KELVIN-CLINIC™
app from one of the app stores). Moreover, at four of five clinical
sites, videos were recorded during routine MDS-UPDRS
assessments.

RESULTS
Multi-site patient population
The dataset included videos of bradykinesia item examinations
recorded as part of 1156 MDS-UPDRS assessments, of 628 separate
PD patients (see Table 1). The vast majority of assessments
contained ten ratings (left and right laterals for each of the five
items), giving 10823 ratings in total, with an imbalance towards
low ratings (see Fig. 1).
Assessments were conducted by 15 different assessors, at 5

different sites, which are denoted; DCMN (Department of Clinical
and Movement Neurosciences, Institute of Neurology, University
College London), NRC (Neuroscience Research Centre, Molecular
and Clinical Sciences Research Institute, St. George’s, University of
London), DRC (Dementia Research Center, Institute of Neurology,
University College London), PDMDC (Parkinson’s Disease and
Movement Disorders Center, Baylor College of Medicine) and TSL
(The Starr Lab, University of California San Francisco). Important to
note that assessments at the DRC site were made by a research
team, which doesn’t include clinicians.
A comparison of the sum of MDS-UPDRS scores could then be

made, using the subset of 949 assessments for which all twenty
ratings were available (five bradykinesia items, for both laterals, for

both clinician and model ratings). From the subset of 949, 620 of
the assessments (relating to 335 unique patients) had additional
patient information; age, sex, disease duration, whether the
patient had undergone deep-brain stimulation (DBS) surgery (see
Table 2).

Composite bradykinesia score
The composite bradykinesia (CB) scores (sum of items 3.4–3.8)
obtained from the clinician (C-CB) and the models (M-CB) had a
highly significant agreement (intraclass correlation (ICC)= 0.74, p-
value < 0.001, n= 949). Four of the five sites had similar levels of
agreement, as seen from the 95% confidence interval of the ICC
including 0.74 (see Table 3). The one site that had lower
agreement has two notable differences compared to the others.
This group includes a higher proportion of medicated patients,
and perhaps relatedly a lower mean disease severity at the time of
assessment (see Table 2). Also, patients were assessed by non-
clinician researchers, although the researchers had completed the
MDS-UPDRS training. The lower level of agreement for this site can
be explained by a limitation of the model in lower severity
patients: MDS-UPDRS clinical rating of 0 can only be either
matched or overestimated by the model creating a tendency for
an overestimation in the composite score. However, other causes
are possible such as higher levels of clinician ratings variability for
on-medication patients23 or increased rater variability due to the
non-clinical nature of the site24.
The distribution of residuals of composite bradykinesia score,

which had a mean of 0.97, indicates that overall our models
tended to slightly overestimate MDS-UPDRS ratings (Fig. 2). Per-
patient disagreements can occur, but large disagreements

Table 1. Summary of the MDS-UPDRS assessment dataset.

Assessments Ratings MDS-UPDRS part-3 Hoehn & Yahr Stage

Mean (SEM) Q1–Q3 0 1 2 3 4 5

DCMN 649 6054 30.4 (0.7) 18–40 16 19 559 28 20 5

NRC 218 2031 35.3 (1.2) 22–45 1 2 156 43 14 1

DRC 132 1296 18.0 (1.0) 8–24 37 32 53 8 2 0

PDMDC 100 910 36.9 (1.3) 27–46 0 2 87 7 2 2

TSL 57 532 34.0 (2.6) 21–43 0 1 43 13 0 0

All sites 1156 10823 30.6 (0.5) 18–41 54 56 898 99 38 8

We show the mean and standard error of the mean (SEM), along with the lower and upper quartiles (Q1 and Q3), of the MDS-UPDRS part-3 total score. In
addition, we show the breakdown of Hoehn & Yahr stage, as rated by the clinician conducting the MDS-UPDRS assessment.

Fig. 1 The distribution of MDS-UPDRS ratings for the five bradykinesia items. In each case the modal rating was Slight (1) and the least
common rating Severe (4).
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constitute a small proportion of assessments. For 84% of
assessments, clinician and model disagreement fell below the
large clinically important difference (CID)25 threshold. Please refer
to Supplementary Notes 2 and 3 for a detailed residual analysis for
demographic subgroups. The spread of clinician and model
composite bradykinesia scores for each MDS-UPDRS item
3.14 score was similar (Fig. 3).

