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Abstract 

Background: Dementia develops as cognitive abilities deteriorate, and early detection is critical for effective preven‑
tive interventions. However, mainstream diagnostic tests and screening tools, such as CAMCOG and MMSE, often fail 
to detect dementia accurately. Various graph‑based or feature‑dependent prediction and progression models have 
been proposed. Whenever these models exploit information in the patients’ Electronic Medical Records, they repre‑
sent promising options to identify the presence and severity of dementia more precisely.

Methods: The methods presented in this paper aim to address two problems related to dementia: (a) Basic diagno‑
sis: identifying the presence of dementia in individuals, and (b) Severity diagnosis: predicting the presence of demen‑
tia, as well as the severity of the disease. We formulate these two tasks as classification problems and address them 
using machine learning models based on random forests and decision tree, analysing structured clinical data from an 
elderly population cohort. We perform a hybrid data curation strategy in which a dementia expert is involved to verify 
that curation decisions are meaningful. We then employ the machine learning algorithms that classify individual epi‑
sodes into a specific dementia class. Decision trees are also used for enhancing the explainability of decisions made 
by prediction models, allowing medical experts to identify the most crucial patient features and their threshold values 
for the classification of dementia.

Results: Our experiment results prove that baseline arithmetic or cognitive tests, along with demographic features, 
can predict dementia and its severity with high accuracy. In specific, our prediction models have reached an aver‑
age f1‑score of 0.93 and 0.81 for problems (a) and (b), respectively. Moreover, the decision trees produced for the two 
issues empower the interpretability of the prediction models.

Conclusions: This study proves that there can be an accurate estimation of the existence and severity of dementia 
disease by analysing various electronic medical record features and cognitive tests from the episodes of the elderly 
population. Moreover, a set of decision rules may comprise the building blocks for an efficient patient classification. 
Relevant clinical and screening test features (e.g. simple arithmetic or animal fluency tasks) represent precise predic‑
tors without calculating the scores of mainstream cognitive tests such as MMSE and CAMCOG. Such predictive model 
can identify not only meaningful features, but also justifications of classification. As a result, the predictive power 
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Background
According to recent surveys, dementia is underdiag-
nosed. ICD codes alone cannot serve as a reliable gold 
standard for investigating the demographic character-
istics or the clinical associations of the condition using 
electronic health records [1].

There is no single diagnostic test that can determine 
if a person has any form of dementia. However, clini-
cians employ various tools and tests to detect the pres-
ence of dementia, whether due to Alzheimer’s disease or 
some other cause. The Mini’ Mental State Examination 
(MMSE) is the most common test for measuring cogni-
tive impairment [2]. Creavin et al. [3] attempt to determine 
the diagnostic accuracy of MMSE at various cut points for 
dementia in people aged 65 years and over. The authors 
conclude that MMSE contributes to a diagnosis of demen-
tia in low prevalence settings. But this work also suggests 
that MMSE should not be used in isolation to confirm or 
exclude the disease. An alternative approach is to use the 
Clock Drawing Test (CDT) [4], which provides a simple 
scoring system for the rapid screening for cognitive impair-
ment in patients with mild cognitive impairment [5].

More recently, a variety of automatic speech-based tools 
have also been used to detect dementia. These approaches 
usually employ machine learning classifiers trained with 
various vocal features, derived from recorded data resulting 
from standard spoken tasks provided to individuals [6, 7]. 
Automatic speech-based tools can also use lexical and con-
versation analysis-inspired features derived from transcripts 
of recorded data [8], in conversations led by neurologists or 
intelligent virtual agents. As another example, the CogA-
ware tool [9] provides textual analysis for transcripts of indi-
viduals describing the “cookie theft” picture [10], in order 
to automatically detect whether they are originated from a 
patient with dementia or a cognitively normal individual.

A powerful but underutilised resource that could be 
employed to rapidly and automatically detect dementia 
is a patient’s electronic medical record (EMR). EMRs are 
increasingly available sources of information that contain 
large quantities of heterogeneous data. EMRs can include 
MR images of the brain that demonstrate cortical atrophy 
or comprise demographic and clinical information, as well 
as patient performance in cognitive tests. This information 
has been used to train machine learning models to detect 
the presence and severity of dementia [11–13]. Such mod-
els have also been used to assess the risk of converting to 
Dementia from a Mild Cognitive Impairment stage [14, 15].

Demographic and clinical information from EMRs 
has also been analysed by Shao et al. [1]; they utilise both 
structured and unstructured EMRs to define individual 
patients’ risk scores for dementia. The authors also com-
bine structured data features, consisted of standard codes 
and medications from EMRs, with topic features, extracted 
from a topic modelling approach on free-text clinical notes. 
Finally, they employ a logistic regression model using the 
selected features as predictors. A similar retrospective 
study is combined by Ford et al. [16], using structured data 
including medical diagnoses, primary care tests and inves-
tigations, lifestyle information and prescribing data. Their 
survey compared various machine-learning models with 
baseline epidemiological approaches to identify undetected 
dementia in UK primary care patients and concludes that 
logistic regression and random forest algorithms allow 
for important features to be exposed and may be the best 
approaches for this prediction task.

In this paper, we examine whether the values of various 
features in electronic medical records can consistently 
decide the patient’s cognitive status, i.e. if the patient 
suffers from dementia and the level of its severity. This 
is realised in an automated way, by employing machine 
learning models that analyse a big dataset of EMRs, and 
validating the models’ effectiveness.

For this purpose, we employ EMRs that comprise struc-
tured information such as demographics, MMSE, and per-
formance on the CAMCOG—a screening instrument for 
dementia. CAMCOG includes tests sensitive to different cog-
nitive domains, and is part of the Cambridge Mental Disor-
ders of the Elderly Examination (CAMDEX) [17]. CAMCOG 
has high levels of sensitivity and specificity when used to dis-
tinguish individuals with mild dementia from those who are 
cognitively intact. We analyse these data using a random for-
ests model, providing an automatic classifier that effectively 
discriminates dementia patients from control individuals and 
estimates the severity of the disease for the former.

However, machine learning algorithms usually work as 
a black-box tool, without the ability to interpret individ-
ual predictions. Thus, an emerging challenge is to achieve 
the explainability of decisions taken by such models, in 
order to provide clinicians with the ability to understand 
the rationale of the model. Towards these directions, we 
employ decision tree models that are able to visualise a set 
of configurable rules for predictions made. Since MMSE 
and CAMCOG scores can directly provide an estimation 
of dementia severity, we decided to exclude those from the 

of machine learning models over curated clinical data is proved, paving the path for a more accurate diagnosis of 
dementia.
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training of our decision trees, in order to investigate other 
interesting features that are clinically useful.

Methods
Problem statement
The problem addressed in this work is related to detecting 
the presence of a form of dementia in individuals based 
on a set of available demographic and psychometric fea-
tures. A relevant extension of the problem above is accu-
rately deciding the severity of the disease for patients with 
dementia. These two problems are formulated as follows: 

1 Problem (a)—Predict Dementia, No Dementia: This 
problem addresses the issue of identifying if a patient has 
dementia or not in a specific episode (correctly diagnose 
dementia). In this task, we classify a patient-episode into 
“Dementia (1)” or “No-Dementia (0)”. We also identify 
relevant features for the classification decision.

