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CONTRIBUTION

What are the novel findings of this work?
Using sonography big data and deep learning to
describe video content automatically, we studied obstetric
ultrasound as a data-science problem. We showed that an
anomaly scan can be modeled as a non-ordered sequence
of anatomical structure acquisitions.

What are the clinical implications of this work?
The lack of a universal scanning sequence supports the
hypothesis that anomaly scanning is opportunistic by
nature, continuously taking advantage of fetal position.
Trainees may benefit from appreciating that even experts
do not follow guidelines as an ordered list, but rather
acquire planes and images according to visibility.

ABSTRACT

Objective Despite decades of obstetric scanning, the field
of sonographer workflow remains largely unexplored. In
the second trimester, sonographers use scan guidelines to
guide their acquisition of standard planes and structures;
however, the scan-acquisition order is not prescribed.
Using deep-learning-based video analysis, the aim of
this study was to develop a deeper understanding of
the clinical workflow undertaken by sonographers during
second-trimester anomaly scans.

Methods We collected prospectively full-length video
recordings of routine second-trimester anomaly scans.
Important scan events in the videos were identified
by detecting automatically image freeze and image/clip
save. The video immediately preceding and following the
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important event was extracted and labeled as one of 11
commonly acquired anatomical structures. We developed
and used a purposely trained and tested deep-learning
annotation model to label automatically the large number
of scan events. Thus, anomaly scans were partitioned as a
sequence of anatomical planes or fetal structures obtained
over time.

Results A total of 496 anomaly scans performed by 14
sonographers were available for analysis. UK guidelines
specify that an image or videoclip of five different
anatomical regions must be stored and these were
detected in the majority of scans: head/brain was
detected in 97.2% of scans, coronal face view (nose/lips)
in 86.1%, abdomen in 93.1%, spine in 95.0% and
femur in 92.3%. Analyzing the clinical workflow, we
observed that sonographers were most likely to begin
their scan by capturing the head/brain (in 24.4% of
scans), spine (in 23.2%) or thorax/heart (in 22.8%). The
most commonly identified two-structure transitions were:
placenta/amniotic fluid to maternal anatomy, occurring
in 44.5% of scans; head/brain to coronal face (nose/lips)
in 42.7%; abdomen to thorax/heart in 26.1%; and
three-dimensional/four-dimensional face to sagittal face
(profile) in 23.7%. Transitions between three or more
consecutive structures in sequence were uncommon (up
to 13% of scans). None of the captured anomaly scans
shared an entirely identical sequence.

Conclusions We present a novel evaluation of the
anomaly scan acquisition process using a deep-learning-
based analysis of ultrasound video. We note wide
variation in the number and sequence of structures
obtained during routine second-trimester anomaly scans.

© 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd ORIGINAL PAPER
on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
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Overall, each anomaly scan was found to be unique in
its scanning sequence, suggesting that sonographers take
advantage of the fetal position and acquire the standard
planes according to their visibility rather than following a
strict acquisition order. © 2022 The Authors. Ultrasound
in Obstetrics & Gynecology published by John Wiley &
Sons Ltd on behalf of International Society of Ultrasound
in Obstetrics and Gynecology.

INTRODUCTION

The continuous improvement of obstetric ultrasound is
attributed to many factors, including developments in
education, accreditation, guidelines, quality assurance,
anatomical and physiological knowledge and imaging
quality1–4. At the same time, innovations in ergonomic
machine design, scanning protocols, automatic measure-
ment tools and reporting have improved sonographer
workflow5–8. However, unlike these innovations, the
ultrasound acquisition process has remained relatively
unchanged: routine obstetric ultrasound scans are per-
formed by a sonographer sitting or standing next to a
pregnant woman, manipulating a probe and adjusting the
machine settings, following a defined protocol to acquire
and interpret a series of standard imaging planes that are
observed on the screen of the ultrasound machine.