Individual item classification
Overall, the MDS-UPDRS rating classifier achieved balanced
accuracy of 45% (chance= 20%) and acceptable accuracy of
81%. The binary classifier, trained to distinguish between low and
high severity ratings ({0, 1} vs {2, 3, 4}), had an accuracy of 75% and
an area under the curve of the receiver operator characteristic
(AUC-ROC) of 0.81. For both classifiers, the performance varied
slightly between the five items (see Table 4).
Figure 4 shows the confusion matrix across all five models (left

panel), and residuals (right four panels), for composite scores for
different composite severities. For low, mid, and high severities,
and on aggregate, the modal residual was 0 (i.e. exact agreement
between clinician and model). Figure 5 shows the confusion
matrix and receiver operator characteristic curve of the binary
classifier across all five items.

DISCUSSION
Markerless pose estimation was used to track patients’ move-
ments during the bradykinesia examinations (finger tapping, hand
movement, pronation-supination, toe tapping, leg agility) for the
MDS-UPDRS part-3 motor assessment. The video data and
associated clinical ratings were sourced from assessments at five

independent sites, with no manual filtering of videos taking place.
Features were extracted that capture key characteristics of
impairment (such as velocity). A random forest model then
utilised these computer-vision-based features, to objectively
quantify a patient’s disease severity item by item. Ratings from
these five items, measured separately on the left and right, were
then summed to construct a composite bradykinesia score
ranging from 0 to 40.
The model estimate of composite bradykinesia had high

agreement with the clinician ratings (ICC= 0.74, p-value <
0.0001, n= 949). Examining the sites individually, we found that
four of the five had 95% confidence intervals of ICC which
included 0.74, indicating that the system had effectively general-
ised to the multi-site population. The site with lower agreement
differed from the others in that it was a research site with lower
severity patients, and the assessors were not PD clinicians. The
lower level of agreement can be linked to the tendency of the
models to slightly overestimate severity in milder patients.
The classifiers achieved a balanced accuracy of 45% and

acceptable accuracy of 86%. Examining residuals by stratum of
composite bradykinesia (low ≤8; 8 < mid ≤15; high >15) revealed
that in all cases modal residual was 0, that is to say the exact
agreement with the clinician assessor. A binary classifier, trained to
distinguish between low and high severity ratings ({0, 1} vs {2, 3,
4}), had accuracy 75% accuracy and 0.81 AUC-ROC. Performance
on this binary task was comparable to previous studies20,26.
New technology is unlikely to be embraced by clinical

practitioners unless ease of use and generalisability can be
demonstrated. Specialist sensors, both wearable9 and non-
wearable15, can provide analytical value, but incur significant
practical costs, for example, set-up time and other hardware
management-associated issues, preventing adoption in the clinic.
Computer-vision-based methods may be easier to use when
deployed using smartphones or tablets, which are already widely
used for multiple applications17. Previous work has demonstrated
the efficacy of computer vision in quantifying whole-body
bradykinesia22. However, in this study, a smaller sample of
patients was assessed, with a majority of patients coming from
a single clinical site. Thus the datasets were in all likelihood less
heterogeneous as well as considerably smaller. In our study, we
included more than 10 times the number of data points, collected
across 5 different sites, and demonstrated that this technology can
generalise across a wider PD patient population.
This work did not rely on any specific way of recording the data

or any manual filtering for study inclusion. Data were collected
during routine PD assessments, with clinicians conducting
examinations according to their usual practices. Videos were
recorded in a typical clinic/office setting, using standard consumer
mobile devices. Our approach did not negatively impact the time
taken to perform motor assessments. In contrast, due to

Table 2. Statistics summarising patient characteristics, for the 620 assessments where this additional information was available, broken down by
clinical site.