2 Problem (b)—Predict No Dementia, Minimal or Mild 
Dementia, and Moderate or Severe Dementia: We 
further refine the previous problem to have a better 
understanding of the severity of dementia. We clas-
sify dementia patients into two more classes, “Minimal 
or Mild” and “Moderate or Severe”. We discover the 
important features behind the classification decision.

Approach
Our approach initially demands a data cleaning and cura-
tion process. Since all real-world clinical datasets contain a 
big amount of noise and missing values, we need to define 
a set of general rules, in order to be able to complete miss-
ing features and ignore features that are sparse. This pro-
cess includes the filling of stable parameters throughout 
the patient’s lifetime, such as height, and removing param-
eters where the majority of values in patient episodes are 
meaningless (e.g. ‘not known’ or ‘not asked’).

The problems previously defined are formulated as simple 
classification tasks, addressed by machine learning models. 
These models’ algorithms are based on a supervised learn-
ing Decision Tree (DT) method to make the decisions easily 
interpretable by clinicians. They predict the class of patients 
by inferring decision rules from training data features.

A decision tree is composed of nodes and leaves. A node 
represents a dichotomous threshold for the value of some 
feature in the dataset (a.k.a. decision threshold). A leaf repre-
sents a patient subgroup in whom the likelihood of belonging 
to the positive class (in this case, developing dementia) can-
not be refined by any additional dichotomous test. Nodes and 
leaves are connected by branches, each of which represents 
an additional condition; any path through the decision tree 
represents the outcome of a series of conditional statements.

To better understand the concept of decision trees, con-
sider the example tree in Fig. 1. In this tree, the goal is to 
decide whether an individual has some form of dementia 
or not (binary classification). As we can see, each interme-
diate node entails a discriminating feature and a threshold. 
Based on the value of this feature, a clinician must follow 
the appropriate branch, until reaching a leaf node. Leaf 
nodes conclude to a decision (“Dementia” / “No Demen-
tia”), based on the majority of cases in the training sample. 
To make our trees more informative and self-explainable, 
we have visualized the percentages in pie charts, the size of 
which depends on the number of cases falling in this leaf 
node. It is also used to find the class probability, which is 
the fraction of the same class in a leaf.

Predictive models
Our objective is to predict the classification of dementia 
patients as described in the problem statement, based on 
various patient record parameters provided as features in 
machine learning-based predictive models. We utilize the 
random forest algorithm for class prediction and the local 
interpretable model-agnostic explanations (LIME) [18] for 
explaining the model decision for any patient-episode. As a 
last step, we train a decision tree classifier, feeding important 
data features obtained by the random forest classifier model.

A random forest algorithm is an ensemble learning 
method that generates different decision trees. The deci-
sion of an algorithm averages the results provided by dif-
ferent decision trees. Individual decision trees usually have 
high variance and are prone to overfitting. Therefore, to 
control overfitting, decision trees are trained on differ-
ent sub-samples of the dataset instances. A random forest 
model does not provide an explanation for each individ-
ual test instance classification. However, it gives a list of 
global important features based on the complete sample of 
the training data considering impurity. To determine the 
importance of a feature, the random forest model meas-
ures how much this feature impacts the total reduction 
of the classification criterion, i.e. how discriminating this 
feature is for the data instances to candidate classes. The 
greater the number, the more important the feature.

In contrary, LIME provides a local explanation of the 
prediction for each instance of the complete sample of 
the test data. LIME utilizes local surrogate models to 
explain the black-box behaviour of the machine learning 
model and its prediction. In terms of weight, LIME cal-
culates each feature contribution for the predicted class 
of a test instance. As a result, the contribution or weight 
of each feature may vary depending on the test instance 
(local explainability of the prediction). The relevance of 
the feature is reflected on its weight. The weight’s impor-
tance can be interpreted by applying this to the predic-
tion probability of a predicted class (Figs. 2, 3).
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Experiments
Dataset
In our experiments, we employ clinical data from the 
OPTIMA (Oxford Project to Investigate Memory and 
Ageing) [19–21] dataset. The OPTIMA project was 
a long-term cohort study (1988–2008) of ageing and 
dementia that included persons over 70 with normal or 
minimally impaired cognition and studied their physical, 
metabolic, imaging, clinical, and cognitive indices until 
death.

The OPTIMA dataset comprises 1035 different patients 
with 9584 episodes and their features documented. The 
collection also includes unique patient identifiers; they, 
when combined with episode dates, uniquely identify 
each assessment of a patient’s status. Each episode has 
1593 distinct features. The features are derived from 
various sources of information, including demographic 
characteristics, YES/NO questions related to health 
and well-being, rating scales, medical history, physical 
examinations, neuropsychological assessments, and per-
formance of cognitive tests. As will be concluded, only a 
subset of these features will be important for the predic-
tion tasks.

An important issue in OPTIMA dataset, is that 62% 
of the values are missing. This occurs due to a variety 
of reasons. For example, clinicians may note down only 
the most relevant feature values about a patient’s current 
condition and neglect others. They may also ignore some 
repeated feature across episodes, such as demographics 
and prolonging comorbidities (diabetes or hypertension). 
Based on this, we devise pre-processing and cleaning 
techniques able to curate missing values based on the 
supervision of our clinicians.

Determining classes for the predictive model
The predictive models are trained on patient-episode 
data (a.k.a. data instance). We note that there are sub-
stantial differences between each patient’s different epi-
sode features. In specific, our models use two kinds of 
features that change between episodes as follows:

• Demographic (e.g. age or weight) or clinical features 
(e.g. comorbidities). The majority of these values usu-
ally change between two episodes (especially for long 
time intervals).

• Cognitive examinations or memory and arithme-
tic tests (e.g. RECALLS OBJECTS, SUBTRACTS 
MONEY), taken by patients in each episode with the 
supervision of a clinician. Resulting values can be 
much different even in consecutive episodes, as the 
cognitive state of the individual deteriorates.

As a result, we avoid the potential information leakage 
introduced when the same episode or patient episodes 
with the same values could be part of both training and 
test data.

There are no direct features to suggest if a patient 
episode is labelled as “Dementia” or “No Dementia”. 
Therefore, supported by our clinicians, we define our 
ground truth, and label each data instance based on 
the features with values illustrated in Tables  1, 2, and 
3. Features and values in Tables 1, 2 are used to identify 
if a patient episode falls under the “Dementia” or “No 
Dementia” classes, respectively. In addition, 3385 epi-
sodes are dropped because all their values are NULL, 
None or Unknown in the class determining features ( 
in Tables  1, 2, and 3). Moreover, a patient-episode is 
labelled as “Dementia”, if and only if, any other episode 
of the same patient is labelled as dementia, accord-
ing to the criteria of the ground truth. Therefore, all 
the patient’s episodes fall into one of two categories: 
“Dementia” or “No Dementia”. Features and values in 
Table 3 are used to label a data instance with the value 

Table 1 Features and their respective values to consider a 
patient in dementia class

Features considered Values considered Total cases

EST SEVERITY OF DEMENTIA Minimal, mild, moderate, 
severe

2552

DEMENTIA CLOUDED Present 10

CLOUDED DEMENTIA Present 2

SEVERITY OF DEMENTIA Minimal, mild, moderate, 
severe

814

DEMENTIA PRESENT Mild, moderate, severe 951

MIXED DEMENTIA Yes 172

DSM‑IIIR Dementia 1

CLINICAL DIAGNOSIS 1 Dementia 876

Table 2 Features and their respective values to consider a 
patient in no‑dementia class

Features considered Values considered Total cases

EST SEVERITY OF DEMENTIA No 2084

SEVERITY OF DEMENTIA No 958

DEMENTIA PRESENT No 2185

DSM‑IIIR No dementia 1

CLINICAL DIAGNOSIS 1 No dementia 965



Page 8 of 20Vyas et al. BMC Medical Informatics and Decision Making          (2022) 22:271 

of the dementia severity (Minimal, Mild, Moderate, 
Severe). In case of several labels, the one representing 
the higher severity is considered.