To ensure uniformity of screening, sonographers are
usually required to adhere to established local, national
or international practice guidelines9,10. Such scanning
guidelines comprise typically a checklist of standard
planes, structures and anatomies to be surveyed, but do
not dictate the order in which the checklist should be
populated. Hence, each sonographer may conduct the
examination in a different order: some may follow the
protocol in a head-to-toe fashion, others may choose to
assess structures according to personal preference, and
still others may not follow a predefined order at all,
taking advantage of visible structures according to the
fetal lie and position. Moreover, anomaly-scan guidelines
do not usually define the time allocated to the assessment
of each structure or standard plane. Thus, sonographers
exercise discretion in the order and proportion of time
spent on each mandatory acquisition.

Artificial neural networks are particularly good at
image pattern recognition and can be utilized to improve
the speed and accuracy of diagnosing patient conditions
in medical fields that depend heavily on images and
video, as in the case of ultrasound11,12. In this study, we
use the power of deep learning to describe automatically
the clinical workflow of sonographers performing fetal
anomaly ultrasound scans and to identify variations and
similarities in the scanning sequences.

METHODS

This was a prospective study of routine anomaly
ultrasound scans performed on women with a singleton
pregnancy at 19–21 weeks of gestation. Scans were
undertaken between May 2018 and February 2020 at

the Maternity Ultrasound Unit, John Radcliffe Hospital,
Oxford University Hospitals National Health Services
Foundation Trust, Oxford, UK. Ultrasound examinations
were carried out in accordance with the UK Fetal
Anomaly Screening Programme (FASP) standards, as
described previously13,14. All ultrasound scans included in
this study were performed using a commercial Voluson E8
version BT18 (GE Healthcare, Zipf, Austria) ultrasound
machine, equipped with standard curvilinear (C2-9-D,
C1-5-D) and three-dimensional (3D)/four-dimensional
(4D) (RAB6-D) probes.

This study was part of a project entitled Percep-
tion Ultrasound by Learning Sonographic Experience
(PULSE)15. This is an innovative interdisciplinary project
that is designed to apply the latest ideas from deep learn-
ing and computer vision to build computational models
that describe how an expert sonographer performs a diag-
nostic study of a subject from multiple perceptual cues. To
do this, we capture anonymously real-world full-length
ultrasound scan videos in addition to other sensory data,
namely probe movement using motion trackers, point-of-
gaze of the sonographer on the monitor of the ultrasound
scanner using eye-tracking and voice of the sonographer
using directional microphones15. By understanding closely
how experts learn and undertake diagnostic ultrasound,
we aim to build considerably more powerful assistive
interpretation methods than have been possible so far.

Data acquisition

Women attending for a routine second-trimester anomaly
scan were offered the opportunity to take part in the
study. After providing written informed consent, they
underwent a standard obstetric anatomy scan. The
entire scan video was recorded using the machine’s
high-definition multimedia interface (HDMI) output and
a video-grabbing card (DVI2PCIe, Epiphan Video, Palo
Alto, CA, USA), as reported previously15. According to
the UK FASP guidelines, five mandatory structures should
be captured as images or clips: head/brain, coronal face
view (nose/lips), abdomen, spine and femur. In addition,
sonographers should assess, but are not obliged to store
an image or a clip of, the following structures: sagittal
face (fetal profile), thorax/heart, kidneys, bladder, limbs
and placenta/amniotic fluid14. Despite not being required
formally, sonographers usually save these additional
images or clips in our settings15. In addition to the UK
FASP requirements, we measure maternal uterine artery
Doppler pulsatility index routinely to assess the risk of
obstetric complications16,17.

Data analysis

The technique used to analyze sonographer workflow is
presented in Figure 1. Initially, we analyzed the full-length
anomaly scans automatically and identified sonographer
actions that represent important scan events by detecting
the occurrences of image freeze, image save and clip save.
To identify the key sonographer actions, video processing

© 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2022; 60: 759–765.
on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
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Deep-learning-based analysis of sonographer workflow 761

analysis was carried out on a frame-by-frame basis18

with a purpose-built software program implemented in
Python (www.python.org, version 3.7.0) using OpenCV
(www.opencv.org, version 3.4) and Tesseract (www
.github.com/tesseract-ocr, version 3.05). After identifying
the important scan events, we extracted 5-s clips that
occurred around the event (i.e. immediately preceding
and following the event).

