- 1 TITLE: Low-dose aspirin for the prevention of superimposed pre-eclampsia in women with
- 2 chronic hypertension: a systematic review and meta-analysis.
- 3 Authors: Dr Eleanor M F RICHARDS, MBBS MSPH;¹ Dr Veronica GIORGIONE, MD;^{2,3} Mr Oliver
- 4 Stevens;⁴ Prof Basky THILAGANATHAN, MD PhD FRCOG^{2,3}
- 5 City study conducted: London, UK
- 6 Affiliations: 1. Department of Obstetrics & Gynaecology, Cambridge University Hospitals
- 7 NHS Foundation Trust, Cambridge, UK; 2. Molecular and Clinical Sciences Research
- 8 Institute, St. George's University of London, London, UK; 3. Fetal Medicine Unit, Department
- 9 of Obstetrics and Gynaecology, St. George's University Hospitals NHS Foundation Trust,
- 10 London, UK; 4. MRC Centre for Global Infectious Disease Analysis, School of Public Health,
- 11 Imperial College London, London, United Kingdom
- 12 Conflicts of interest: The authors report no conflict of interest.
- 13 Funding sources: Veronica Giorgione's PhD has received funding from the European Union's
- 14 Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant
- agreement No 765274. This funding source had no role in the study design, analysis or
- 16 interpretation of the data.
- 17 PROSPERO registration: CRD42021285921; registration confirmed 24/11/2021.
- 18 Corresponding author: Dr Eleanor M F Richards MBBS MSPH; Department of Obstetrics &
- 19 Gynaecology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK;
- 20 <u>eleanor.richards7@nhs.net</u>
- 21 Word count (abstract & main text): Abstract 341, Main text 3827

22 <u>CONDENSATION</u>:

23 Low-dose aspirin use in pregnancy for women with chronic hypertension does not reduce

the odds of pre-eclampsia, but does improve preterm birth rates.

25 <u>SHORT TITLE</u>: Low-dose aspirin for prevention of pre-eclampsia in chronic hypertension: a

26 meta-analysis.

27 AJOG AT A GLANCE

Why was this study conducted? Prophylactic low-dose aspirin is recommended in
 pregnancies at high-risk of pre-eclampsia. There is conflicting evidence of its efficacy
 in pregnancies of women with chronic hypertension.

31 What are the key findings? Among women with chronic hypertension, low-dose aspirin prophylaxis did not significantly reduce the odds of superimposed pre-32 33 eclampsia in the RCTs (OR 0.83, 95% CI 0.55-1.25, PI 0.27-2.56, low quality evidence) or observational studies (OR 1.21, 95% CI 0.78-1.87, PI 0.07-20.80, very low quality 34 35 evidence). Low-dose aspirin prophylaxis did not reduce the odds of preterm preeclampsia, and early aspirin initiation also had no significant impact. There was no 36 significant reduction in the odds of small for gestational age neonates or perinatal 37 mortality, however there was a significant reduction in preterm birth (OR 0.63, 95% 38 Cl 0.45-0.89). The quality of the data is limited by heterogeneity and risk of bias, 39 40 including loss to follow-up.

What does this study add to what is already known? Low-dose aspirin in pregnancy
 does not significantly reduce the risk of pre-eclampsia for women with chronic
 hypertension, but does reduce the risk of preterm birth.

44 <u>ABSTRACT</u>

45 1. Objective

This systematic review and meta-analysis investigates whether the use of low-dose aspirin
during pregnancy by women with chronic hypertension reduces the odds of superimposed
pre-eclampsia and poor perinatal outcomes.

49 2. Data sources

50 In September 2021 the following sources were searched: EMBASE, MEDLINE, Cochrane

51 Central Register of Controlled Trials, ClinicalTrials.gov, WHO International Clinical Trials

52 Registry Platform, and EU Clinical Trials Register. Only human studies were included, with no

53 time or language restrictions.

54 3. Study eligibility criteria

55 Cohort, case-control, and randomized controlled studies reporting women with chronic

56 hypertension pregnant with a singleton were included. Eligible studies compared low-dose

aspirin use during pregnancy to a control arm.

58 4. Study appraisal and synthesis methods

59 Risk of bias was assessed using the ROB2 and ROBINS-I tools. A meta-analysis was

60 performed using a random-effects model, estimating odds ratios (OR) and 95% confidence

and prediction intervals, and the quality of data was assessed with the GRADE approach.

62 Heterogeneity was investigated in regards to study methodology, timing of commencement

63 of aspirin, and the outcome of preterm pre-eclampsia.

64 5. Results

65 Nine studies (three retrospective cohort studies and six randomized trials) including 2150 women with chronic hypertension were included. Low-dose aspirin prophylaxis did not 66 67 significantly reduce the odds of superimposed pre-eclampsia in the RCTs (OR 0.83, 95% CI 68 0.55-1.25, PI 0.27-2.56, low quality evidence) or observational studies (OR 1.21, 95% CI 0.78-1.87, PI 0.07-20.80, very low quality evidence). Low-dose aspirin also did not reduce the 69 odds of preterm pre-eclampsia (OR 1.17, 95% CI 0.74-1.86), and early aspirin initiation had 70 71 no significant impact. There was no significant effect on small for gestational age neonates 72 or perinatal mortality, however there was a significant reduction in preterm birth (OR 0.63, 73 95% CI 0.45-0.89, moderate quality evidence). The quality of the evidence is limited by 74 heterogeneity and risk of bias. 75 6. Conclusions 76 This meta-analysis was unable to demonstrate a significant change in the odds of superimposed pre-eclampsia, small for gestational age infants, or perinatal mortality with 77 78 the use of low-dose aspirin in women with chronic hypertension. However, significant 79 reduction in preterm birth justifies the continued use of aspirin prophylaxis. This work was 80 prospectively registered on PROSPERO (CRD42021285921). 81 KEY WORDS: Aspirin, antiplatelet, chronic hypertension, essential hypertension, pregnancy, pre-eclampsia, preterm birth, small for gestational age, perinatal morbidity 82