Data cleaning and pre‑processing
Various related works examined in [22] show that fea-
tures related to demographics (e.g. age, gender and 
education), health (e.g. BMI, diabetes, depression, high 
cholesterol, and traumatic brain injury), and lifestyle 
factors (e.g. smoking, alcohol, physical activity, cogni-
tive activity, and fish intake) are essential in the diag-
nosis of dementia. We identify 242 such features in 
the OPTIMA dataset. Applying the curation rules sug-
gested by our clinicians, we are able to complete a few 
of the missing values on some features. This can be done 
by adding values implicitly provided by other closely 
related features. Curated features include “Petersen 
MCI”, “Depressive Illness”, “Cerebro Vascular Disease 
Present”, and “Anxiety/Phobic”. For example, our clini-
cal experts can first identify closely related features for 
the “Depressive Illness” feature (with possible values: 
“absent” and “present”); these features include “Severity 
of depression”, “Feeling depressed”, “Depressed mood” 
and “Depression/Dysphoria: Severity”). The missing 
values of the ‘Depressive Illness” feature, are filled by 
taking into account values of the related features. For 
example, “Mild” or “Moderate” from “Depression/Dys-
phoria: Severity” entails the value “present” in “Depres-
sive Illness”. Using these curation rules, around 70% of 
the missing values are completed.

The OPTIMA dataset feature-guide is included in the 
Additional file  5: Table  S1 in supplementary informa-
tion section. It is used to identify meaningless values 
in the data features. It consists of feature labels, their 
descriptions (data types and format of features), includ-
ing the range of numerical features and categories of 
categorical features. We replace all such meaning-
less values with missing values (NULL). For example, 
“IDENTIFIES YEAR” feature should have ‘YES’ and 
‘NO’ values only, so all other cases are considered as 
missing values.

As data sparsity can cause improper learning to the 
models, we decided to drop some dataset episodes and 
features, according to the number of missing values. An 
episode is removed if at least 50% of the feature values are 
missing. On the other hand, a full feature is removed if at 
least 5% of the episodes have missing values in this fea-
ture. Those percentages were chosen after experimenta-
tion with different thresholds, as they exhibited the best 
performance possible. This whole procedure leaves our 
models with the features mentioned in Table 4 for Prob-
lem (a) and Problem (b). Further, during pre-processing, 
categorical features are transformed into one-hot encod-
ing. After the curation process, we end up with 3579 data 
instances (episodes) to perform experiments for Problem 
(a) and Problem (b).

Model training and feature selection
We employ a random forest classifier to train our pre-
dictive models with the default parameters of sklearn 
library,1 except for the maximum depth of the tree, which 
is set to 5. A random forest model utilises a stratified 
shuffle split cross-validator which splits data into 5 folds 
of train and test set with reshuffling. Each fold preserves 
the percentage of samples for each class. After each fold, 
we record 50 most impurity-based important features 
from the model training and store into a set to have a 
distinct feature list. These important features are utilised 
to train a decision tree classification model to enhance 
interpretability of the random forest model outcomes. 
A maximum depth of 5 is used to generate generalised 
decision trees without overfitting.

Following a most common approach as per the empiri-
cal study, we choose the split ratio (70:30) between the 
training and testing set and utilise a stratified method to 
preserve class frequencies in both sets. Both problems 
represent the same experimental settings. In Problem 
(a), the “No Dementia” and “Dementia” classes contain 
1829 and 1750 episodes, respectively, while, in Problem 
(b), the “No Dementia”, “Minimal or Mild dementia”, and 
“Moderate or Severe dementia” classes have 1829, 1281, 
and 469 episodes, respectively. The population size of 
dataset (Train:Test) in both problems are equal to 3579 
(2505:1074) patient episodes.

Tables 5, 6, 7, 8, 9 and Table 10 report the results of 
Problem (a) and Problem (b), respectively, using the 
random forest and decision tree algorithms.

Evaluation Metrics We measure the performance 
of the predictive models in terms of precision, recall, 
and f1-score. In Problem (a), precision is the ratio of 

Table 3 Features and their respective values to consider the 
severity of dementia

Features considered Values considered Total cases

EST SEVERITY OF DEMENTIA Minimal, mild, moderate, 
severe

2552

SEVERITY OF DEMENTIA Minimal, mild, moderate, 
severe

814

1 https:// scikit- learn. org/ stable/.

https://scikit-learn.org/stable/
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Table 4 Selected features for Problem (a) and (b)

RECALLS OBJECTS CLOCK DRAWING SUBTRACTING SEVENS

SIMILARITIES ‑ FRUIT NUMBER OF ANIMALS LISTED: SCORE NUMBER OF ANIMALS LISTED

SIMILARITIES ‑ LIFE IDENTIFIES OBJECTS MIME ‑ BRUSHING TEETH

RECALLS ADDRESS dementia range PRAXIS ‑ PAPER

RECOGNISES OBJECTS IDENTIFIES COIN SIMILARITIES ‑ CLOTHING

PATIENT RECALLS OBJECTS REGISTERS OBJECTS

RECOGNISES FAMOUS PEOPLE SIMILARITIES ‑ FURNITURE ACTUAL DURATION OF INTERVIEW

Age At Episode RECALLS ADDRESS: BROWN PRAXIS ‑ ENVELOPE

IDENTIFIES FLOOR KNOWS PRIME MINISTER COMPREHENDS TAP

RECALLS OBJECTS: BAROMETER RECOGNISES OBJECTS: PIPE REPETITION

REMEMBERS WW2 DATE IDENTIFIES MONTH DRAWS HOUSE

CLOCK DRAWING: TIME RECOGNISES PICTURES: SCALES RECALLS OBJECTS: SHOE

RECALLS ADDRESS: JOHN DEFINES HAMMER RECOGNISES PICTURES: SHOE

IDENTIFIES OBJECTS: PENCIL PRAXIS ‑ PAPER: FOLDS WRITES A SENTENCE

READING COMPREHENSION 2 REGISTERS OBJECTS 1: APPLE DICTATION

DICTATION::Poor COMPREHENDS RADIO RECOGNISES PICTURES: BAROMETER

IDENTIFIES DATE IDENTIFIES YEAR IDENTIFIES STREETS COUNTRY 

DRAWS PENTAGON COMPREHENDS VILLAGE RECALLS OBJECTS: TYPEWRITER

RECOGNISE PERSON IDENTIFIES COUNTY REMEMBERS MAE WEST

KNOWS MONARCH RECALLS ADDRESS: D42 RECALLS OBJECTS: SUITCASE

COUNTING BACKWARDS: > two errors COUNTING BACKWARDS COUNTING BACKWARDS::One error