Age in years Disease duration in years Sex Medication DBS

Mean (SEM) Q1–Q3 Mean (SEM) Q1–Q3 Female Male Off On Yes No

DCMN 59 (0.5) 54–66 7 (0.4) 3–9 86 209 179 116 34 261

NRC 61 (0.6) 57–66 12 (0.5) 9–14 40 116 42 114 117 39

DRC 66 (0.9) 59–71 5 (0.3) 3–7 41 45 8 78 1 85

PDMDC 63 (1.7) 58–71 9 (0.6) 6–10 15 22 30 7 0 37

TSL 52 (2.3) 40–63 10 (0.6) 7–12 9 37 10 36 46 0

All sites 61 (0.4) 55–67 8 (0.2) 4–11 191 429 269 351 198 422

For age and disease duration we show the mean and standard error of the mean (SEM) in years, as well as the lower to upper quartiles (Q1–Q3). We also show
split by sex, medication (off-state vs on-state), and whether or not the patient had deep-brain stimulation at the time of assessment.

Table 3. Composite bradykinesia score results, broken down by site.

Clinical score Model score Agreement

Mean (SEM) Mean (SEM) ICC 95% CI n

DCMN 11.4 (0.3) 11.3 (0.3) 0.74 0.70–0.77 528

NRC 15.7 (0.6) 19.4 (0.5) 0.67 0.34–0.81 174

DRC 7.2 (0.5) 9.9 (0.4) 0.36 0.17–0.52 121

PDMDC 15.2 (0.7) 16.2 (0.7) 0.68 0.55–0.79 80

TSL 20.3 (1.0) 19.2 (1.1) 0.71 0.53–0.83 46

All sites 12.4 (0.2) 13.4 (0.2) 0.74 0.70–0.77 949

The mean and standard error of the mean (SEM) for the clinical and model
scores, alongside the agreement between these scores, were measured by
intraclass correlation (ICC), and the 95% confidence interval (CI) of the ICC.
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automated data management, several clinicians reported a time-
saving of 15–20min per assessment, although this should be
considered anecdotal. Obtaining the model scores after the
assessments require manual annotation of the region of interest,
which can be done through a web interface. Annotation and
calculation of the model score usually take one minute per item. In
summary, our results demonstrate that effective quantification of
bradykinesia, through computer vision, can be deployed into
clinical practice without adding friction to existing clinical
workflows.
Martinez-Manzanera and colleagues found that four raters will

agree on exact scores in only around 50% of cases24, and that
three blinded raters have at least one disagreement in 40–50% of
assessments and two disagreements in 1–5% of cases22 (implying
a score difference of at least 2 between two of the rates). This
phenomenon introduces potential complications for studies
aiming to estimate the MDS-UPDRS ratings of clinicians. Addi-
tionally, it has been shown that two separate sets of clinical
ratings, used to train a given classifier, can result in a substantial
difference in classification performance27. Previous studies have
employed the average of multiple raters19,24, or defined a
successful model prediction as “agreement with any of the
raters”22. Given our use of routinely collected clinical data, we had
to rely on a single rater per video. However, we avoided “over-
fitting” to a single opinion or local bias by using a dataset that is
large and heterogeneous (over 10,000 ratings, from 15 different
raters, at five different sites, across two continents).
Our results had a highly significant agreement for the

composite bradykinesia score, and individual item ratings only
diverged from clinical ratings by more than 2 points in 14% of
cases, which shows performance approaching that of some clinical
assessors. Furthermore, given the heterogeneity of opinions in our
dataset, we would not expect, or desire, a model to always agree
with the clinical rating. Indeed this would be an indicator of over-
fitting. Rather, our models can be thought of as learning to
emulate a weighted average of judgments, which may be more
accurate and reproducible than any single clinician opinion, in
keeping with literature on the wisdom of crowds28.
Motor dysfunction in PD is highly variable between patients and

affects several aspects of movement29. For bradykinesia, the MDS-
UPDRS lists speed, amplitude, hesitations, halts, and decrementing
amplitude as cardinal criteria, but only provides subjective
descriptions for how these should be used to rate severity (e.g.
“slight slowing” for severity 1, and “mild slowing” for severity 2).