83

84

85

86 MAIN TEXT

87 INTRODUCTION

Pre-eclampsia is a complex medical syndrome of uncertain etiology, affecting around 5% of 88 pregnancies worldwide¹ and responsible for over 500,000 fetal and neonatal deaths and 89 over 70,000 maternal deaths each year.² Previous research has identified chronic 90 hypertension, which is present in up to 5% of pregnant women,³ as a major risk factor for 91 the development of pre-eclampsia.^{4,5} National guidelines, specifically the National Institute 92 for Health and Care Excellence (NICE) guidance⁶ and the Saving Babies' Lives care bundle⁷ in 93 94 the United Kingdom, recommend that women with chronic hypertension receive low-dose 95 aspirin prophylaxis from 12 weeks' gestation until delivery to reduce the risk of complications due to placental dysfunction, such as pre-eclampsia and preterm birth. 96 Aspirin modulates platelet function and inflammation, and is used in an attempt to prevent 97 or mitigate progress of pathological processes that lead to the development of pre-98 eclampsia. 99 100 101 Early studies reported the use of aspirin was associated with a significant decrease in the incidence of pre-eclampsia,⁸⁻¹¹ however this was found to be less evident in larger trials 102 performed subsequently.¹²⁻¹⁴ Women deemed to be at high risk of developing pre-eclampsia 103 were then specifically investigated, with trials again producing conflicting results.^{15,16} 104 Heterogeneity in dosing and timing of aspirin between studies clouded the picture; some 105 106 meta-analyses reported that earlier aspirin initiation significantly improved the rates of preeclampsia compared to later aspirin initiation,^{17,18} although other meta-analyses of 107 individual patient data from women with risk factors for pre-eclampsia found no significant 108

differences.^{19,20} Furthermore, there is evidence that earlier aspirin initiation is associated
 with increased effectiveness for the prevention of preterm birth and small for gestational
 age (SGA) babies.²¹ There is also continued uncertainty about appropriate dosing leading to
 variation of the dose used in clinical trials from 60mg to 200mg daily.

113

There is a paucity of evidence for the clinical value of aspirin prophylaxis in women with chronic hypertension, typically because of inadequately powered studies or reliance on secondary analysis. Additionally, meta-analysis findings often represent pooled data from women with a variety of risk factors for pre-eclampsia, sometimes complicated by multiple high-risk comorbidities in the same woman; when women with chronic hypertension do receive their own subgroup analysis, this is often for the primary outcome of pre-eclampsia alone.

121

122 Objectives

123 This systematic review and meta-analysis aimed to investigate whether the use of low-dose

aspirin during pregnancy by women with chronic hypertension reduces the risk of

125 superimposed pre-eclampsia. Additionally, the impact of aspirin on perinatal outcomes

126 (SGA, preterm birth, and perinatal mortality) was investigated.

127

128 METHODS

129 Eligibility criteria

130 Studies reporting women pregnant with a singleton pregnancy with chronic hypertension

131 were included. Chronic hypertension was defined as: a pre-existing diagnosis of chronic

hypertension; women on antihypertensive medications prior to pregnancy; or who had 132 recorded blood pressure >140/90 on two occasions prior to 20 weeks gestation. Chronic 133 134 hypertension may coexist with other illnesses such as diabetes, antiphospholipid syndrome, 135 and renal disease, and studies including women with these conditions were not excluded 136 from our review and analysis. Cohort, case-control, and randomized controlled trials (RCTs) were included. Case series, case reports, and conference abstracts or posters were 137 138 excluded. The eligible interventions were low-dose aspirin use during pregnancy, not restricted to a specific dose, duration of treatment, or timing of use during pregnancy. 139 140 Eligible studies compared the intervention group to a control arm (women receiving a 141 placebo or not receiving aspirin during pregnancy). 142 Data sources and search strategy 143 144 This review was performed using the NICE Healthcare Databases Advanced Search platform 145 to search Embase and MEDLINE, alongside a search of the Cochrane Central Register of Controlled Trials, to identify relevant published studies. To identify ongoing and unfinished 146 147 studies, the following resources were searched: ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform, and the EU Clinical Trials Register. Additionally, reference 148 149 lists from key studies and other relevant systematic reviews (including those found via a 150 search of PROSPERO) were reviewed.

151

Key search terms were chronic (or essential) hypertension, pregnancy-induced (or maternal)
hypertension, pre-eclampsia, and aspirin (or antiplatelet); MeSH terms, keywords and
variations on the terms were used. The search strategy was reviewed by a librarian
independent of the research team. Only human studies were included, and there were no

time or language restrictions. Relevant studies published in non-English languages would
only be excluded if an adequate translation could not be produced. The search was
performed in September 2021.

159

160 Study selection and data extraction

Search results' titles and abstracts were screened independently by two researchers (ER and VG). Articles thought to potentially address the research question were retrieved and assessed for inclusion eligibility independently by the two researchers. Disagreements were resolved by discussion including the third author (BT). In cases of multiple reports on the same cohort's data, the article with the most information presented relevant to our research question was included.

167

Data on study characteristics, participant characteristics, methodologies, outcomes measured, and results were manually extracted from each study by one researcher and checked by a second. Results presented for the following outcomes were extracted and tabulated for inclusion in the meta-analysis: superimposed pre-eclampsia, preterm preeclampsia, preterm birth, small for gestational age, and perinatal mortality (stillbirth and neonatal mortality).

174

175 Assessment of risk of bias

Risk of bias was assessed by one researcher, and discussed with a second, utilizing Cochrane
tools: ROB 2²² for RCTs which categorizes the risk of bias as low, some concerns, or high, and
ROBINS-I²³ for non-randomized interventional studies which categorizes the risk of bias as
low, moderate, serious or critical. ROB 2 involves assessment of: confounding, selection of

180 participants, intervention classification, deviations from intervention, missing data,

181 measurement of outcomes, and selective reporting. ROBINS-I involves assessment of:

randomisation, deviations from intervention, missing outcome data, measurement of

183 outcome, and selective reporting. The impact on the results of studies found to have the

highest level of risk of bias was to be reviewed with a sensitivity analysis.

185

186 Data synthesis and assessment of quality of evidence

187 The outcomes of the studies were estimated with the odds ratio (OR) and its 95%

188 confidence interval (95% CI). Meta-analyses were performed using a random-effects model,

given the observed heterogeneity between studies. The results of the pooled analysis were

190 presented as forest plots and considered significant with a P value of <0.05.