KNOWS RECENT NEWS ITEM DEPRESSIVE ILLNESS::Absent DEPRESSIVE ILLNESS::Present

RECOGNISES OBJECTS: SHOE COMPREHENDS NOD RECOGNISES OBJECTS: TELEPHONE

REGISTERS OBJECTS 3: PENNY MIME ‑ SCISSORS MIME ‑ SCISSORS::Poor

RECALLS ADDRESS: WEST KNOWS HEIR TO THRONE NAMES PICTURES: LAMP

RECOGNISES OBJECTS: PURSE CLOCK DRAWING: NUMBERS RECALLS OBJECTS 3: PENNY

CLOCK DRAWING: CIRCLE PRAXIS ‑ PAPER: RIGHT HAND READING COMPREHENSION 1

REMEMBERS HITLER PRAXIS ‑ PAPER: ON LAP DIAGNOSIS 334‑351: ANXIETY PHOBIC::Absent

DIAGNOSIS 334‑351: ANXIETY/PHOBIC::Present RECALLS OBJECTS: LAMP REMEMBERS LINDBERGH

NAMES PICTURES: TYPEWRITER RECOGNISES OBJECTS: CUP IDENTIFIES TOWN

IDENTIFIES OBJECTS: WATCH COMPREHENDS TOUCH COMPREHENDS HOTEL

NAMES PICTURES: SHOE DRAWS SPIRAL RECALLS ADDRESS: BEDFORD

SUBTRACTS MONEY RECALLS OBJECTS 2: TABLE NAMES PICTURES: BAROMETER

IDENTIFIESSEASON MIME WAVE RECOGNISES OBJECTS: SPECTACLES

REMEMBERS STALIN IDENTIFIES PRESENT PLACE ADDS UP MONEY

COMPREHENDS LOOK NAMES PICTURES: SCALES NAMES PICTURES: SUITCASE

REMEMBERS WW1 DATE RECALLS OBJECTS 1: APPLE IDENTIFIES DAY OF WEEK

RECALLS OBJECTS: SCALES

correctly predicted patients in the “Dementia” class 
to the total patients predicated as dementia. Alterna-
tively, recall represents the ratio between the number 
of patients correctly predicted in the “Dementia” class 
to all patients in the “Dementia” class. Lastly, f1-score 
is the harmonic mean of precision and recall. The same 

metrics are also utilised for the classification of patients 
into the “No Dementia” class. We do not take accuracy 
(ratio between total correctly predicted patients to the 
total patients) into the account, as it is the least signifi-
cant compared to the f1-score. We use the same met-
rics for Problem (b).
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Results
The random forest predictive model’s performance is 
measured after each fold in terms of macro-averaged 
precision, recall, and f1-score of each class. We represent 
the results of the random forest models in Tables 5 and 7 
for Problem (a) and Problem (b) considering patient epi-
sodes as data instances into the training and testing set.

In order to validate that the considering several epi-
sodes of the same patient does not induce overfitting, the 
models are also trained and validated at patient-level. In 
the patient-level setting, each patient record that includes 

all his/her episodes is included either in the training or 
testing sets but, not in both.

Tables 6 and 8 report on the results for Problem (a) and 
Problem (b) respectively for patient-level setting. The 
performance of the predictive models is very similar at 
patient-episode and patient-level setting. This suggests 
that treating each patient’s episode as a data instance 
does not introduce overfitting into the models.

Moreover, we also show the results of the decision tree 
models for the two problems in Tables 9 and 10, respec-
tively. The decision tree predictive model for Problem 
(a) provides similar results for both classes. The deci-
sion tree predictive model for Problem (b) accomplishes 
better results for “No Dementia” and “Minimal or Mild 
dementia” classes, compared to “Moderate or Severe 
dementia” classes. The outcomes reported in Tables  9 
and 10 suggest that Problem (b) is more complex to solve 
than Problem (a). The complexity is introduced because 
the “Dementia” class is divided into the classes “Minimal 
or Mild” and “Moderate or Severe” dementia classes for 
Problem (b), which causes a high imbalance between the 
three classes.

Table 5 Evaluation results for Problem (a) (Predict No‑Dementia 
and Dementia) with 5‑fold cross validation after each iteration 
of a random forest model in terms of macro‑averaged precision, 
recall, and f1‑score, where training and testing set are divided 
based on patient‑episode setting

Iterations No. Precision Recall f1-score

1 0.95 0.95 0.95

2 0.96 0.96 0.96

3 0.94 0.94 0.94

4 0.96 0.97 0.96

5 0.95 0.95 0.95

Table 6 Evaluation results for Problem (a) (Predict No‑Dementia 
and Dementia) after each different random iteration of a random 
forest model in terms of macro‑averaged precision, recall, and 
f1‑score, in the patient‑level setting

Iterations No. Precision Recall f1-score

1 0.96 0.96 0.96

2 0.95 0.95 0.95

3 0.95 0.95 0.95

4 0.96 0.95 0.95

5 0.96 0.96 0.96

Table 7 Evaluation results for Problem (b) (Predict No Dementia, 
Minimal or Mild Dementia and Moderate or Severe Dementia) 
with 5‑fold cross validation after each iteration of a random forest 
model in terms of macro‑averaged precision, recall and f1‑score, 
where training and testing set are divided based on patient‑
episode setting

Iterations No. Precision Recall f1-score

1 0.88 0.85 0.86

2 0.86 0.81 0.83

3 0.88 0.84 0.85

4 0.88 0.84 0.85

5 0.89 0.85 0.86

Table 8 Evaluation results for Problem (b) (Predict No Dementia, 
Minimal or Mild Dementia and Moderate or Severe Dementia) 
after each different random iteration of a random forest model 
in terms of macro‑averaged precision, recall and f1‑score, in the 
patient‑level setting

Iterations No. Precision Recall f1-score

1 0.83 0.78 0.80

2 0.85 0.80 0.82

3 0.86 0.81 0.83

4 0.86 0.84 0.85

5 0.87 0.81 0.83

Table9 Classification report: evaluation results for Problem 
(a) (Predict No‑Dementia and Dementia) using a decision‑tree 
model in terms of precision, recall and f1‑score

The support represents the number of true instances of each class. The macro 
average and weighted average calculate the metrics for each class label. 
However, the macro illustrates the unweighted mean, without considering 
label imbalance, whereas the weighted average utilises the support of labels for 
producing the weighted mean value

Decision tree model

Precision Recall f1-score Support

No‑Dementia 0.91 0.97 0.93 549

Dementia 0.96 0.90 0.93 525

macro avg 0.93 0.93 0.93 1074

weighted avg 0.93 0.93 0.93 1074
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Baseline Results We built our own baseline to com-
pare the findings of our model. Our proposed methodol-
ogy comprises the following cleaning and preprocessing 
steps: 

1 Imputing missing values, computed from meaning-
less values and based on curation rules provided by 
the clinicians.

2 Selection of relevant features, guided by clinicians’ 
recommendations.

3 Identifying and replacing corrupted and meaningless 
values in features with null values, as well as remov-
ing problematic features.

