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Pharmacometric analyses of time series viral load data may detect drug effects with

greater power than approaches using single time points. Because SARS-CoV-2 viral

load rapidly rises and then falls, viral dynamic models have been used. We compared

different modelling approaches when analysing Phase II-type viral dynamic data.

Using two SARS-CoV-2 datasets of viral load starting within 7 days of symptoms, we

fitted the slope-intercept exponential decay (SI), reduced target cell limited (rTCL),

target cell limited (TCL) and TCL with eclipse phase (TCLE) models using nlmixr.

Model performance was assessed via Bayesian information criterion (BIC), visual pre-

dictive checks (VPCs), goodness-of-fit plots, and parameter precision. The most com-

plex (TCLE) model had the highest BIC for both datasets. The estimated viral decline

rate was similar for all models except the TCL model for dataset A with a higher rate
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(median [range] day�1: dataset A; 0.63 [0.56–1.84]; dataset B: 0.81 [0.74–0.85]). Our

findings suggest simple models should be considered during pharmacodynamic model

development.
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1 | INTRODUCTION

The COVID-19 pandemic continues to threaten public health largely

now due to new variants of concern with increasing ability to evade

antibody responses. Most importantly, these variants challenge vacci-

nation efforts to halt the pandemic, thereby necessitating efforts to

develop new antivirals as well as repurposing of existing antiviral

therapies.1

So far, the ongoing development of novel antivirals is promising,

albeit drug development processes are time-consuming. Drug

repurposing is a time-saving approach as clinical efficacy and safety

data are already known for other therapeutic indications.2 Nonethe-

less, the push for repurposing therapies for SAR-CoV-2 has been

hampered by clinical inefficiencies such as non-randomised

placebo-controlled trials and an overemphasis on hospitalised

patients.2,3

As with other respiratory viral infections, an understanding of

SARS-CoV-2 viral dynamics could shape the future of potential treat-

ment options to identify antivirals which can disrupt viral replication.

The target cell limited (TCL) model has previously been used to sup-

port antiviral development for respiratory infections.4,5 For SARS-

CoV-2, extensions and simplifications of the TC model have been

described in recent studies.6–10

During pharmacokinetic model building, common practice

involves starting with the simplest model (often one-compartment)

and then adding complexity (further compartments) where data

supports this. The goal is to find a model that adequately describes

the data and from which important secondary parameters such as

area under the curve (AUC) or highest observed concentration

(Cmax) can be derived. SARS-CoV-2 viral pharmacodynamic model-

ling has so far often not taken this approach, in that only one

model is often considered. As Phase II type trials of repurposed

and novel antivirals read out, it is important to consider a

model-building approach that is sufficient to characterise viral

decline rate as the clinical endpoint of interest. And for most phar-

macodynamic models, characterisation of the infected cells death

rate (i.e., δ) is the main driver of viral decline rate since often virus

clearance (e.g., c in the TCL model) is much faster than viral pro-

duction rate.7–10

Therefore, we aimed to compare the performance of different

published viral dynamic models for SARS-CoV-2 in predicting the

rate of viral decline to inform the model selection for pharmacody-

namic model development of Phase II trial of antiviral treatment

options.

2 | METHODS

2.1 | Data

Two published datasets on patients with COVID-19 were obtained

from a recent systematic review (Gastine et al., herein referred to as

dataset A)6 and a prospective cohort study (Néant et al., herein

referred to as dataset B).7 Details of the patients' characteristics have

been published previously.6,7 Briefly, for dataset A, a mild disease state

was presented by the majority of patients with one reported death.

Viral load samples were obtained from either upper or lower respira-

tory tract, blood, stool, urine, ocular, and breast milk. Patients were

either untreated or received treatment including antiviral, antibiotic,

hydroxychloroquine, and interferon. For dataset B, patients were hos-

pitalised in either conventional or intensive care units and a total of

78 deaths were reported during follow-up. Nasopharyngeal viral load

samples were utilised and patients were on treatment including anti-

viral, antibiotic, antifungal or corticosteroid. The extracted viral load

data were limited to 14 days post-symptom onset to replicate the time

window of a 7-day treatment course started a maximum of 7 days

after symptom onset. Additionally, for dataset A, viral load data were

limited to upper respiratory sampling sites and untreated patients.