191

192 Heterogeneity between estimates was represented with the I² statistic (greater than 40% 193 suggests significant heterogeneity) and the 95% prediction interval for those analyses 194 including three or more RCTs. The 95% prediction interval estimates where the true effects 195 are to be expected for 95% of similar studies that might be conducted in the future.24 Heterogeneity of results was investigated by analyses differentiating between study 196 197 methods, timing of commencement of aspirin, and the outcome of preterm pre-eclampsia. 198 When RCTs and observational studies reported the same outcome, Chi-squared subgroup 199 difference testing was utilised to assess the differences between their findings. Heterogeneity stemming from aspirin dose could not be assessed as three of the nine 200 201 studies did not specify dose used; this is described in the discussion. 202

203	Fragility indices for the results of the meta-analyses of RCTs are also reported; these
204	represent the minimum number of patients whose outcome status would have to change to
205	turn a statistically significant result to a nonsignificant result (or vice versa). ²⁵ Publication
206	bias was not explored using funnel plot asymmetry tests as there were fewer than 10
207	studies included. All analyses were conducted with R statistical software version 4.2.1. ²⁶
208	
209	The overall quality of the evidence pooled for each outcome was assessed using the GRADE
210	approach, ²⁷ utilizing GRADEPro software. ²⁸ Evidence from RCTs was downgraded from "high
211	quality" and evidence from observational studies was downgraded from "low quality" by
212	one or two levels depending on severity of risk of bias, indirectness of evidence,
213	inconsistency in estimates of effect, imprecision of effect estimates, or potential publication
214	bias.
215	
216	This systematic review and meta-analysis was registered on PROSPERO (CRD42021285921,
217	and functioning as a protocol) prior to screening of the search results. ²⁹
218	
219	RESULTS
220	Study selection
221	Following systematic searches of databases and reference lists, we identified 1819 unique
222	records, of which 1674 were excluded after title and abstract screening. A further 129
223	records were excluded following full text review and seven full-text articles were not
224	retrieved, resulting in nine articles for inclusion in the meta-analysis (Figure 1).
225	

226 Study characteristics

Of the nine included studies, six were RCTs, and three were retrospective cohort studies 227 228 (Table 1). There was a wide geographical distribution of study populations. Four studies 229 included only participants with chronic hypertension, while the other six included women with different risk factors for pre-eclampsia. The sample sizes of women with chronic 230 hypertension ranged from 37 to 473 women. The three retrospective cohort studies 231 232 compared aspirin to no prophylaxis, as did one of the randomized trials, otherwise a placebo was utilized. All studies used low-dose or "prophylactic" aspirin, with doses ranging 233 234 from 60mg to 150mg once daily, although three studies did not specify the dose. In five 235 studies the aspirin was commenced prior to 20 weeks gestation. 236 237 Secondary outcomes were reported in five of the nine studies, although there was variation in outcome definition. Studies reported preterm pre-eclampsia as either before 34 weeks, 238 239 before 37 weeks, or before 37 weeks with delivery. Additionally, studies reported small for gestational age or intrauterine growth restriction as birth weight below 3rd, 5th, or 10th 240 241 centiles. 242 *Risk of bias of included studies* 243 244 Seven of the nine studies included were found to have a source of risk of bias (Table 2). 245 However, none of the studies were found to have "critical" risk (for cohort studies) or "high"

risk (for randomized trials) and therefore none were excluded from the analysis.

247

248 Synthesis of results

A total of 1078 women affected by chronic hypertension on aspirin were compared to 1072 249 women with chronic hypertension on placebo (or no aspirin) during pregnancy, in separate 250 251 analyses by methodology. Low-dose aspirin prophylaxis did not significantly reduce the odds 252 of superimposed pre-eclampsia in the RCTs (OR 0.83, 95% CI 0.55-1.25, PI 0.27-2.56, low quality evidence, Figure 2) or observational studies (OR 1.21, 95% CI 0.78-1.87, PI 0.07-253 20.80, very low quality evidence, Figure 3). Even with point estimates of the OR either side 254 255 of the null, there were no significant differences in the findings of the observational studies 256 and RCTs (X2 statistic 1.47, p = 0.22). The quality of the evidence is limited by risk of bias in 257 the majority of the studies, heterogeneity (12 >40%), and imprecision (Figure 4). The 258 heterogeneity is reflected in the prediction interval, which is much wider for the observational studies than the RCTs. The data from the RCTs is associated with a fragility 259 260 index of 11, suggesting that it would take 11 outcome status changes to turn this statistically 261 insignificant result into a significant one, which is unfortunately smaller than the number of 262 patients lost to follow-up within included studies. 263 264 Four RCTs and one observational study reported that aspirin was commenced before 20

weeks' gestation. The pooled results from the RCTs with early aspirin initiation did not

266 demonstrate a significant reduction in pre-eclampsia rates (OR 0.74, 95% CI 0.47-1.16, I2

267 52%, PI 0.14-4.05, low quality evidence, Figure 5). The observational study did not report a

statistically different OR for superimposed pre-eclampsia to the RCTs (X2 statistic 1.93, p =

269 0.16).

270

Three RCTs reported preterm pre-eclampsia, including 383 women on aspirin and 354
women on control. The pooled data also found no significant effect of low-dose aspirin (OR

1.17, 95% CI 0.74-1.86, I2 0%, low quality evidence, Figure 6) with a wide prediction interval 273 (0.06-23.39); the evidence was assessed to be of low quality due to the implementation of 274 275 post-hoc secondary analyses of data and the few numbers of events (Figure 4). 276 Aspirin significantly reduced the odds of preterm birth. Two RCTs including 360 women on 277 278 aspirin and 350 women on control reported the number of preterm births with respect to 279 aspirin and control groups (22.2% versus 31.1%; OR 0.63, 95% CI 0.45-0.89; I2=0%, Figure 7). 280 This was assessed to be moderate quality evidence as one of the two studies had risk of 281 bias, specifically in regards to lack of information on concealment of randomization, 282 intervention allocation, and aspirin dose (Figure 4). The fragility index of five is much smaller than the number of patients lost to follow-up in the included studies. 283 284 285 Three RCTs reported small for gestational age neonates, with an associated odds ratio of 286 0.96 (95% CI 0.65-1.40, PI 0.08-11.53, moderate quality evidence) in women with chronic hypertension and aspirin compared to hypertensive women without aspirin during 287 288 pregnancy (Figure 8). Data from the observational study which reported small for gestational age outcome did not report a statistically significant OR for superimposed pre-289 290 eclampsia to the RCTs (X2 statistic 2.50, p = 0.11). 291 292 Perinatal mortality, including stillbirth and neonatal deaths, was reported by two RCTS 293 including 28/362 (7.7%) cases in the treatment group and in 28/352 (8.0%) cases in the

- 294 placebo group (OR 0.88, 95% CI 0.36-2.14, Figure 9). This was assessed to be very low
- quality evidence due to risk of bias, heterogeneity (I2=54%), and imprecision (Figure 4).
- 296