4 One-hot encoding of categorical features for better 
explainability for the models

We define our baseline as a plain classification model 
that does not include these steps. The dataset for this 
model consists of 4536 episodes for training (70%) and 
testing(30%) for Problem (a) and Problem(b) using deci-
sion tree model. Results of the baseline model for the two 
problems are presented in Tables 11 and 12, respectively. 
We find no significant differences in precision, recall, or 
f1-score. However, there are differences in the decision 
trees generated by our baseline and our proposed model. 
In the supplementary information section, we provide 
the baseline decision trees in files (Additional file 3: Fig-
ure S3 and Additional file  4: Figure S4). The decision 
trees differ both in appearing features and in decision 
thresholds of certain features that cannot be interpret-
able. For Problem (a), out of nineteen features, the fol-
lowing three have non-interpretable decision thresholds:

• HANDED: Decision threshold=5 (in two nodes)
• WRITES A SENTENCE: Decision threshold=5

As can be observed in the OPTIMA feature guide, the 
“HANDED” feature is categorical with values 1, 2, 3, 8, 
9, reflecting the handwriting capability of the person. 
Values 8 and 9 represent ’NotKnown’ and ’NotAsked’ 
respectively; according to our curation rules, they 
are considered meaningless. On the other hand, the 
“WRITES A SENTENCE” feature is binary. In none of 
these cases, the decision threshold value is interpret-
able, with respect to the meaning of the feature.

Similarly, in the baseline model decision tree for Prob-
lem (b), out of twenty-five features, the following four 
binary ones have non-interpretable decision thresholds:

• KNOWS RECENT NEWS ITEM: Decision thresh-
old=5

• RECALLS OBJECTS 1 APPLE: Decision thresh-
old=6

• COGNITIVE IMPAIRMENT: Decision threshold=5
• CERBRO-VASCULAR DISEASE PRESENT: Deci-

sion threshold=5

The aforementioned unmeaningful decision boundaries 
for both problems, appear as a result of the large amount 
of noise and missing values in the OPTIMA dataset for 
many important features. Contrary, in the decision trees 
of our model where data have been curated according to 
the preprocessing steps 1–4, none of the decision thresh-
olds suffers from this problem. In all cases, the decision 
thresholds are meaningful, since all decisions taken are 
based on the different categories of each feature range of 
values.

Interpretation of results
The resulting Decision Trees for Problems (a) and (b) are 
provided in Figs. 1 and 4, respectively.

Table 10 Classification Report: Evaluation results for Problem (b) 
(Predict No Dementia, Minimal or Mild Dementia and Moderate 
or Severe Dementia) using a decision‑tree model, in terms of 
precision, recall and f1‑score

The support represents the number of true instances of each class. The macro 
average and weighted average calculate the metrics for each class label. 
However, the macro illustrates the unweighted mean, without considering 
label imbalance, whereas the weighted average utilises the support of labels for 
producing the weighted mean value

Decision tree model

Precision Recall f1-score Support

No‑Dementia 0.91 0.97 0.94 549

Minimal or Mild 
Dementia

0.81 0.78 0.79 384

Moderate or 
Severe Dementia

0.74 0.65 0.69 141

macro avg 0.82 0.80 0.81 1074

weighted avg 0.85 0.86 0.85 1074

Table 11 Classification report: evaluation results for Problem (a) 
(Predict No‑Dementia and Dementia) using decision‑tree model 
in terms of precision, recall and f1‑score for baseline

Decision tree model

Precision Recall f1-score Support

No‑Dementia 0.90 0.94 0.92 677

Dementia 0.94 0.89 0.92 684

macro avg 0.92 0.92 0.92 1361

weighted avg 0.92 0.92 0.92 1361
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The decision tree of Fig. 1, first separates the group into 
two main groups based on the strength of their verbal 
recall. Group one (n = 1370) (Fig. 3) recalled two or more 
of the six items (e.g. a shoe, a typewriter, a set of scales, a 
suitcase, a barometer, and a lamp), pictures of which they 
were asked to name and remember at the beginning of 
the CAMCOG.

Group two (n = 1135) (Fig. 2) recalled one or zero of 
these items. Not surprisingly, a large majority (around 
90%) of the latter group are judged to suffer from demen-
tia, while in the former the dementia diagnosis rate is 
only 16%. These distributions can be refined slightly 
by comparing the outcomes in groups based on other 
aspects of the assessment. For instance, the probability 
of dementia in a member of group two is much lower 
(40%), if the patient is aware of any recent news item and 
generates thirteen or more items in the ‘animal fluency’ 
task. Such patients would have had an isolated memory 
impairment that did not impair their independence, 
and would, therefore, probably have met the criteria for 
amnestic mild cognitive impairment (MCI). However, 
patients of group two may fall into a pure Dementia class 
by following the specific rules defined in paths A or B, 
illustrated in the decision tree 1. Patients in path A were 
not oriented to time and were not aware of any recent 
news item, while also not recalling basic recent public 
figures like the prime minister. Patients in path B were 
also not aware of any recent news item, but were oriented 
to time. However, although being less than 85 at the time 
of the episode, they seem unable to recall very recent 
information (in specific, all five elements of an address 
that they were asked to put on an envelope a few minutes 
ago).

Similarly, those in group one, who generated less than 
13 items on animal fluency and failed a mental arithmetic 
task, had a 95% chance of suffering from dementia. Con-
trary, the dementia risk was around 45% in those who 
generated less than 13 animals, but passed mental arith-
metic. The patients in group one, who had the lowest risk 
(5%) of dementia, were those who generated 13 or more 
animals and were basically oriented to time and place 
(identifying the current year, their country and streets). 
They were also aware of recent news items, as can be 
seen following path C.

In the decision tree of Fig. 4, the outcome of the clas-
sification is changed, such that, diagnoses of dementia 
are divided into those with minimal or mild dementia, 
and those with moderate to severe manifestations of the 
condition. As can be observed, the large majority of the 
moderate to severe cases are among the 1128 partici-
pants on the left tree branch (Fig.  5), scoring less than 
two on the verbal recall feature (A sub-test of the CAM-
COG). However, the risk of severe dementia in these 

individuals ranges from 5% in those who list four or more 
animals and are aware of any recent news item, to 87% 
when three or fewer animals are generated and the town 
that they are in cannot be recalled.

For patients of the former group, path B rules lead to 
the highest possibility of minimal or mild dementia. For 
patients of the latter group, an absolute probability of 
moderate or severe dementia is provided if they are not 
able to recognise simple object such as an apple and can-
not identify similarities for at least two kinds of fruits, as 
shown in path A.

Likewise, almost all cases of severe dementia in the 
group with better verbal recall (two or more items) occur 
in patients who fail a basic mental arithmetic task. Con-
versely, the group (Fig. 6) who are at least risk (less than 
5%) of dementia of any degree are those with both accu-
rate mental arithmetic and good verbal fluency (13 or 
more animals generated), as well as orientation (able to 
recall their address and identify their country and basic 
streets), as can be seen following path C.