What is already known about this subject

• The target cell limited (TCL) model has been widely used

to support antiviral development for respiratory infections.

• For SARS-CoV-2, extensions and simplifications of the T

model have been reported in recent studies but model

selection or justification of the chosen pharmacodynamic

model is often lacking.

What this study adds

• This study compared the simplified and extended forms

of the TCL model and found no advantage of the more

complex (TCL, TCLE) models over simplified forms

(SI, rTCL), which could inform the selection of a suitable

modelling approach for SARS-CoV-2 viral dynamics.
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2.2 | Viral dynamic models for SARS-CoV-2

Schematic diagrams of the slope-intercept exponential decay (SI),

reduced target cell limited (rTCL), target cell limited (TCL), and TCL

with eclipse phase (TCLE) models are shown in Figure 1. Details of the

mathematical expressions underlying all four models which are char-

acterised by two (SI), five (rTCL), seven (TCL) and nine (TCLE) parame-

ters are expressed in Equations (1), (2), (3) and (4), respectively.4,6–10

T, I, I1, I2, V and f are uninfected target cells, infected target cells,

latently infected cells, productively infected cells, viral particles, and

fraction of target cells remaining, respectively. The parameters β, δ, ρ,

c, γ and k represent the rate constant for virus infection, death rate of

infected cells, viral production rate, clearance rate of viral particles,

maximum viral replication rate, and conversion rate from I1 to I2,

respectively. For the SI and rTCL models, the assumption of

quasi-steady state between I and V due to the typically faster c than δ

translates δ as the overall viral elimination rate as previously

described.6,8

dV tð Þ
dt

¼�δV tð Þ: ð1Þ

df tð Þ
dt

¼�βf tð ÞV tð Þ:
dV tð Þ
dt

¼ γf tð ÞV tð Þ�δV tð Þ: where γ¼ ρβT 0ð Þ=c:
ð2Þ

dT tð Þ
dt

¼�βT tð ÞV tð Þ:
dI tð Þ
dt

¼�βT tð ÞV tð Þ�δI tð Þ:
dV tð Þ
dt

¼ ρI tð Þ�cV tð Þ:

ð3Þ

dT tð Þ
dt

¼�βT tð ÞV tð Þ:
dI1 tð Þ
dt

¼�βT tð ÞV tð Þ�kI1 tð Þ:
dI2 tð Þ
dt

¼ kI1 tð Þ�δI2 tð Þ:
dV tð Þ
dt

¼ ρI2 tð Þ�cV tð Þ�βT tð ÞV tð Þ:

ð4Þ

Initial estimates for model parameters were derived from pub-

lished studies from which model structures were utilised for evalua-

tion.4,6–10 Time since symptom onset as reported by the authors of

the included datasets was utilised for model fitting. For TCL and TCLE

models, since time of infection is unidentifiable, the incubation period

(i.e., time from infection to onset of symptoms) employed was based

on sensitivity analysis of incubation periods ranging from 0.5 to

14 days.

The basic reproduction number (R0) was calculated based on

the estimated model parameters and expressed in Equations (5) (SI

and rTCL models),8 (6) (TCL model)5 and (7) (TCLE model).10 The

F IGURE 1 (A) Slope-intercept exponential decay model: Viral particles (V) are eliminated by an overall viral elimination rate of δ. (B) Reduced
target cell limited model: Fraction of target cells remaining (f) are infected by viral particles at a rate of β to release viruses at a maximum rate
constant of γ and cleared at an overall viral elimination rate of δ. (C) Target cell limited model: Uninfected target cells (T) are infected by viral
particles at an infection rate of β and become productively infected cells (I) and release viruses at a rate of ρ with a viral clearance rate of c.
Productively infected cells die at a rate of δ. (D) Target cell limited model with eclipse phase: Uninfected target cells (T) are infected by viral
particles at an infection rate of β and become latently infected cells during an incubation period (I1) and convert to productively infected cells (I2)
at a rate of k. I2 subsequently release viruses at a rate of ρ with a viral clearance rate of c. Productively infected cells die at a rate of δ. #For
models (A) and (B), the assumption of quasi-steady state between I and V due to the typically faster c than δ translates δ as the overall viral
elimination rate as previously described.6,8
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duration of virus production (L) was also derived for all models using