We developed a deep-learning model to automate
the labeling of scans11, because the large number of
short clips renders manual labeling impractical. First,
we carried out detailed manual labeling of clips for 62
full-length scans15, assigning each clip to one of the
following: head/brain, sagittal face (profile), coronal face
(nose/lips), thorax/heart, abdomen, kidneys, spine, femur,
3D/4D face, placenta/amniotic fluid, maternal anatomy,
mixed (multiple structures) and other. Thereafter, we
trained a deep-learning model, which allowed automatic
labeling of videoclips as described previously19. Further
details about the preparation of data for model training,
model testing, automated video labeling and model
validation are provided in Appendix S1. Confusion
matrices were used to compare interannotator and
manual vs automatic labeling.

Once all scan sequences were labeled, all manually and
automatically labeled scans were used to create timelines
in which each scan was portrayed as a time sequence of

structure labels. This allowed us to compute structure met-
rics, including the number of scans in which a particular
structure was present, the percentage of scans in which the
structure was the first to be assessed, the mean number of
times that the structure was acquired per scan, the order of
structure acquisition and the common transitions between
structures. These were studied using descriptive statistics.

Ethics approval

This study was approved by the UK Research Ethics
Committee (reference 18/WS/0051), and written informed
consent was given by all participating pregnant women
and sonographers.

RESULTS

A total of 518 consecutive women attending a routine
second-trimester anomaly scan were recruited at a
mean ± SD gestational age of 20.3 ± 0.6 weeks. Of
these, 22 (4.2%) were excluded because of technical
problems with recordings, such as incomplete videos.
Therefore, 496 second-trimester anomaly scans (one per
woman) were included. Demographic characteristics of
the participants are shown in Table 1.

Each scan was carried out by one of 14 operators,
of whom 11 were accredited sonographers and three
fetal medicine doctors, with a median of 3 years (range,

FemurHeart Spine Coronal face
(nose/lips) 

Recording of full-length
second-trimester anomaly scan

Detection and extraction of
important scan events

(e.g. freeze, save)  

Manual labeling of structures

Training of deep spatiotemporal
models  

Automatic labeling of structures to
produce combined anatomically

labeled scan dataset  

Computation and
analysis of clinical workflow

Heart

Spine

Coronal face

Femur

Figure 1 Outline of clinical workflow analysis pipeline.

© 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2022; 60: 759–765.
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4 months to 14 years) of clinical postaccreditation
experience in sonography (Table 1). The mean ± SD
anomaly scan duration was 32.1 ± 11.4 min, representing
a total of approximately 265 h of scan video. The
mean ± SD number of important scan events was 39 ± 13
per scan, and these were labeled according to the
anatomical structure.

Table 1 Characteristics of 496 women with singleton pregnancy
and 14 ultrasound operators included in study cohort

Characteristic Value

Pregnant women (n = 496)
Maternal age (years) 31.8 ± 5.5
Smoker at presentation 39/419 (9.3)
BMI at < 15 weeks (kg/m2) 24.9 ± 4.8
Conception by IVF 5/417 (1.2)
Nulliparous 200/440 (45.5)
Pregnancy dating by CRL 409/440 (93.0)
GA at fetal anomaly scan (weeks) 20.3 ± 0.6

Operators (n = 14)
Gender

Female 12 (85.7)
Male 2 (14.3)

Clinical experience in scanning
< 2 years 3 (21.4)
2–5 years 3 (21.4)
5–10 years 6 (42.9)
> 10 years 2 (14.3)

Accreditation
Sonographer 11 (78.6)
Fetal medicine doctor 3 (21.4)

Data are given as mean ± SD, n/N (%) or n (%). BMI, body mass
index; CRL, crown–rump length; GA, gestational age; IVF, in-vitro
fertilization.