297 **COMMENT**

298 Principal findings

299 In this meta-analysis, we address an important clinical question: whether low-dose aspirin in 300 pregnancy reduces the risk of pre-eclampsia and neonatal morbidity in women with chronic hypertension. We identified nine studies including 2150 women with chronic hypertension 301 that met our inclusion criteria, of which none were judged to be at the highest risk of bias. 302 303 Data pooled from six randomized controlled trials identified a reduction in the odds of 304 superimposed pre-eclampsia of 17% (OR 0.83, 95% CI 0.55-1.25, low quality evidence), and 305 although this reduction did not reach statistical significance, the data suggests that the 306 intervention is more likely to confer benefits than not. This interpretation is limited as the fragility index of 11 is lower than the number of women lost to follow-up in the included 307 308 studies; there is a theoretical risk that the outcomes of those lost to follow-up could have 309 resulted in the findings of the analysis changing significantly. 310 The three retrospective cohort studies of very low quality suggest that low-dose aspirin may be associated with an increased odds of superimposed pre-eclampsia in women with 311 312 chronic hypertension (OR 1.21, 95% CI 0.78-1.87), although the prediction interval is wide and therefore there is much uncertainty regarding what similar future studies may find. 313 314 Overall, uncertainty around the relationship between low-dose aspirin and the development 315 of superimposed pre-eclampsia was large and further high-quality data is required; 316 discussion of the limitations of these analyses is found below. 317

318 Similarly, this lack of significant effect persisted even when considering only preterm pre-

eclampsia as the outcome or where aspirin was commenced prior to 20 weeks' gestation.

320 There was also no significant reduction in the odds of small for gestational age neonates or

perinatal mortality. However, there is moderate quality evidence from two RCTs that there
was a significant 37% reduction in the odds of preterm birth in the cohort receiving aspirin
prophylaxis (OR 0.63, 95% CI 0.45-0.89). As above, unfortunately the fragility index of 5 is
lower than the number of women lost to follow-up in the included studies.

325

326 Comparison with existing literature

327 Large meta-analyses of pooled data from women with a variety of risk factors for preeclampsia, such as the recent United States Preventive Services Taskforce report²¹ and 328 Cochrane review,³⁰ have found that low-dose aspirin prophylaxis reduces the risk of pre-329 330 eclampsia and other perinatal outcomes. The results of this meta-analysis contradicts these previous reviews, however our findings are supported by data from women with chronic 331 332 hypertension: a meta-analysis of individual patient data of high-risk women from the PARIS 333 Collaborative Group found that in women with chronic hypertension (1678 on antiplatelets 334 and 1625 on control) there was no significant risk reduction for pre-eclampsia (RR 0.97; 95% Cl 0.84-1.12) following administration of aspirin or dipyridamole, although in the total 335 336 cohort of women with a variety of risk factors there was a significant reduction in the relative risk.¹⁹ These differences in results may be explained by the heterogeneity in the 337 338 populations investigated.

339

In regards to the timing of the initiation of aspirin, we found that pooled data from the five
studies where aspirin was commenced before 20 weeks' gestation also did not demonstrate
a significant reduction in the odds of developing superimposed pre-eclampsia, which is
consistent with previous work which has shown no significant difference in pre-eclampsia

risk with earlier versus later initiation among women with risk factors for pre-eclampsia,^{20, 21}
although there is also evidence to the contrary.^{17, 18}

346

347 Our finding that aspirin prophylaxis significantly reduced the odds of preterm birth is echoed by an individual participant data meta-analysis of women with risk factors for pre-348 eclampsia, which found a significant reduction in risk of preterm birth before 37 weeks 349 350 gestation with aspirin and/ or dipyridamole (RR 0.93, 95% CI 0.86-0.996). Interestingly, 351 when considering only the women with chronic hypertension (1266 on antiplatelets and 1252 on control), there was a more pronounced effect estimate of a 27% reduction in the 352 353 risk of spontaneous preterm birth before 37 weeks gestation (RR 0.73; 95% CI 0.53-0.999).³¹ However, this analysis found no significant reduction in preterm birth before 34 weeks or 354 355 before 28 weeks in women with chronic hypertension, whereas there was a significant 356 reduction in the risk of preterm birth before 34 weeks gestation for the wider, more diverse, 357 cohort (RR 0.86, 95% CI 0.76-0.99).³¹ These findings suggest that low-dose aspirin prophylaxis may be more efficacious in the prevention of late preterm birth in women with 358 359 chronic hypertension than for those with other risk factors for pre-eclampsia, although the test of interaction between treatment group and chronic hypertension history was not 360 361 significant, and the effect has not been shown for moderate to very preterm birth. Given 362 the hypothesis that placental vascular pathology causes moderate to late PTB, and that very PTB is associated more with infection-inflammation,³¹ it may be theorized that aspirin works 363 well in the prevention of late preterm birth in women with chronic hypertension due to 364 365 action on placental vascular pathology to which chronic hypertension more greatly predisposes than other pre-eclampsia risk factor groups, although this requires further 366 investigation. 367

16

368

369 Strengths and limitations

Strengths of this meta-analysis include a large total population size of 2150 pregnant
women with chronic hypertension from many different ethnic backgrounds, including
subgroup data from the well-known Network of Maternal-Fetal Medicine Units¹⁵ and
ASPRE¹⁶ trials. We were able to investigate the relationship between aspirin use, including
timing of initiation of aspirin, and a number of different maternal and neonatal outcomes.

The quality of the evidence is significantly limited by the observed heterogeneity. This is 376 377 reflected in the prediction intervals which suggest that similar future studies may find true effects across a wide range of possibilities, including beneficial but also harmful effects. This 378 379 heterogeneity may be due to variations in definitions of population (for example use of 380 different hypertension definitions and whether participants were required to be on 381 treatment for hypertension), exposure (variable aspirin dose, including three studies which did not define the dose), and outcomes (such as variations in definitions of superimposed 382 383 pre-eclampsia, SGA birth, and preterm gestation). In regards to the main outcome of superimposed pre-eclampsia, although studies utilised different definitions, some of which 384 385 may have underestimated the incidence of superimposed pre-eclampsia, they all fell within 386 the International Society for the Study of Hypertension in Pregnancy definition² described in this review's protocol.²⁹ The studies were found to have low risk of bias in the measurement 387 of the outcome as there was no evidence that the measurement differed between 388 389 intervention groups, was influenced by knowledge of intervention status, or that there were 390 systematic errors in measurement of the outcome related to intervention received. Three of the nine studies (all of which reported on women with a variety of risk factors) described 391

only a definition for pre-eclampsia, and not one for superimposed pre-eclampsia in women
with chronic hypertension. Future systematic reviews may seek to impose stricter eligibility
criteria to limit heterogeneity, and prospective studies including only women with chronic
hypertension may improve the identification of superimposed pre-eclampsia.

396

Some risk of bias was present in seven of the nine studies included. While these biases did 397 398 not reach a critical level, there are particular concerns regarding the reported loss to follow-399 up in multiple RCTs and the relatively low fragility indices, suggesting that those lost to 400 follow-up may have been able to sway the results of the analyses. Additionally, there may 401 have been inadequate controlling for confounding factors in the retrospective studies, the use of post-hoc secondary analyses of data confer a lack of transparency for selection of 402 403 reported results, and unspecified dosing of aspirin suggests possible deviation from 404 intervention.