Model explanation
To understand the machine learning model’s black-box 
behaviour, we perform local model interpretation over 
our random forest model using LIME (Local Interpret-
able Model-Agnostic Explanations) [18]. We also make 
use of a decision tree classifier model for explaining the 
reasons behind our predictions. Here, we consider two 
examples from each problem’s testing set to understand 
the decisions of our random forest model.

Figures 7, 8, 9, and 10 depict the contribution of the top 
10 features for predicting the class for the respective prob-
lems for a test instance. LIME calculates the contribution 
of each feature for the predicted class of the test instance 
in terms of weight. We only show top 10 features based on 
their weights in Figs. 7, 8, 9, and 10. The weight of the fea-
ture represents its importance. The left parts of the figures 
show the weights of the top 10 important features, while 
making class decisions, whereas the right parts of the fig-
ures represent the probabilities of the different classes, the 
names of the top 10 features and their values in the test 
instance. The weight’s importance can be interpreted by 
applying this to the prediction probabilities.

For example, in the right part of Fig. 10, features in green 
colours support the “Moderate or Severe” class and fea-
tures in other colours support “No Dementia” and “Mini-
mal or Mild dementia” classes. The left part of Fig.  10 
measures the impact of these features in terms of weight 
while deciding for “NOT Moderate-Severe Dementia” 
(thus, “No-Dementia” or “Minimal or Mild Dementia”) 
and “Moderate-Severe Dementia”. If the features ‘NUM-
BER OF ANIMALS LISTED’ and ‘IDENTIFIES DATE’ 
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are removed, the classifier should be able to predict 
class ’Moderate-Severe Dementia’ with a probability of 
0.97− 0.04 − 0.02 = 0.91.

Discussion
The biology and pathophysiology of dementia and its 
many underlying causes (e.g. Alzheimer’s disease that is 
the most common, at least in later life) are diverse and 
subject to the influence of different factors (e.g. comor-
bidity, lifestyle, and genetics). They demand individual-
ised and precise treatment to differentiate the conditions 
of each dementia patient. The approach described in this 
paper has shown the unpredictability that derives from 
a complex interplay of factors impacts on the accuracy 
and efficiency of diagnosis. This complexity could be 
addressed using automated models based on machine 
learning, resulting in better performance of existing diag-
nostic tools.

Similar works also employ machine learning tech-
niques aiming to address the most basic problem: 
predicting various dementias and/or detect probable 
dementia cases among undiagnosed patients analys-
ing structured data features (prescribed medications, 
comorbidities etc.) from EMRs [16, 23] or even 
unstructured clinical notes [1]. Our study mainly differs 
in the variety, size, and granularity of the predictors 
utilized. In specific, we combine a huge set of demo-
graphic and clinical features with baseline arithmetic 
or memory tests, provided in the OPTIMA dataset. 
The most important of those predictors can be further 
used to produce a set of simple rules in the context of 
a decision tree, in order to assist a clinician in deci-
sion-making during the diagnostic process. These rules 
involve basic parameters (e.g. age) and simple cognitive 
tests (e.g. ‘Identifies date’) that can be easily applied by 
a medical expert to receive a prediction for an individ-
ual patient with a certain confidence. Visual models as 

such can assist in making our results interpretable by 
the experts, in contrast to decisions made by black-box 
machine learning tools. Moreover, our study applies the 
same approach to address a more advanced multi-class 
problem: detecting the presence and the severity level 
of dementia in the same patient cohort. This problem is 
also effectively addressed using a random forest model, 
and a similar set of simple rules is provided via a sec-
ond decision tree.

Since the OPTIMA dataset is based on the London 
population, location and time have a substantial impact 
on numerous features like “Remembers Lindbergh”, “Rec-
ognise Picture Barometer”, “Remembers WW II Date”, 
and “Knows Prime Minister”. These features should 
alter in name depending on the location and time, but 
the essence of each feature will remain the same. In the 
United States, for example, “Knows Prime Minister” 
feature should be translated to “Knows President” (i.e. 
recognizing the most powerful political position). As a 
result, our models aid the recognition of features based 
on inherent nature, but they must be retrained for new 
locations and periods.

Improvements in the diagnostic process will signifi-
cantly enhance a clinician’s ability to offer the manage-
ment plan most appropriate to an individual patient, 
both at present and when disease-modifying treatments 
become available for sporadic neurodegenerative demen-
tia. To be given a diagnosis of any untreatable condition 
is a life-changing event. When the condition is neuro-
degenerative dementia, patients need to make changes 
to their current lives and future plans, to consider legal 
rights appropriate to their future selves, and if possible, 
maximise the utility of their residual cognitive resources. 
While the disease remains untreatable, there are negative 
as well as positive aspects to early diagnosis, and where 
accuracy is concerned, it is more important to avoid 
false-positive than false-negative diagnoses. However, the 
advent of disease-modifying treatments will change this: 
identifying a neurodegenerative condition as early as pos-
sible in the course of its evolution will limit the damage 
already done and therefore improve the outcome of treat-
ment. At the same time, it will become as important not 
to miss a true positive as to misclassify a true negative.

Once diagnosed, a patient with Alzheimer’s disease 
needs to be kept under regular clinical assessment. 
Whether conducted in the context of primary care or a 
specialist clinic, ongoing assessment aims to ensure that 
the patient’s social and medical needs (including the 
choice and dose of symptomatic treatments) are opti-
mally aligned with their cognitive abilities. Because cur-
rent methods of assessment are both time-consuming 
and prone to inaccuracy and error, an a priori estimate 
of the likely trajectory of decline would alert the clinician 

Table 12 Classification report: evaluation results for Problem (b) 
(Predict No Dementia, Minimal or Mild Dementia and Moderate 
or Severe Dementia) using decision‑tree model in terms of 
precision, recall and f1‑score for baseline.

Decision tree model

Precision Recall f1-score Support

No‑Dementia 0.92 0.95 0.94 677

Minimal or mild 
dementia

0.78 0.73 0.76 423

Moderate or  
severe dementia

0.73 0.74 0.74 261

Macro avg 0.81 0.81 0.81 1361

Weighted avg 0.84 0.84 0.84 1361
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to any anomalous results, and therefore, ensure that the 
best decisions are always made at the most appropriate 
time.

Conclusions and future directions
This paper presented automated prediction models for 
detecting the presence of dementia in the Electronic 
Medical Records of patients of a large ageing study, 
based on psychometric tests and demographic factors. 
Our study focused both on the accuracy, by employing 
different machine learning techniques, and interpret-
ability, by visualising resulting models with the method 
of decision trees. The decision trees produced identified 
the most discriminating—and thus important—features 
for dementia detection, as well as for the disease severity 
classification. Cognitive test features seem to be the most 
relevant, including various memory (e.g. recollection of 
objects) and arithmetic (e.g. subtraction of money) tasks 
that patients have been asked to take, with their perfor-
mance determining the sub-group in which they fall with 
certain probability. Sub-groups define either a specific 
severity level of the disease or a non-dementia condition 
(e.g. patients with MCI). The predictive models assist the 
clinician in determining the order in which the most rel-
evant questions should be addressed while assessing a 
patient’s cognitive abilities.