Such imprecision in directions could itself account for a proportion
of rater disagreements, although many other factors doubtless
contribute. Despite this, severity scores are routinely used as a
primary outcome measure of clinical trials testing the efficacy of
pharmacological and surgical interventions4. Previous work has
begun to explore objective metrics of bradykinesia criteria.
Changes in the amplitude and velocities of actions might be
related to different functional aspects of PD30, while alternative
bradykinesia assessments have been developed to incorporate
separate specific ratings for domains such as speed, amplitude,
and rhythm31,32.
Our work, in addition to providing an objective composite

bradykinesia score, can provide clinicians with detailed informa-
tion about the characteristics of movements (speed, amplitude,
hesitations, halts, decrementing amplitude) from the dozens of
kinematic features that are inputted into the classification models.
This information could be used by clinicians to improve decision-
making and understanding of the complexities of motor
impairments in PD.
Moreover, composite bradykinesia score can be combined with

Gait and Arising from chair scores developed as a part of the same
system33,34. A complete system can provide a richer and more
complete patient assessment.
Our primary evaluation metric, the agreement between model

and clinician as measured by the ICC, was significantly lower in
one of the five sites. This could be explained by a significant
proportion of medicated patients, a different population of raters,
or this site examining only early-stage Parkinson’s disease
patients. Therefore future work would focus on expanding the
size of the dataset to gain a greater representation of different
sites and the early-stage patient population, such that the system
can fully generalise.
Estimating the composite bradykinesia score is an important

step toward fully automated MDS UPRDS assessment. However,
other important items such as speech, postural stability, and
tremor are still required to complete the picture. These items have
the potential to be estimated through a similar framework and the
development of such models will be our future work.
The classification models relied upon manual feature engineer-

ing (shallow features), guided by clinical understanding. Deep
learning can perform automated data-driven extraction of features
(deep features), although potentially at the cost of losing some
interpretability. Deep learning models have been shown to be
effective for quantifying bradykinesia accurately35,36. A system

Fig. 2 Composite bradykinesia score (sum of items 3.4–3.8) estimation results. a A scatterplot of composite bradykinesia scores for
clinicians versus models, the size of dots corresponding to the number of patients with that combination of clinician and model ratings.
b Distribution of residuals for the composite bradykinesia scores (n= 949). The mean was 0.97 which indicates that overall the models tended
to slightly overestimate the composite bradykinesia score. Red dashed lines indicate the large clinically important difference (CID) band. For
84% of assessments, disagreement between clinician and the model fell below large CID.
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that combined both shallow and deep learning might be
hypothesised to be optimal, in terms of both accuracy and
interpretability, although this remains to be shown.
The analysis in this study was 2D vision-based, relying on 2D

pose estimation. Inevitably some information relating to the third
dimension was lost. Although dedicated hardware could be used
to address this, for example, a Kinect sensor also provides an

estimate of depth15, this would discard the convenience of
already-available consumer devices for data collection. Encoura-
gingly, studies have shown that 3D pose estimation can be done
using monocular images37,38, and this has been applied to
quantifying gait impairment in PD with higher model accuracy
reported when using 3D pose compared to 2D pose39. This
suggests that future work focusing on bradykinesia could benefit

Fig. 3 Composite bradykinesia scores (sum of items 3.4–3.8) split by body bradykinesia (item 3.14) scores. a Boxplots of composite scores
indicate a similar distribution between the clinician and model scores for different levels of item 3.14. The box ranges from the first quartile to
the third quartile of the distribution. The median is indicated by the center line. The whiskers indicate 2nd and 98th percentiles. (4 bottom
panels) From top left to bottom right scatterplots of composite bradykinesia scores are shown for body bradykinesia scores of 0 (b), 1 (c), 2 (d),
and 3&4 (e). Note that data corresponding to Moderate (3) and Severe (4), the minority classes, are binned together for analysis and
presentation and marked by different colours and symbols. Across all severity scores, Pearson’s correlation coefficient is between 0.649 and
0.764, indicating a robust and consistent correspondence across all body bradykinesia severities. Red dashed lines indicate the large clinically
important difference (CID) band.
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from 3D information. Thanks to improvements in both 3D pose
estimation techniques and device sensors, tablets and smart-
phones increasingly include dedicated depth sensors such as
LiDAR, which presents the possibility of capturing depth data
without adding additional complexity to the assessment.
The possibility of remote assessments based on smartphones is