The workflow for 24 randomly selected representative
anomaly scans is shown in Figure 2. Videoclip S1 shows
a representative scan sequence and Table 2 presents the
detection metrics of the different structures across the
entire set of video scans. The structures most commonly
captured during anomaly scans were thorax/heart, spine
and maternal anatomy (including uterine artery), with
3254, 2430 and 1564 respective occurrences in the 496
scans. The five acquisitions that are required by the FASP
guidelines to be stored as an image or clip were detected
by the automated annotation technique in the majority of
scans: head/brain was detected in 97.2% of scans, coronal
face view (nose/lips) in 86.1%, abdomen in 93.1%, spine
in 95.0% and femur in 92.3% (Table 2). For structures
not included in the mandatory capture list, the prevalence
of automatic detection was 78.8% for sagittal face (pro-
file), 95.4% for thorax/heart, 50.2% for kidneys, 49.6%
for 3D/4D face and 74.4% for placenta/amniotic fluid.

In 461 (92.9%) scans, at least four of five mandatory
structures (head/brain, coronal face (nose/lips), abdomen,
spine and femur) were detected, and in 359 (72.4%)
scans, all five mandatory structures were detected.
Regarding both mandatory and non-mandatory structures
(head/brain, sagittal face (profile), coronal face (nose/lips),
thorax/heart, abdomen, kidneys, spine, femur, pla-
centa/amniotic fluid and maternal anatomy), at least eight
structures were detected automatically in 420 (84.7%)
scans and at least nine were detected in 313 (63.1%) scans.

Scans in which a structure was detected automatically
usually contained multiple capture episodes, suggesting
that sonographers performed an acquisition, moved
to a different structure, and returned to perform an
additional acquisition of the already captured structure.
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Figure 2 Sequence of anatomical planes or fetal structures obtained over time in 24 representative anomaly scans. Scan duration is
normalized to percentage. 3D, three-dimensional; 4D, four-dimensional.

© 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2022; 60: 759–765.
on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
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The structures most commonly captured multiple times
were thorax/heart, spine and maternal anatomy, recorded
on average seven, five and three times in each scan,
respectively (Table 2).

Sonographers were most likely to begin their scan
by capturing one of three structures: head/brain, spine
or thorax/heart. The structures that were least likely
to be captured first were kidneys, femur and coronal
face (nose/lips) (Table 2). The structures most commonly
evaluated last were maternal anatomy, sagittal face
(profile) and spine, occurring in 111 (22.4%), 100
(20.2%) and 61 (12.3%) scans, respectively.

We also identified structure transitions, in which
sonographers move from one anatomical area to another.
The prevalence of two-structure transitions is presented in
Table 3. Each of these transition pairs was performed by
multiple sonographers, making it impossible to attribute
a particular transition pair to a specific sonographer.
The most commonly identified two-structure transitions
were: placenta/amniotic fluid to maternal anatomy,
occurring in 44.5% of scans; head/brain to coronal face
(nose/lips) in 42.7%; abdomen to thorax/heart in 26.1%;
and 3D/4D face to sagittal face (profile) in 23.7%. The
most common three-structure transition sequences noted
were: thorax/heart to abdomen to thorax/heart in 65

(13.1%) scans; head/brain to coronal face (nose/lips)
to abdomen in 61 (12.3%); head/brain to coronal face
to thorax/heart in 53 (10.7%); and placenta/amniotic
fluid to maternal anatomy to placenta/amniotic fluid
in 53 (10.7%). Four-structure transition sequences
detected were: head/brain to coronal face to abdomen to
thorax/heart in 21 (4.2%) scans; head/brain to coronal
face to abdomen to femur in 19 (3.8%); head/brain
to coronal face to thorax/heart to abdomen in 19
(3.8%); and thorax/heart to head/brain to coronal face
to abdomen in 18 (3.6%). All of the most common three-
and four-structure transition sequences were performed
by at least three sonographers. None of the included scans
shared an entirely identical pathway with another scan.

DISCUSSION

We present a novel large-scale data analysis of sonog-
rapher workflow. This was performed by capturing full-
length ultrasound videos of routine clinical scans, iden-
tifying episodes of interest within the scan automatically
and, using deep learning, detecting the structure
present in each of these scan episodes. Therefore, we
studied ultrasound anomaly scans longitudinally, as a
data-science problem, and observed that each scan is a

Table 2 Structure capture, defined as screen freeze or image/videoclip save, in 496 second-trimester anomaly scans