405

406 *Clinical and research implications*

407 Although low quality evidence suggests that aspirin had no significant effect on rates of pre-408 eclampsia among women with chronic hypertension, moderate quality evidence suggesting 409 a reduction in preterm births has important consequences for clinical care. Preterm birth is 410 associated with increased rates of disability and infant death, with higher costs of 411 healthcare both in the neonatal period and longer term as well as important personal 412 consequences for families. The use of aspirin in pregnancies at high risk for pre-eclampsia 413 has been found to significantly lower rates of preterm birth before 32 weeks with associated significantly reduced length of NICU stay in the aspirin group (although rates of NICU 414 admission were not affected).³² 415

417	Further research on the value of aspirin in pregnancy is required; as this is a meta-analysis
418	we cannot exclude the possibility that there are some beneficial effects which are masked
419	by the heterogeneity and evidence quality issues we have highlighted. Furthermore, as we
420	did not differentiate between provider-initiated and spontaneous preterm birth, we are
421	uncertain about the mechanism of aspirin action to reduce preterm birth. It is worth noting
422	that rates of preterm pre-eclampsia and SGA were not affected by the use of aspirin, which
423	may suggest aspirin impacts spontaneous preterm birth rather than preterm birth
424	secondary to preterm pre-eclampsia and SGA.
425	
426	We have shown that when considering women with chronic hypertension separately to a
427	pooled cohort of women with different risk factors for pre-eclampsia, aspirin may not be as
428	effective for the prevention of superimposed pre-eclampsia as previous meta-analyses
429	suggest, but may be more effective for the prevention of late preterm birth compared to
430	other pre-eclampsia risk factor groups. Given the 25% risk of pre-eclampsia in women with
431	chronic hypertension ⁵ and the increasing frequency of cardiovascular disease in
432	pregnancy, ³³ a prospective study to investigate the impact of aspirin use for women with
433	chronic hypertension on perinatal and maternal outcomes is justified and may answer some
434	of the questions raised in this paper.
435	
436	Conclusions
437	This meta-analysis was unable to demonstrate a significant change in the odds of
438	superimposed pre-eclampsia, small for gestational age infants, or perinatal mortality with
439	the use of low-dose aspirin in women with chronic hypertension. However, the significant

440	reduction in preterm birth may confer substantial personal, clinical and economic benefits,
441	justifying the continued clinical use of aspirin prophylaxis in women with chronic
442	hypertension. Given the mixed quality of the source data and the limitations of the meta-
443	analyses, further work with women with chronic hypertension is required to clarify the
444	value of aspirin prophylaxis.
445	
446	
447	
448	
449	
450	
451	
452	
453	
454	
455	
456	
457	
458	

459 **REFERENCES**

- 460 1. Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of
- 461 preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol Reprod Biol.
- 462 Sep 2013;170(1):1-7. doi:10.1016/j.ejogrb.2013.05.005
- 463 2. Brown MA, Magee LA, Kenny LC, et al. The hypertensive disorders of pregnancy:
- 464 ISSHP classification, diagnosis & management recommendations for international
- 465 practice. Pregnancy Hypertens. Jul 2018;13:291-310.
- 466 doi:10.1016/j.preghy.2018.05.004
- 467 3. Sibai BM. Chronic hypertension in pregnancy. Obstet Gynecol. Aug 2002;100(2):369-
- 468 77. doi:10.1016/s0029-7844(02)02128-2
- 469 4. Bartsch E, Medcalf KE, Park AL, Ray JG, Group HRoP-el. Clinical risk factors for
- 470 preeclampsia determined in early pregnancy: systematic review and meta-analysis of
- 471 large cohort studies. BMJ. Apr 19 2016;353:i1753. doi:10.1136/bmj.i1753
- 472 5. Bramham K, Parnell B, Nelson-Piercy C, Seed PT, Poston L, Chappell LC. Chronic
- 473 hypertension and pregnancy outcomes: systematic review and meta-analysis. BMJ.
- 474 Apr 15 2014;348:g2301. doi:10.1136/bmj.g2301
- 475 6. National Institute for Health and Care Excellence (NICE). Hypertension in pregnancy:
- diagnosis and management. Published 25 June 2019.
- 477 https://www.nice.org.uk/guidance/ng133. Accessed: 01 February 2022.
- 478 7. O'Connor D. Saving Babies' Lives: A care bundle for reducing stillbirth. Published 21
- 479 March 2016. https://www.england.nhs.uk/wp-content/uploads/2016/03/saving-
- 480 babies-lives-car-bundl.pdf. Accessed: 01 February 2022.

481	8.	Beaufils M, Uzan S, Donsimoni R, Colau JC. Prevention of pre-eclampsia by early
482		antiplatelet therapy. Lancet. Apr 13 1985;1(8433):840-2. doi:10.1016/s0140-
483		6736(85)92207-x
484	9.	Wallenburg HC, Dekker GA, Makovitz JW, Rotmans P. Low-dose aspirin prevents
485		pregnancy-induced hypertension and pre-eclampsia in angiotensin-sensitive
486		primigravidae. Lancet. Jan 04 1986;1(8471):1-3. doi:10.1016/s0140-6736(86)91891-x
487	10	. Schiff E, Peleg E, Goldenberg M, et al. The use of aspirin to prevent
488		pregnancyinduced hypertension and lower the ratio of thromboxane A2 to
489		prostacyclin in relatively high risk pregnancies. N Engl J Med. Aug 10
490		1989;321(6):351-6. doi:10.1056/NEJM198908103210603
491	11	. McParland P, Pearce JM, Chamberlain GV. Doppler ultrasound and aspirin in
492		recognition and prevention of pregnancy-induced hypertension. Lancet. Jun 30
493		1990;335(8705):1552-5. doi:10.1016/0140-6736(90)91377-m
494	12	. Low-dose aspirin in prevention and treatment of intrauterine growth retardation and
495		pregnancy-induced hypertension. Italian study of aspirin in pregnancy. Lancet. Feb
496		13 1993;341(8842):396-400.
497	13	. CLASP: a randomised trial of low-dose aspirin for the prevention and treatment of
498		preeclampsia among 9364 pregnant women. CLASP (Collaborative Low-dose Aspirin
499		Study in Pregnancy) Collaborative Group. Lancet. Mar 12 1994;343(8898):619-29.
500	14	. Sibai BM, Caritis SN, Thom E, et al. Prevention of preeclampsia with low-dose aspirin
501		in healthy, nulliparous pregnant women. The National Institute of Child Health and
502		Human Development Network of Maternal-Fetal Medicine Units. N Engl J Med. Oct
503		21 1993;329(17):1213-8. doi:10.1056/NEJM199310213291701