receiving increasing attention22,40–42. Future work will include
validating automated quantification of whole-body bradykinesia
in the remote context, with patients using a mobile app to record
video assessments within their home, then those videos and
automated bradykinesia scores being delivered to clinicians via
cloud computing infrastructure.
We presented a computer-vision-based method capable of

quantifying whole-body bradykinesia from video data collected
during routine MDS-UPDRS assessments at multiple sites, using
widely available consumer-grade mobile devices and without the
need for manual filtering. While the results are highly statistically
significant, and comparable to previous studies in the field, future
improvements in hardware and increases in the quantity of data

available for model training, and likely to result in further
improvements in performance.
This system has the potential to standardise bradykinesia

assessment across sites, locally or remotely, and to make clinical
data acquisition at scale a realistic possibility for both clinical care
and research.

METHODS
Subjects and assessments
MDS-UPDRS assessments of PD patients were conducted by
examiners at five movement disorders centres in the United
Kingdom and the United States. Symptom severity for each of the
five bradykinesia items was measured on an ordinal 5-point scale
from 0 to 4. Video recordings and ratings were captured through
KELVIN™, a video-based motor assessment platform developed by
Machine Medicine Technologies17,43, which has underpinned
previous work on other MDS-UPDRS items33,34. Videos were
recorded across a wide range of disease severity, in different
medication states (ON, OFF, wearing off), and deep-brain
stimulation states (ON stimulation, OFF stimulation), using
consumer cameras integrated within mobile devices or tablets.
The majority (approx. 90%) of the videos were recorded at 1080 ×
1920 resolution and 29.97 framerate, a capability commonly
available for most modern mobile devices.
Although videos were automatically filtered using criteria such

as minimum length and minimum frame rate, no manual selection
of videos took place, and the data thus reflects the current state of
routinely collected clinical data at these sites. The only instructions
given to clinicians were to recommend the use of a tripod, and to
keep the patient fully visible and centred within the video frame at
all times. Only one frontal view was captured during the
assessment.
In this study, we focused on the five MDS-UPDRS items

assessing the severity of a patient’s bradykinesia symptoms: items
3.4 (finger tapping), 3.5 (hand movement), 3.6 (pronation-
supination), 3.7 (toe tapping) and 3.8 (leg agility). It is worth
noting that while other items such as 3.10 (gait) can also be
affected by bradykinesia, for this work we only included items
primarily designed to assess the severity of bradykinesia. Although
item 3.14 (global spontaneity of movement or body bradykinesia)
also focuses on bradykinesia, it is a summary rating based on all
observations during the assessment rather than on a single item.

Table 4. Performance of the classification models, broken down by
each item.

MDS-UPDRS classifier Binary classification

Balanced
Accuracy

Acceptable
Accuracy

Accuracy AUCROC

Finger Tapping 0.44 0.84 0.71 0.79

Hand
Movements

0.43 0.86 0.74 0.81

Pronation-
Supination

0.40 0.81 0.73 0.75

Toe Tapping 0.44 0.88 0.76 0.84

Leg Agility 0.52 0.91 0.80 0.86

All items 0.45 0.86 0.75 0.81

For the MDS-UPDRS rating classifier; balanced accuracy (average class
recall) and acceptable accuracy (proportion of predictions within ±1). For
the binary classifier; accuracy and area under the receiver operator
characteristic curve (AUROC). For each of these evaluation metrics, there
was a small variation between items, with pronation-supination tending to
perform worse, and leg agility better.

Fig. 4 Summary of MDS-UPDRS rating classification model results. a Confusion matrix for all ratings for all five items. b Distribution of
model residuals, separated by overall disease severity, as measured by the clinical composite bradykinesia score (low ≤ 8; 8 < mid ≤ 15; high >
15). For each of these severity groups, the modal residual was 0 (i.e. exact agreement).
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Pose estimation and signals
The deep learning library OpenPose44 was used to extract 25 body
and 21 hand key-point coordinates on each frame (see Fig. 6).
Prior to pose estimation, all videos were rescaled to 640 × 1138
resolution. Experimentation with full and downscaled versions
didn’t show any significant changes in the performance of the
system. For each bradykinesia item, signals based on key-points
relevant to the appropriate action were constructed. These signals
were normalised using the patient’s estimated-standing height
(height estimation model was developed during previous
research33,34, see Supplementary Note 4 for details), with the
exception of the pronation-supination signal which was an
angular measure and thus much less dependent on the distance
between the patient and the camera.
A peak detection algorithm was used to identify local maxima