Equation (8).10

R0 ¼ γ

δ
: ð5Þ

R0 ¼ ρβT0

cδ
: ð6Þ

R0 ¼ ρβT0

δ cþβT0ð Þ : ð7Þ

L¼1
δ
: ð8Þ

2.3 | Model-fitting assessment

Each non-linear mixed-effects model was fitted to viral load data

using the stochastic approximation expectation maximisation in R

package nlmixr (version 2.0.6). For each subject i, the parameter value

is θi (= θ � eΠi), where θ and eΠi are fixed and random effects respec-

tively. The inclusion of fixed and random effects accounts for interin-

dividual variability which follows a log-normal distribution. Random

effect terms were specified for each estimated parameter using the

full covariance matrix structure where possible. Otherwise, when con-

vergence was not achieved, the variance was specified individually for

the parameters without estimating correlations. Viral loads were log

transformed with residual error assumed to follow a normal distribu-

tion. Viral loads below the limit of detection (LOD) were censored

between a predefined “LIMIT” (i.e., log [0.001] copies/mL) and the

LOD as per the censoring method described for nlmixr.11 Model per-

formance was assessed via Bayesian information criterion (BIC), visual

predictive checks (VPCs), goodness-of-fit plots, and parameter preci-

sion. A lower comparative BIC value indicated a better model fit. For

the generation of VPCs, we chose the most frequently reported LOD

value for each dataset as it is not possible to make VPCs with multiple

LOD values. However, the LOD values as reported in the included

studies were used in the models.

3 | RESULTS

In all, 252 patients with 747 viral load samples from dataset A and

321 patients with 563 viral load samples from dataset B were

extracted. The TCL model achieved the lowest BIC value (4155 vs

4185 [SI model], 4254 [rTCL model] and 4383 [TCLE model]) for data-

set A. For dataset B, the SI modelyielded the lowest BIC value (3432

vs 3546 [rTCL model], 3551 [TCL model] and 3665 [TCLE model])

(Table S1 in the Supporting Information). Based on sensitivity analysis,

an incubation period of 0.5 days yielded the lowest BIC for TCL and

TCLE models with dataset A. Likewise, with dataset B, the lowest BIC

was achieved with incubation periods of 1 day and 1.5 days for TCL

and TCLE models, respectively (Figures S1 and S2 in the Supporting

Information).

Both datasets recorded parameter estimates with adequate preci-

sion for all models except TCL, which yielded the highest imprecision

for c (%RSE; 130%) with dataset B (Tables S2 and S3 in the Supporting

Information). All models predicted similar δ values except the TCL

model for dataset A with a higher rate. For dataset A, δ was in the

range 0.56–1.84 day�1 (median: 0.63 day�1) and that of dataset B

was 0.74–0.85 (median: 0.81 day�1). R0 for the TCLE model indicated

very high within-host reproduction numbers of 1995 (dataset A) and

2908 (dataset B). Similarly, the R0 for TCL model was 16 787 for data-

set A and 64 894 for dataset B, indicating parameter estimates that

were not physiologically plausible. The high R0 for the TCLE model

were considerably lower (22.21 for dataset A and 24.09 for dataset B)

when ρ was fixed to 10 copies/mL.day�1. In contrast, the R0 for TCL

model remained high following evaluation with fixed parameters. For

the rTCL model, low R0 values of 1.79 (dataset A) and 1.23 (dataset B)

were estimated. L ranged from 0.59 to 1.85 days across all models for

both datasets (Tables S2 and S3 in the Supporting Information).

All four models yielded goodness-of-fit plots that were in satisfac-

tory agreement with trends observed with both datasets (Figure S3 in

the Supporting Information). VPC plots were adequate for all models

for dataset B. However, VPC plots for the TCL and TCLE models dis-

played poor predictive performance on the 5th percentile below the

limit of detection (LOD) at early time points for dataset A (Figure S4

in the Supporting Information).