- 504 15. Caritis S, Sibai B, Hauth J, et al. Low-dose aspirin to prevent preeclampsia in women
- 505 at high risk. National Institute of Child Health and Human Development Network of
- 506 Maternal-Fetal Medicine Units. N Engl J Med. Mar 12 1998;338(11):701-5.
- 507 doi:10.1056/NEJM199803123381101
- 16. Rolnik DL, Wright D, Poon LC, et al. Aspirin versus Placebo in Pregnancies at High Risk
 for Preterm Preeclampsia. N Engl J Med. 08 17 2017;377(7):613-622.
- 510 doi:10.1056/NEJMoa1704559
- 511 17. Bujold E, Roberge S, Lacasse Y, et al. Prevention of preeclampsia and intrauterine
- 512 growth restriction with aspirin started in early pregnancy: a meta-analysis. Obstet
- 513 Gynecol. Aug 2010;116(2 Pt 1):402-414. doi:10.1097/AOG.0b013e3181e9322a
- 18. Roberge S, Nicolaides KH, Demers S, Villa P, Bujold E. Prevention of perinatal death
 and adverse perinatal outcome using low-dose aspirin: a meta-analysis. Ultrasound
 Obstet Gynecol. May 2013;41(5):491-9. doi:10.1002/uog.12421
- 517 19. Askie LM, Duley L, Henderson-Smart DJ, Stewart LA, Group PC. Antiplatelet agents
- 518 for prevention of pre-eclampsia: a meta-analysis of individual patient data. Lancet.

519 May 26 2007;369(9575):1791-1798. doi:10.1016/S0140-6736(07)60712-0

- 520 20. Meher S, Duley L, Hunter K, Askie L. Antiplatelet therapy before or after 16 weeks'
- 521 gestation for preventing preeclampsia: an individual participant data meta-analysis.
- 522 Am J Obstet Gynecol. Feb 2017;216(2):121-128.e2. doi:10.1016/j.ajog.2016.10.01
- 523 21. Henderson JT, Vesco KK, Senger CA, Thomas RG, Redmond N. Aspirin Use to Prevent
- 524 Preeclampsia and Related Morbidity and Mortality: Updated Evidence Report and
- 525 Systematic Review for the US Preventive Services Task Force. JAMA. 09 28
- 526 2021;326(12):1192-1206. doi:10.1001/jama.2021.8551

527 22. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risl	of bias in
528 randomised trials. BMJ. 08 28 2019;366:l4898. doi:10.1136/bmj.l4898	
529 23. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk	of bias in
530 non-randomised studies of interventions. BMJ. Oct 12 2016;355:i4919.	
531 doi:10.1136/bmj.i4919	
532 24. IntHout J, Ioannidis JP, Rovers MM, Goeman JJ. Plea for routinely presenti	ng
prediction intervals in meta-analysis. BMJ Open. 07 12 2016;6(7):e010247	
534 doi:10.1136/bmjopen-2015-010247	
535 25. Walsh M, Srinathan SK, McAuley DF, et al. The statistical significance of ra	ndomized
536 controlled trial results is frequently fragile: a case for a Fragility Index. J Cli	n
537 Epidemiol. Jun 2014;67(6):622-8. doi:10.1016/j.jclinepi.2013.10.019	
538 26. R Core Team (2022). R: A language and environment for statistical comput	ing. R
539 Foundation for Statistical Computing, Vienna, Austria. URL https://www.R	-
540 project.org/.	
541 27. Langendam MW, Akl EA, Dahm P, Glasziou P, Guyatt G, Schünemann HJ. A	ssessing
542 and presenting summaries of evidence in Cochrane Reviews. Syst Rev. Sep	23
543 2013;2:81. doi:10.1186/2046-4053-2-81	
544 28. GRADEpro GDT: GRADEpro Guideline Development Tool [Software]. McMa	aster
545 University and Evidence Prime, 2022. Available from gradepro.org.	
546 29. Richards E, Giorgione V, Thilaganathan B. Low-dose aspirin for the prevent	ion of
547 superimposed pre-eclampsia in women with chronic hypertension: a syste	matic
548 review and meta-analysis. PROSPERO 2021 CRD42021285921 Available fro	om:
549 https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD420212	85921

550	30. Duley L, Meher S, Hunter KE, Seidler AL, Askie LM. Antiplatelet agents for preventing
551	pre-eclampsia and its complications. Cochrane Database Syst Rev. 10 30
552	2019;2019(10)doi:10.1002/14651858.CD004659.pub3
553	31. van Vliet EOG, Askie LA, Mol BWJ, Oudijk MA. Antiplatelet Agents and the Prevention
554	of Spontaneous Preterm Birth: A Systematic Review and Meta-analysis. Obstet
555	Gynecol. 02 2017;129(2):327-336. doi:10.1097/AOG.000000000001848
556	32. Wright D, Rolnik DL, Syngelaki A, et al. Aspirin for Evidence-Based Preeclampsia
557	Prevention trial: effect of aspirin on length of stay in the neonatal intensive care unit.
558	Am J Obstet Gynecol. 06 2018;218(6):612.e1-612.e6. doi:10.1016/j.ajog.2018.02.014
559	33. Ruys TP, Cornette J, Roos-Hesselink JW. Pregnancy and delivery in cardiac disease. J
560	Cardiol. Feb 2013;61(2):107-12. doi:10.1016/j.jjcc.2012.11.001
561	34. Boriboonhirunsarn D, Pradyachaipimol A, Viriyapak B. Incidence of superimposed
562	preeclampsia among pregnant Asian women with chronic hypertension. Hypertens
563	Pregnancy. May 2017;36(2):226-231. doi:10.1080/10641955.2017.1311340
564	35. Byaruhanga RN, Chipato T, Rusakaniko S. A randomized controlled trial of low-dose
565	aspirin in women at risk from pre-eclampsia. Int J Gynaecol Obstet. Feb
566	1998;60(2):129- 35. doi:10.1016/s0020-7292(97)00257-9
567	36. ECPPA: randomised trial of low dose aspirin for the prevention of maternal and fetal
568	complications in high risk pregnant women. ECPPA (Estudo Colaborativo para
569	Prevenção da Pré-eclampsia com Aspirina) Collaborative Group. Br J Obstet
570	Gynaecol. Jan 1996;103(1):39-47. doi:10.1111/j.1471-0528.1996.tb09513.x
571	37. Lecarpentier E, Tsatsaris V, Goffinet F, Cabrol D, Sibai B, Haddad B. Risk factors of
572	superimposed preeclampsia in women with essential chronic hypertension treated
573	before pregnancy. PLoS One. 2013;8(5):e62140. doi:10.1371/journal.pone.0062140