Structure label

Structure
capture
required14

Times structure
was

captured

Scans with
structure capture

detected

Mean
number of

captures per scan

Scans with
structure captured
as first structure

Head/brain Yes 1464 482 (97.2) 3.0 121 (24.4)
Sagittal face (profile) No 1225 391 (78.8) 3.1 51 (10.3)
Coronal face (nose/lips) Yes 793 427 (86.1) 1.9 10 (2.0)
Thorax/heart No 3254 473 (95.4) 6.9 113 (22.8)
Abdomen Yes 999 462 (93.1) 2.2 27 (5.4)
Kidneys No 442 249 (50.2) 1.8 1 (0.2)
Spine Yes 2430 471 (95.0) 5.2 115 (23.2)
Femur Yes 645 458 (92.3) 1.4 8 (1.6)
3D/4D face No 579 246 (49.6) 2.4 11 (2.2)
Placenta/amniotic fluid No 845 369 (74.4) 2.3 21 (4.2)
Maternal anatomy No 1564 475 (95.8) 3.3 18 (3.6)
Mixed (multiple structures) — 4935 476 (96.0) 10.4 0 (0)
Other — 1367 249 (50.2) 5.5 0 (0)

Data are given as n or n (%), unless stated otherwise. 3D, three-dimensional; 4D, four-dimensional.

Table 3 Prevalence of two-structure transition patterns in 496 second-trimester anomaly scans

Subsequent structure

Structure
Head/
brain

Sagittal
face (profile)

Coronal
face (nose/lips)

Thorax/
heart Abdomen Kidneys Spine Femur

3D/4D
face

Placenta/
AF

Maternal
anatomy

Head/brain — 7.8 42.7 8.0 13.1 2.1 9.9 3.5 1.8 6.1 5.1
Sagittal face (profile) 12.2 — 6.3 18.3 8.4 1.0 9.9 5.0 20.8 10.3 8.0
Coronal face (nose/lips) 18.8 14.7 — 17.8 16.6 1.6 11.3 5.0 1.2 6.5 6.5
Thorax/heart 9.4 16.2 6.7 — 16.2 5.1 13.5 12.4 4.2 7.2 9.0
Abdomen 7.1 3.2 3.9 26.1 — 14.7 9.5 19.7 3.2 5.4 7.3
Kidneys 6.6 3.4 1.9 21.0 16.9 — 20.7 17.2 3.1 3.8 5.3
Spine 10.8 5.0 4.3 20.8 12.3 15.6 — 7.4 4.5 9.3 10.0
Femur 6.8 6.6 5.4 18.1 10.5 2.0 15.5 — 5.4 17.1 12.7
3D/4D face 11.9 23.7 7.9 12.9 3.6 1.4 13.7 5.0 — 3.6 16.2
Placenta/AF 8.3 12.1 3.1 8.9 6.9 0.4 7.5 6.0 2.3 — 44.5
Maternal anatomy 5.7 13.4 5.3 15.9 7.2 1.6 16.3 7.1 7.1 20.5 —

Data are given as %. 3D, three-dimensional; 4D, four-dimensional; AF, amniotic fluid.

© 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2022; 60: 759–765.
on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
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non-ordered multistep process of anatomical structure
acquisition.

Our real-world data analysis shows that sonographers
usually begin their scan by acquiring one of three
specific structures: head/brain, heart or spine, and rarely
initiate scans by assessing structures such as the fetal
femur or kidneys. This suggests that sonographers often
start a scan by taking advantage of fetal position to
maximize the possibility of imaging the fetal spine or
heart, leaving the easier-to-acquire structures that can
be visualized from various angles to later stages of the
scan20,21. We also established that the most frequent
imaging transitions occur between structures that are in
proximity to each other, including placenta/amniotic fluid
to maternal anatomy, head/brain to nose/lips, 3D/4D face
to face profile and abdomen to thorax/heart. Three- and
four-structure sequence patterns were not very common,
and, overall, each of the anomaly scans included in the
study followed a unique pattern.