(peaks) and minima (troughs), which typically correspond to the
start and midpoint of a periodic action. For example, as the finger
tapping signal was based on the distance between thumb and
index finger tip, a peak would correspond to the two fingers
being maximally apart, and a trough would correspond to the
two fingers touching. Videos were annotated manually with
regions of interest (ROIs); i.e. the videos were labelled with
sections during which a particular action was performed using a
specific body part. For example, finger-tapping videos would
usually contain two ROIs, corresponding to the sections of the
video in which the patient performed the action using their left
and right hand. The time-series signals were cropped to these
ROIs, with features then being extracted from these cropped
signals.

Signal computations
For each of the MDS-UPDRS items (see Table 5) a time-series signal
was constructed to capture the action being carried out.
These five signals are defined in Table 6 using the following

notation:

● xb(i), yb(i), Pb(i) are the x-coordinate, y-coorindate and 2D
positional vector of the ith body key-point respectively.

● xh(i), yh(i), Ph(i) are the x-coordinate, y-coorindate and 2D
positional vector of the ith hand keypoint.

● Vh(i, j) is the vector drawn from the ith hand keypoint to the jth

hand keypoint.
● H is the estimated-standing height, which is used to normalise

pixel distances to account for patients of different heights and
at different distance to camera.

Peak/trough detection
The find peaks function from the Python library Scipy, was run on
each signal to identify local maxima (peaks) and run on the
negative of each signal to identify local minima (troughs). The
performance of this function depends on a number of parameters,
such as the minimum interval between consecutive peaks and the
minimum height of a peak. In order to calibrate the function for
use on the extracted signals a grid search of parameter values was
run, separately for each bradykinesia item, with the chosen sets
(see Table 7) being those that minimised the mean squared error
between estimated and manually labelled frequency for a given
item.

Feature extraction
For each of the five bradykinesia items, the same 11 features were
extracted from the relevant time-series signal. These eleven
features are defined in Table 8 using the following notation:

● s= (s1, ..., sn): the y-values of the time-series, where x-values
are frame numbers (see Table 6).

● s′: “Absolute velocity”, which is the absolute first difference of s.
● s″: “Absolute acceleration”, which is the absolute first difference

of s′.
● s″′: “Absolute jerk”, which is the absolute first difference of s″.
● p= (p1, ..., pm): the list of frame numbers of each local maxima

(peaks).
● t= (t1, ..., tk): the list of frame numbers of each local minima

(troughs).
● d= (d1, ..., dm+k−2): the concatenation of the list of differences

between consecutive peaks, (pi+1 − pi : i ∈ [1, ..., m − 1]), and
the list of differences between consecutive troughs, (ti+1 − ti :
i ∈ [1, ..., k − 1]).

● o: the ordered version of the concatenation of the two lists p
and t.

● o*: the concatenation of the three lists (1), o and (n).
● S: the list of subsets of time-series based on o; ((soi, ..., soi+1) for i

∈ [1, ..., m + k − 1])).
● S*: the list of subsets of time-series based on o*; ((so*i, ..., so*i+1)

for i ∈ [1, ..., m + k + 1])).
● f= (f1, ..., fm+k−2): the frequency estimates at each peak and

trough (measured in Hz); (FPSdi : i ∈ [1, ..., m + k − 2]), where FPS is
frames per second of the video.

● a= (a1, ..., am): the list of amplitudes of each peak, measured as
the difference between the y-value at that peak and the y-value
of the lower bound at that peak, where the lower bound is the