Our work aims at thoroughly investigating and high-
lighting key characteristics that yield the presence and 
severity of dementia and creating an accurate prediction 
tool. Moreover, the decision tree approach ignores main-
stream cognitive tests such as MMSE and CAMCOG, 
employed in most of the related work, in order to focus 
on simple rules, represented by simple arithmetic and 
memory tasks. Such a rule-based tool can easily assist 
clinicians in the early detection of dementia in primary 
care. To adopt this approach, the end-user of this tool 
would only have to assign the tasks depicted in the deci-
sion trees to her patients, in order to assess their condi-
tion with a certain confidence (based on the proportion 
of each sub-group in the tree). Thus, we hope that these 
results and tool can represent building blocks for indi-
vidualised clinical decisions (Additional file 1 and 2: Fig-
ures S1 and S2).

As for future challenges, we plan to validate the 
proposed prediction models, including random for-
ests and interpretable decision trees, in other patient 
cohorts. An extensive evaluation across different pop-
ulations would ensure the current approach does not 
suffer from a lack of scientific validity. More impor-
tantly, an extensive assessment will provide empirical 
proof of the generality of the properties of the pro-
posed methods.

Fig. 7 LIME provides the local interpretability for the prediction of an arbitrary test instance with prediction probabilities for the Problem (a). The 
left part of the figure shows the weights of the top 10 important features while making class decision, whereas the right part represents predicted 
class probability and the top 10 important feature with their values. The weight of the feature represents its importance. Here, the short names of 
the impacting features in the left part of the figure are in the same order as in the feature & value list in the right part
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Fig. 8 LIME provides the local interpretability for the prediction of an arbitrary test instance with prediction probabilities for Problem (a). The left 
part of the figure shows the weights of the top 10 important features while making class decision, whereas the right part represents predicted class 
probability and the top 10 important feature with their values. The weight of the feature represents its importance. Here, the short names of the 
impacting features in the left part of the figure are in the same order as in the feature & value list in the right part

Fig. 9 LIME provides the local interpretability for the prediction of an arbitrary test instance with prediction probabilities for Problem (b). The left 
part of the figure shows the weights of the top 10 important features while making class decision, whereas the right part represents predicted class 
probability and the top 10 important feature with their values. The weight of the feature represents its importance. Here, the short names of the 
impacting features in the left part of the figure are in the same order as in the feature & value list in the right part. Min‑Mild Dem. and Mod‑Sev Dem 
are the abbreviations for the Minimal or Mild dementia and Moderate or Severe dementia classes, respectively



Page 19 of 20Vyas et al. BMC Medical Informatics and Decision Making          (2022) 22:271  

Abbreviations
BMI: Body mass index; CAMCOG: Cambridge Cognition Examination; CAMDEX: 
Cambridge Mental Disorders of the Elderly Examination; CDT: Clock Drawing 
Test; DT: Decision Tree; EMR: Electronic Medical Record; ICD: International 
Classification of Diseases; LIME: Local Interpretable Model‑agnostic; MCI: Mild 
Cognitive Impairment; OPTIMA: Oxford Project to Investigate Memory and 
Ageing; MMSE: Mini‑Mental State Examination.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12911‑ 022‑ 02004‑3.

Additional file 1: Figure S1.The decision tree predicts the dementia 
classes ("Dementia"/"No Dementia") of 2505 patients for the Problem (a). 
This figure file provides high resolution for better visibility.

Additional file 2: Figure S2.The decision tree predicts the dementia 
classes ("No Dementia"/"Minimal or Mild Dementia"/"Moderate or Severe 
Dementia") of 2505 patients for the Problem (b). This figure file provides 
high resolution for better visibility.

Additional file 3: Figure S3.Decision Tree predicts the dementia classes 
("Dementia"/"No Dementia") for the Problem (a) using baseline method. 
The decision trees differ in appearance as well as decision thresholds for 
certain non‑interpretable attributes

Additional file 4: Figure S4.Decision Tree predicts the dementia classes 
("No Dementia"/"Minimal or Mild Dementia"/"Moderate or Severe Demen‑
tia") for the Problem (b) using baseline method. The decision trees differ 
in appearance as well as decision thresholds for certain non‑interpretable 
attributes

Additional file 5: Table S1.Optima dataset feature guide in excel format

Acknowledgements
The authors would like to acknowledge the project IASIS’ consortium for their 
collaboration in this work.

Author Contributions
All the authors defined the problems addressed in this paper. FA, AV, and M‑EV 
devised the solution. AV implemented the machine learning models and 

executed all the experiments. PG analysed and explained the results from the 
clinical perspective. Lastly, all the authors contributed to writing and editing 
the manuscript; they also read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This paper 
is supported by European Union’s Horizon 2020 research and innovation 
programme under Grant Agreement No. 727658, Project IASIS (Integration 
and analysis of heterogeneous big data for precision medicine and sug‑
gested treatments for different types of patients). The principal grant support 
for OPTIMA over more than 20 years has come from Bristol‑Myers Squibb, 
Merck & Co. Inc., Medical Research Council, Charles Wolfson Charitable Trust, 
Alzheimer’s Research UK, Norman Collisson Foundation and the NIHR Oxford 
Biomedical Research Centre. Maria‑Esther Vidal is partially supported by 
the Leibniz Association in the program “Leibniz Best Minds: Programme for 
Women Professors”, project TrustKG‑Transforming Data in Trustable Insights 
with grant P99/2020.

Availability of data and materials
Code is available on www. github. com/ SDM‑ TIB/ demen tia_ detec tion. git. The 
data that support the findings of this study were provided from the Oxford 
Project to Investigate Memory and Ageing (OPTIMA) via a bilateral agreement 
with the IASIS project and cannot be publicly shared.

Declaration

 Ethics approval and consent to participate
OPTIMA offered permission to the authors of this article to use the OPTIMA 
dataset that aided our research. The OPTIMA study’s ethics guidelines are 
followed when collecting data from participants. With the approval of all 
participants, the dataset was created, processed and shared by OPTIMA. The 
research work reported in this article has been conducted in compliance with 
the relevant guidelines and regulations of both OPTIMA and BMC journal.  

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Fig. 10 LIME provides the local interpretability for the prediction of an arbitrary test instance with prediction probabilities for Problem (b). The left 
part of the figure shows the weights of the top 10 important features while making class decision, whereas the right part represents predicted class 
probability and the top 10 important feature with their values. The weight of the feature represents its importance. Here, the short names of the 
impacting features in the left part of the figure are in the same order as in the feature & value list in the right part. Min‑Mild Dem. and Mod‑Sev Dem 
are the abbreviations for the Minimal or Mild dementia and Moderate or Severe dementia classes, respectively

https://doi.org/10.1186/s12911-022-02004-3
https://doi.org/10.1186/s12911-022-02004-3
http://www.github.com/SDM-TIB/dementia_detection.git


Page 20 of 20Vyas et al. BMC Medical Informatics and Decision Making          (2022) 22:271 

Author details
1 L3S Research Center, Leibniz University Hannover, Hannover, Germany. 
2 Scientific Data Management research group, TIB‑Leibniz Information Centre 
for Science and Technology, Hannover, Germany. 3 Software and Knowledge 
Engineering Laboratory, Institute of Informatics and Telecommunications, 
NCSR “Demokritos”, Athens, Greece. 4 Molecular and Clinical Science Research 
Institute, St George’s, University of London, London, UK. 