The lack of a universal scanning sequence supports
the somewhat opportunistic nature of anomaly scanning.
Unlike non-obstetric ultrasound, obstetric ultrasound
scans are restricted by fetal position and movement22,23.
It is likely that while performing anomaly scans,
sonographers have a preferred scanning sequence, and
at the same time, take advantage of the fetal position,
capturing structures that are visualized more favorably in
each part of the scan. For example, while attempting to
study the fetal thorax, if the fetus moves to a position that
benefits fetal spine imaging, sonographers will use this
opportunity before the fetus moves into a less favorable
position. Trainees and infrequent users may benefit from
such knowledge by appreciating that even experts do
not follow guidelines as an ordered list, but rather make
the best of the fetal position in each part of the scan.
This understanding could reduce trainee anxiety and save
valuable training time.

It is difficult to compare our findings with those of pre-
vious studies. Until recently, longitudinal analysis of ultra-
sound scans was hampered by the lack of an automated
way to curate the data. However, large-scale datasets of
full-length videos can now be processed effectively using
deep-learning-based analysis methods. Previous work
reported on methods for the automatic detection and
localization of fetal structures or standard planes, with
comparable detection rates to those presented in the cur-
rent work, albeit on still images24–29. However, no prior
work has assessed sonographer workflow as in this study.

Ultrasound departments are challenged consistently
by increasing patient workload, poor recruitment and
retention of qualified sonographers and repetitive stress
injuries30–32. The ascertainment that the anomaly scan
acquisition sequence is not predefined highlights the
importance of workflow analysis. Automated sonogra-
pher workflow analysis holds the potential to improve
our understanding of the scanning process itself, of sono-
grapher trainee learning curves and of sonographer skills,
and to measure quantitatively the competency of qualified
sonographers. Currently, common methods to assess

trainees and supervise certified sonographers include
observing the scan in real time, measuring scan duration
and manual postscan image review by a clinical expert.
These methods of assessment are labor-intensive and of
unknown reproducibility, yet are mandatory to provide
adequate quality assurance. In the future, automated
workflow analysis may aid the monitoring of trainee
learning progress and identification of sonographers that
require additional teaching. Ultimately, the hope is that
this approach may contribute towards making ultrasound
a more accessible technology to the non-expert across the
world.

The main strength of this study is the novel automated
analysis of ultrasound scans, which makes it possible to
study anomaly scans as a data-science problem. Our ana-
lysis provides quantitative evidence of the non-ordered
nature of anomaly scans. On the one hand, our analysis
provides further confirmation of the importance of quality
assurance and on the other, makes it possible to under-
stand better the scanning process itself and how it may be
improved. This study also has some expected limitations.
We could not judge whether specific sequences perform
better or result in shorter scanning times. This is because
we purposefully collected prospective observational data
on what happens during routine ultrasound in real-world
settings with as little interference as possible. The partic-
ular sequences were carried out during normal practice
and it is not possible to judge if a different sequence
would have been better. Also, the study was conducted
in a single maternity unit which may not represent
practice at other centers. To reduce the risk of bias, we
included 14 sonographers, and we noted that the findings
were consistent, making external validity more likely. In
addition, even though sonographers were aware that the
scans were being recorded, they had not been informed of
the aim of the current analysis, meaning that it is unlikely
that they acted differently from their usual practice while
participating in this study. Another limitation concerns
the accuracy of automatic detection of structures. While
most mandatory screening images defined by FASP14 were
detected automatically in the majority of scans, a relatively
small proportion of these structures were not detected
automatically in some scans. This may be a consequence
of an incomplete scan33, which could be due to a number
of reasons including challenging fetal position, abdominal
scarring, uterine fibroid, raised maternal body mass index
(BMI) or simply sonographer fatigue or forgetfulness.
However, it is also possible that missing structures were
included in the mixed (multiple structures) label or
otherwise misclassified by the algorithm. It should also
be noted that the average BMI of women included in the
study was 25, meaning the generalizability of our findings
to women of higher BMI remains to be established34.

In conclusion, sonographer workflow assessment
allows the study of anomaly scanning as a data-science
problem. The resulting analysis offers insights into
increasing sonographer efficiency, improving human–
computer interfaces with ultrasound machines and
determining when and how automated analysis may

© 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2022; 60: 759–765.
on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
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assist manual scanning. Further research should evaluate
the differences between trainees and expert sonographers
and seek to establish workflow patterns that provide the
best scanning results.
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sequence of fetal structures over time.
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