Fig. 5 Summary of binary classification model results. a Confusion matrix of a binary classifier to distinguish low-mild versus moderate-high
severity ratings ({0, 1} vs {2, 3, 4}), which has the accuracy of 75%. b Receiver operator characteristic curve of this classifier. The area under the
curve is 0.81.
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Fig. 6 Feature extraction overview. a The deep learning library OpenPose44 was used to extract 25 body and 21 hand key points from each
frame of the video. The photograph is published with written consent from the patient. b Coordinates of the key points across the frames
were used to construct time-series signals. c An example of finger-tapping signals (i.e. Euclidean distance between index finger tip and
thumb-tip key points) for right (top) and left (bottom) hand. In this case, the right hand received a low severity score of 1, while the left hand
received a high severity score of 4. The highlighted regions depict the regions of interest (ROIs); i.e. when the action was performed.
d Detected peaks and troughs on the signals of the two ROIs for the right hand (top) and left hand (bottom). Features were constructed from
these signals. The time between peaks corresponds to the time between successive finger taps. e The distribution of periods (in number of
frames between consecutive peaks and troughs) is extracted from the lower panel (left-hand signal) of (D). The box ranges from the first
quartile (Q1) to the third quartile (Q3) of the distribution, the median is indicated by the center line, the whiskers indicate the distance 1.5*IQR
(interquantile range) below Q1 and above Q3. One of the features, range of period between actions, is calculated as maximum minus
minimum period.
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Table 6. Signals constructed from key-points and used for feature extraction for each of the five bradykinesia items.

MDS-UPDRS item Time-series signal Formula

Finger Tapping Euclidean distance between the thumb-tip key-point and the index finger tip key-point,
measured in units of estimated-standing height.

Phð4ÞPhð8Þ
��� ����������!

H

Hand Movement The area of the convex hull (ACH) of the four finger tips key-points and the palm key-point,
measured in units of estimated-standing-height squared (H2).

ACH PhðiÞ :i2 0;8;12;16;20ð Þð Þ
H2

Pronation-Supination The angular velocity of the vector from the thumb-tip key-point to the little-finger-tip key-
points, measured in degrees per frame.

ff Vt�1
hð4;20Þ;V

t
hð4;20Þ

� �

Toe Tapping The vertical distance between the small toe and the neck, measured in units of estimated-
standing height.

ybðiÞ�ybð1Þð Þ
H ; i ¼ 20 left

23 right

�

Leg Agility The Euclidean distance between the knee key-point and the neck key-point, measured in units
of estimated-standing height.

jPbðiÞPbð1Þj
������!

H ; i ¼ 13 left
10 right

�

Table 5. Instructions given to patients for each of the five main bradykinesia items in the MDS-UPDRS3.

MDS-UPDRS item Instructions to patient

Finger Tapping Tap the index finger on the thumb 10 times as quickly and as big as possible.

Hand Movement Open the hand 10 times as fully and as quickly as possible.

Pronation-Supination Extend the arm out in front of the body with the palms down; then to turn the palm up and down alternately 10 times as fast
and as fully as possible.

Toe Tapping Place the heel on the ground in a comfortable position and then tap the toes 10 times as big and as fast as possible.

Leg Agility Place the foot on the ground in a comfortable position and then raise and stomp the foot on the ground 10 times as high and
as fast as possible.

Table 7. Chosen find_peaks parameter set for each bradykinesia item.

Item height threshold distance width rel_height prominence wlen

Finger Tapping None None 4 0.5 0.75 0.3 15

Hand Movements MA:10 None 5 4 0.5 1 60

Pronation-Supination MA:35 (0,1.5) 5 3 0.5 0.5 10

Toe Tapping None None None None 1 0.3 10

Leg Agility None None None None 1 0.7 60

MA:x denotes the moving average of the signal computed with a window size of x frames.

Table 8. Features extracted from the time-series signals (see Table 6).

Feature Description Formula Group

MeanFreq Mean frequency of actions mean(f ) Speed

CovarFreq Coefficient of variation of the frequency of actions stdðfÞ
meanðfÞ Speed

MeanVel The average of the velocities between peaks and troughs mean(V) Speed

CovarVel Coefficient of variation of the velocities between peaks and troughs stdðVÞ
meanðVÞ Speed

MeanAmp Mean of amplitude of actions mean(a) Amplitude

CovarAmp Coefficient of variation of the amplitude of actions stdðaÞ
meanðaÞ Amplitude

PeriodRange The range of period of actions range(d) Hesitations

PrcInv Average of the rate of inversions between peaks and troughs mean(I) Hesitations

Roughness The median of the absolute jerk divided by absolute acceleration median s000
s00

� �
Hesitations

DiffAmp Percentage change between MeanAmp of first third of peaks (denoted AT1) and the last third of
peaks (denoted AT3)

AT3�AT1

AT1 Decrementing signal

DiffVel Percentage change between MeanVel of the first third of peaks (denoted WT1) and the last third of
peaks (denoted WT3)

WT3�WT1

WT1 Decrementing signal

The same 11 features were used for each bradykinesia classification model.
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line resulting from linearly interpolating between consecutive
troughs (see Fig. 7).