Received: 17 March 2021   Accepted: 8 August 2022

References
 1. Shao Y, Zeng QT, Chen KK, Shutes‑David A, Thielke SM, Tsuang DW. 

Detection of probable dementia cases in undiagnosed patients using 
structured and unstructured electronic health records. BMC Med Inform 
Decis Mak. 2019;19(1):128.

 2. Arevalo‑Rodriguez I, Smailagic N, i Figuls MR, Ciapponi A, Sanchez‑Perez 
E, Giannakou A, Pedraza OL, Cosp XB, Cullum S. Mini‑mental state exami‑
nation (mmse) for the detection of Alzheimer’s disease and other demen‑
tias in people with mild cognitive impairment (mci). Cochrane Database 
Syst Rev 2015;3.

 3. Creavin ST, Wisniewski S, Noel‑Storr AH, Trevelyan CM, Hampton T, Ray‑
ment D, Thom VM, Nash KJ, Elhamoui H, Milligan R, et al. Mini‑mental 
state examination (mmse) for the detection of dementia in clinically 
unevaluated people aged 65 and over in community and primary care 
populations. Cochrane Database Syst Rev 2016;1.

 4. Borson S, Brush M, Gil E, Scanlan J, Vitaliano P, Chen J, Cashman J, Sta 
Maria MM, Barnhart R, Roques J. The clock drawing test: utility for demen‑
tia detection in multiethnic elders. J Gerontol Ser A Biomed Sci Med Sci. 
1999;54(11):534–40.

 5. Rakusa M, Jensterle J, Mlakar J. Clock drawing test: a simple scoring sys‑
tem for the accurate screening of cognitive impairment in patients with 
mild cognitive impairment and dementia. Dement Geriatr Cogn Disord. 
2018;45(5–6):326–34.

 6. Satt A, Sorin A, Toledo‑Ronen O, Barkan O, Kompatsiaris I, Kokonozi A, 
Tsolaki M. Evaluation of speech‑based protocol for detection of early‑
stage dementia. In: Interspeech, 2013:1692–1696

 7. Satt A, Hoory R, König A, Aalten P, Robert PH. Speech‑based automatic 
and robust detection of very early dementia. In: Fifteenth annual confer‑
ence of the International Speech Communication Association 2014.

 8. Mirheidari B, Blackburn D, Walker T, Reuber M, Christensen H. Dementia 
detection using automatic analysis of conversations. Comput Speech 
Lang. 2019;53:65–79.

 9. Rentoumi V, Paliouras G, Danasi E, Arfani D, Fragkopoulou K, Varlokosta S, 
Papadatos S. Automatic detection of linguistic indicators as a means of 
early detection of alzheimer’s disease and of related dementias: a compu‑
tational linguistics analysis. In: 2017 8th IEEE international conference on 
cognitive infocommunications (CogInfoCom), 2017;000033–000038. IEEE

 10. Goodglass H, Kaplan E, Barresi B. Boston diagnostic aphasia examination 
record booklet. Philadelphia: Lippincott Williams & Wilkins; 2001.

 11. Möller C, Pijnenburg YA, van der Flier WM, Versteeg A, Tijms B, de Munck 
JC, Hafkemeijer A, Rombouts SA, van der Grond J, van Swieten J, et al. 
Alzheimer disease and behavioral variant frontotemporal dementia: auto‑
matic classification based on cortical atrophy for single‑subject diagnosis. 
Radiology. 2016;279(3):838–48.

 12. Shankle WR, Mani S, Dick MB, Pazzani MJ. Simple models for estimating 
dementia severity using machine learning. MedInfo 1998;98.

 13. Vyas A, Aisopos F, Vidal M‑E, Garrard P, Paliouras G. Calibrating mini‑men‑
tal state examination scores to predict misdiagnosed dementia patients. 
Appl Sci. 2021;11(17):8055.

 14. Grueso S, Viejo‑Sobera R. Machine learning methods for predicting 
progression from mild cognitive impairment to Alzheimer’s disease 
dementia: a systematic review. Alzheimer’s Res Ther. 2021;13(1):1–29.

 15. Katsimpras G, Aisopos F, Garrard P, Vidal M‑E, Paliouras G. Improving early 
prediction of dementia progression using machine learning methods. 
ACM Trans Comput Healthc (HEALTH). 2022;3(3):1–16.

 16. Ford E, Rooney P, Oliver S, Hoile R, Hurley P, Banerjee S, van Marwijk H, 
Cassell J. Identifying undetected dementia in UK primary care patients: 

a retrospective case–control study comparing machine‑learning and 
standard epidemiological approaches. BMC Med Inform Decis Mak. 
2019;19(1):248.

 17. Huppert FA, Jorm AF, Brayne C, Girling DM, Barkley C, Beardsall L, Paykel 
ES. Psychometric properties of the camcog and its efficacy in the diagno‑
sis of dementia. Aging Neuropsychol Cogn. 1996;3(3):201–14.

 18. Ribeiro MT, Singh S, Guestrin C. “Why should I trust you?”: explaining the 
predictions of any classifier. CoRR 2016. arXiv: 1602. 04938

 19. Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. Folate, vita‑
min b12, and serum total homocysteine levels in confirmed Alzheimer 
disease. Arch Neurol. 1998;55(11):1449–55.

 20. Budge M, De Jager C, Hogervorst E, Smith A. Oxford project to investigate 
memory and ageing (optima). Total plasma homocysteine, age, systolic 
blood pressure, and cognitive performance in older people. J Am Geriatr 
Soc. 2002;50(12):2014–8.

 21. Oulhaj A, Wilcock GK, Smith AD, de Jager CA. Predicting the time of 
conversion to mci in the elderly: role of verbal expression and learning. 
Neurology. 2009;73(18):1436–42.

 22. Warren‑Gash C. Dementia risk prediction models what do policymakers 
need to know? Technical report, University of Cambridge (March 2019). 
https:// www. phgfo undat ion. org/ docum ents/ demen tia‑ risk‑ predi ction‑ 
models. pdf

 23. Nori VS, Hane CA, Crown WH, Au R, Burke WJ, Sanghavi DM, Bleicher P. 
Machine learning models to predict onset of dementia: a label learning 
approach. Alzheimer’s Dement Transl Res Clin Interv. 2019;5:918–25.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

http://arxiv.org/abs/1602.04938
https://www.phgfoundation.org/documents/dementia-risk-prediction-models.pdf
https://www.phgfoundation.org/documents/dementia-risk-prediction-models.pdf

	Identifying the presence and severity of dementia by applying interpretable machine learning techniques on structured clinical records
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Problem statement
	Approach
	Predictive models

	Experiments
	Dataset
	Determining classes for the predictive model
	Data cleaning and pre-processing

	Model training and feature selection

	Results
	Interpretation of results
	Model explanation

	Discussion
	Conclusions and future directions
	Acknowledgements
	References