574	38. Lin L, Huai J, Li B, et al. A randomized controlled trial of low-dose aspirin for the
575	prevention of preeclampsia in women at high risk in China. Am J Obstet Gynecol. 02
576	2022;226(2):251.e1-251.e12. doi:10.1016/j.ajog.2021.08.004
577	39. McCowan LM, Buist RG, North RA, Gamble G. Perinatal morbidity in chronic
578	hypertension. Br J Obstet Gynaecol. Feb 1996;103(2):123-9. doi:10.1111/j.1471-
579	0528.1996.tb09662.x
580	40. Moore GS, Allshouse AA, Post AL, Galan HL, Heyborne KD. Early initiation of low-dose
581	aspirin for reduction in preeclampsia risk in high-risk women: a secondary analysis of
582	the MFMU High-Risk Aspirin Study. J Perinatol. May 2015;35(5):328-31.
583	doi:10.1038/jp.2014.214
584	41. Poon LC, Wright D, Rolnik DL, et al. Aspirin for Evidence-Based Preeclampsia
585	Prevention trial: effect of aspirin in prevention of preterm preeclampsia in subgroups
586	of women according to their characteristics and medical and obstetrical history. Am J
587	Obstet Gynecol. 11 2017;217(5):585.e1-585.e5. doi:10.1016/j.ajog.2017.07.038
588	42. Xiang X, Wang F, Zhao N, Zhou Z. Treatment of pregnancy-induced hypertension
589	compared with labetalol, low dose aspirin and placebo. Cell Mol Biol (Noisy-le-
590	grand). Dec 31 2020;66(8):9-13.

TABLE 1 - Characteristics of included studies

Study	Methods	Participan	Inclusion criteria	Exclusion	Gestation	Interventi	Compariso	Outcomes (*reported
		ts		criteria	al age at	on	n	for women with chronic
					entry			hypertension (cHTN)
								and stratified by aspirin
								exposure)
Boriboonhi	Single	300	cHTN (diagnosed	Women with	NA	ASA	No aspirin	*Superimposed
r-unsarn	center,	women	before pregnancy, with	pre-pregnancy		prophylaxi		preeclampsia,
2017 ³⁴	Retrospecti	with cHTN	or without treatment).	diabetes,		S		gestational age at
Thailand	ve cohort			multiple		(undefined		delivery, small for
	2011-2013			gestation,)		gestational age, low
				documented				birth weight, asphyxia,
				fetal anomalies,				and NICU admission
				incomplete data				

Byaruhang	Single	250	Previous PIH/ PE/	Contraindication	20-28	75mg	Placebo	*Pre-eclampsia,
а	center RCT,	women at	eclampsia or cHTN	s to aspirin use;	weeks	aspirin up		duration of pregnancy,
IJOG	double-	high risk,		development of		to 38		perinatal mortality,
1997 ³⁵	blind	of which		PE prior to entry		weeks		birthweight
Zimbabwe	1994-1995	37 had		in trial.				
		cHTN						
ЕСРРА	Multicenter	1009 high-	Women with Risk	Women with	12-32	60mg	Placebo	*Pre-eclampsia,
1996 ³⁶	RCT,	risk	factors (e.g. chronic	contraindication	weeks	aspirin OD		*preterm delivery
Brazil	double-	women, of	hypertension detected	s to aspirin use,		(started at		(<37/40), maximum
	blinded, ITT	which 473	before or during	placenta		or after		maternal BP recorded
	analysis,	had cHTN.	pregnancy,	praevia.		12/40		after entry; crude
	1989-1993		primigravidity,			until		birthweight (*IUGR =
			diabetes, renal disease,			delivery)		BW <3rd centile);
			a history or presence of					*stillbirth (24/40+) and

			preeclampsia or IUGR)					neonatal death;
								maternal and fetal
								complications related
								to bleeding; blood
								transfusion
Lecarpenti	Multicenter	211	cHTN (needing	Multiple	NA	Low dose	No aspirin	*Superimposed pre-
er 2013 ³⁷	Retrospecti	women	treatment before	pregnancies,		aspirin		eclampsia, FGR (BW
France	ve cohort	with cHTN	pregnancy)	secondary		(undefined		<5th centile), placental
	2004- 2007			hypertension,)		abruption, HELLP
				proteinuria at				syndrome.
				less than 20				
				weeks'				
				gestation,				
				chronic				

				hypertension				
				but without any				
				treatment at				
				first prenatal				
				visit, women				
				transferred from				
				other				
				maternities,				
				fetal				
				malformations				
Lin	Multicenter	990 high-	18-55 years, singleton	Contraindication	< 20	100mg	No aspirin	*Pre-eclampsia, *pre-
2021 ³⁸	single-blind	risk	pregnancy, live fetus at	s to aspirin use,	weeks	aspirin,		eclampsia delivery
China	RCT	women	the gestational age of	autoimmune		initiated		before 34 weeks,
(Pre-proof)	2016-2019.	randomize	12 to 20 weeks; high	diseases; mental		from 12 to		*before 37 weeks, and

	d, of which	risk i.e. history of pre-	disorders;	20 weeks	*at or after 37 weeks of
	441 cHTN.	eclampsia, diabetes	history of	until 34	gestation; gestational
		(type 1 or 2), or chronic	alcohol or drug	weeks.	hypertension; HELLP
		hypertension; or 2+	abuse within 6		syndrome; placental
		intermediate risk	months; in-vitro		abruption; PPH, fetal
		factors: obesity,	fertilization		distress, preterm birth;
		advanced maternal age	(IVF); previous		miscarriage, stillbirth,
		(≥35	registration in		or neonatal death; fetal
		years), family history of	another drug		death with pre-
		pre-eclampsia, or	trial within the		eclampsia; perinatal
		nulliparity	previous 3		death; fetal
			months.		malformation;
					low birth weight; very
					low birth weight; SGA;