● VEL(): the function that returns the mean absolute first
difference of a time-series (referred to below as velocities).

● V: VEL() applied to each element of S*: V= (VEL(Si*) : i ∈ [1, ...,
m + k + 1])

● INV(): the function that returns the percentage of points in a
time-series that need to be inverted in order to create a
monotonic time-series.

● I: INV() applied to each element of S*: I= (INV(Si*) : i ∈ [1, ...,
m + k + 1]).

These features were intended to capture the key characteristics
of the movement, and could roughly be grouped into the four
main aspects of impairment described by the MDS-UPDRS; speed,
amplitude, hesitations and halts, and decrementing signal.
For illustration, patients with more severe impairment were

expected to slow down and perform fewer actions per second, as
well as executing the actions less smoothly. The amplitude of
actions was also expected to decrease with impairment severity.
For example, during finger tapping, severely impaired patients
would not be able to vary the distance between their thumb and
index finger, compared to less impaired patients.

Individual item models
To estimate individual MDS-UPDRS ratings, an ordinal classifica-
tion system45 was used based on random forest classifiers (RFCs).
The ordinal classification was used because classes (degrees of
impairment) are inherently ordered. Internally, the ordinal
classifier comprised four binary RFCs which were trained to
distinguish {0} vs {1, 2, 3, 4}, {0, 1} vs {2, 3, 4}, {0, 1, 2} vs {3, 4}, and
{0, 1, 2, 3} vs {4}. Due to the class imbalance (see Table 1), we used
the Synthetic Minority Oversampling Technique (SMOTE)46 to up-
sample minority classes within each training fold. This ordinal
classifier was trained and evaluated using 10-fold (stratified) cross-
validation for each bradykinesia item. In addition, we also trained
a (non-ordinal) binary RFC to distinguish between low ({0, 1}) and
high ({2, 3, 4}) severity ratings.

Composite bradykinesia score
For a given patient assessment, a composite bradykinesia score
was obtained by summing the cross-validation predictions for the
10 individual model ratings (left and right ratings for each of the
five items), giving a score on a scale of 0–40. This model
composite score could then be compared to the clinical
composite score, based on the ratings made by the clinical
assessor.
We further examined how the composite bradykinesia scores

varied with respect to the clinical ratings of MDS-UPDRS item 3.14
(known as global spontaneity of movement or body bradykinesia).
Assessors are instructed that this rating should be based on the
examiner’s global impression of bradykinesia symptoms after
observing the patient for the entire assessment3.

Per-patient disagreement between the model and the compo-
site bradykinesia score was further analysed by computing a
proportion of residuals falling below a large clinically important
difference (CID) threshold. Large CID was computed by applying
the same percentage threshold as for the full UDPRS motor
subscale estimated in the literature25. A value of 7.7 was calculated
as a large CID for the composite bradykinesia score.

Statistical analysis
The primary evaluation metric was the intraclass correlation (ICC),
estimating the level of agreement of two raters (two-way random
effects, absolute agreement, single rater ICC47), to measure
agreement between the clinician and model estimate of
composite bradykinesia score. This metric is widely used in
interrater reliability and agreement analysis studies.
The secondary evaluation metrics were based on the individual

item classifiers. For the MDS-UPDRS rating classifiers, we used
balanced accuracy (the average recall obtained on each class) and
acceptable accuracy (the proportion of estimates for which the
residuals were zero or ±1). Balanced accuracy was chosen to
account for the imbalanced dataset, while acceptable accuracy is
chosen because it is not uncommon for MDS-UPDRS assessors to
diverge from one another by one point48. For the binary classifiers,
we used accuracy and the area under the curve of the receiver
operator characteristic (AUC-ROC).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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