								apgar score and NICU admission.
McCowan	Single	155	dBP >=90 before 20	Evidence of	NA	75 mg	No aspirin	*Superimposed pre-
1996 ³⁹	center	pregnanci	weeks or pre-existing	secondary		aspirin		eclampsia, perinatal
New	Retrospecti	es in	diagnosis of essential	causes of		commenc		loss, *SGA (BW <5th
Zealand	ve cohort,	women	HTN and on	hypertension.		ed at < 20		centile), PTB (before 37
	1991-1993.	with cHTN	antihypertensive			weeks		and 32 weeks),
			medicines					abruption.
Moore	Secondary	523 High-	Women with cHTN (on	Multifetal	<17+0	60mg	Placebo	*Superimposed pre-
2015 ⁴⁰	analysis of	risk	treatment or BP	gestations,	weeks	aspirin		eclampsia at any
USA	Caritis	women, of	>=140/90 prior to	history of pre-		from		gestation, *early pre-
	1998, ¹⁵	which 186	pregnancy or prior to	eclampsia with		recruitme		eclampsia (before
	Multicenter	cHTN.	20 weeks), diabetes,	current		nt until		34/40), *late pre-
	double-		history of PE	proteinuria		delivery		eclampsia (34/40+),

	blind RCT 1991-1995							*SGA (BW <10th centile), *compositie early pre-eclampsia or
								SGA
Poon	multicenter,	1776	18+ years, no serious	(not specified)	At the 11-	Aspirin	Placebo	*Delivery with
2017 ⁴¹	double-	women	mental illness or		13 week	150 mg,		superimposed PE <37
UK, Spain,	blind, RCT.	assigned,	learning difficulties,		visit.	administer		weeks
Italy,	(Secondary	of which	singleton live			ed from		
Belgium,	analysis of	110 cHTN.	pregnancy, no major			11-14		
Greece,	ASPRE) ¹⁶		abnormality			weeks		
Israel			demonstrated,			until 36		
			estimated risk for			weeks		
			preterm PE of >1 in 100					
			(including history of					

			cHTN as reported by participants)					
Xiang	Multicenter	393	Mild - moderate cHTN	Women with	9 weeks	LDA	Placebo	*Superimposed pre-
202042	RCT, 2018-	women	(SBP 140-159, dBP 90-	multiple	(+/- 2	(undefined		eclampsia at any
China	2019.	with mild-	109) documented	embryos, prior	weeks))		gestation, *SGA (BW
		mod cHTN	between 6-10 weeks	proteinuria, and		From 12-		<10th centile),
			gestation, without	other conditions		36 weeks		*premature delivery
			medication and target	such as diabetes				(<37 weeks), *neonatal
			organ disease	and asthma) as				hypoglycemia,
				well as fetal				*neonatal
				defects during				*hyperbilirubinemia,
				pregnancy				*intrauterine fetal
								demise

TABLE 2 - Risk of bias assessments

Retrospective	Confoundi	Selection	Intervention	Deviations	Missing	Measureme	Selective	Overall	Comments
Cohort	ng	of	classification	from	data	nt of	reporting		
Studies		participan		interventi		outcomes			
		ts		on					
Boriboonhirus	Moderate	Low	Serious	Low	Low	Low	Moderate	Serious	Logistic regression adjusted for
arn									the confounders of age, parity,
2017 ³⁴									pre-pregnancy BMI, previous
									pre-eclampsia, (but not co-
									morbidities). Note - all
									participants same ethnicity.
									The intervention of "ASA
									prophylaxis" was undefined.

Lecarpentier	Serious	Low	Serious	Low	Low	Low	Moderate	Serious	Logistic regression to control
2013 ³⁷									for confounders included
									ethnicity, parity, prev pre-
									eclampsia (but not age, co-
									morbidities, or BMI). The
									intervention of "low dose
									aspirin" was undefined.
McCowan	Serious	Low	Low	Low	Low	Low	Moderate	Serious	Some potential confounders
1996 ³⁹									controlled for in relation to
									SGA outcome, but not
									described for pre-eclampsia.
Randomized Ti	rials	<u> </u>	Randomisati	Deviations	Missing	Measureme	Selection	Overall	Comments
			on	from	outcome	nt of	of		
				interventi	data	outcome	reported		

		on			result		
Byaruhanga	Low	Low	Some	Low	Low	Some	20 of the randomized subjects
1997 ³⁵			concerns			concerns	(8%) lost to follow-up (12 in aspirin group, 8 in placebo
							group).
ЕСРРА	Low	Low	Low	Low	Low	Low	Follow-up forms obtained for
1996 ³⁶							96% of randomized women
							(476 allocated to aspirin, 494
							to placebo)
Lin	Low	Low	Low	Low	Low	Low	Study protocol reviewed.
2021 ³⁸							Registered with
							clinicaltrials.gov:
							NCT02797249, with

							recruitment commencing following registration.
Moore	Low	Low	Low	Low	Some	Some	Secondary analysis of Caritis
2015 ⁴⁰					concerns	concerns	1998. ¹⁵
Poon	Low	Low	Low	Low	Some	Some	Subgroup analyses for
2017 ⁴¹					concerns	concerns	obstetric history pre-specified
							but those for maternal
							characteristics/ medical history
							were post-hoc.
							Secondary analysis of ASPRE; ¹⁶
							protocol reviewed. The ASPRE
							trial was registered with
							ISRCTN: ISRCTN13633058, with
							recruitment commencing

							following registration.
Xiang	Some	Low	Low	Low	Low	Some	No information on
202042	concerns					concerns	concealment of randomisation
							and intervention allocation.
							"Low dose aspirin" - dose
							undefined.

TABLE 3 - Summary of meta-analyses of the effect of low-dose aspirin on maternal and neonatal outcomes in women with chronic

hypertension

Outcome	Studies (number of patients)	OR (95%	95% Prediction	Fragility index
		confidence	interval	
		interval)		
Superimposed pre-eclampsia	Six RCTs (1,484)	0.83 (0.55-1.25)	0.27-2.56	11

Superimposed pre-eclampsia	Three Cohort (666)	1.21 (0.78-1.87)	0.07-20.80	NA
Superimposed pre-eclampsia given	Four RCTs (992)	0.74 (0.47-1.16)	0.14-4.05	6
early aspirin initiation				
Preterm pre-eclampsia	Three RCTs (737)	1.17 (0.74-1.86)	0.06-23.39	10
Preterm birth	Two RCTs (710)	0.63 (0.45-0.89)	NA	5
Small for gestational age	Three RCTs (900)	0.96 (0.65-1.40)	0.08-11.53	18
Perinatal mortality	Two RCTs (714)	0.88 (0.36-2.14)	NA	14

FIGURE LEGENDS

- 1. Flow diagram
- 2. Superimposed pre-eclampsia (RCTs)
- 3. Superimposed pre-eclampsia (cohorts)
- 4. Summary of findings, including GRADE assessments

- 5. Pre-eclampsia outcome when aspirin initiated before 20 weeks (RCTs)
- 6. Preterm pre-eclampsia (RCTs)
- 7. Preterm birth (RCTs)
- 8. Small for gestational age (RCTs)
- 9. Perinatal mortality (RCTs)