4 | DISCUSSION

In the present study, the model performance of the TCL model includ-

ing both extended and simplified forms was evaluated with two data-

sets from patients infected with COVID-19. Overall, based on the

datasets employed here, our results showed no advantage of the

more complex (TCL, TCLE) models over the simplified forms (SI, rTCL)

for the characterisation of SARS-CoV-2 viral dynamics in estimating

the death rate of infected cells. This observation may be attributed to

the parsimony and identifiability of the different model structures.

The complexity of viral dynamics may suggest more complex

models to include all biologically plausible effects. However, the pro-

posal of such models may result in overparameterised models with

identifiability problems. For example, a ten-equation model with

27 parameters has previously been reported for influenza A infec-

tion.12 Indeed, to ensure identifiability of all the parameters would

require almost all variables (i.e., viral load per epithelial cell, proportion

of healthy cells, proportion of infected cells, activated antigen pre-

senting cells per homeostatic level, interferons per homeostatic level

of macrophages, proportion of resistant cells, effector cells per

homeostatic level, plasma cells per homeostatic level, antibodies per

homeostatic level and antigenic distance) to be quantified which may

not be practically and ethically feasible.

Likewise, for SARS-CoV-2, having more complex models may be

useful for hypothesis testing but particularly challenging for fitting
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data where strong prior information on required parameters may be

lacking. Thus, in the proposed rTCL model to characterise SARS-CoV-

2 viral dynamics, Kim et al.,8 indicate that such reduced structure may

not necessitate the inclusion of further compartments to describe

immune effects as the structure implicitly captures innate responses

that are expressed via model parameters such as infection rate. Also,

Hernandez-Vargas and Velasco-Hernandez13 have reported a mini-

malist two-compartment model for SARS-CoV-2 and its immune

response, which had lower Akaike information criterion (AIC) values

compared to TCL model.

Regarding model structure identifiability, time of infection is uni-

dentifiable for TCL and TCLE models, and therefore incubation period

is fixed based on sensitivity analysis or estimates from epidemiological

studies. However, fixing the time of infection may not always resolve

identifiability problems. In this study, although the incubation period

was fixed to 0.5 days (TCLE model, dataset A) and 1 day (TCL model,

dataset B) based on low BIC values, this timeframe was still unidentifi-

able as other days had similar BIC values. Fixing the incubation period

using epidemiological estimates may also be biased by the uncertainty

of exposure time based on recall.14 Thus, following structural iden-

tifiability analysis, Gastine et al.6 opted for rTCL model over TCL

model for SARS-CoV-2, stating that the TCL model is structurally uni-

dentifiable except T, β or ρ initial conditions are known.

Furthermore, the different incubation periods observed in the

two datasets may suggest that viral dynamics and incubation period

may vary with patient characteristics. A global meta-analysis involving

53 studies by Cheng et al.15 indicated that incubation period varied

across different patient age groups with a shorter incubation period

among middle-aged individuals (41–60 years). Also, the UK human

challenge study in younger adults (18–29 years) reported a shorter

incubation period of <2 days.16 Despite the limited generalisability of

the human challenge study, their finding on the incubation period is

consistent with the shorter incubation period (0.5–1.5 days) observed

with the TCL and TCLE models for datasets A and B. Hence, the

impact of patient characteristics on SARS-CoV-2 incubation period

requires further exploration.

The estimates for δ across the different models for both datasets

were also largely consistent with those previously reported for SARS-

CoV-2 (range: 0.27–2.29 day�1).7,8,14 Of note, an alternative approach

known as model averaging has been described for viral dynamic

models where different models yielding similarly good fits are simulta-

neously utilised to account for model uncertainty.17 Although this

approach may be reasonable, such complexity may not be required as

the primary focus of viral dynamic models is the estimation of δ, which

can equally be well characterised by simpler models, as seen here.

There are some limitations worth noting in this study. Firstly, only

two datasets were evaluated and therefore our results may not be

universally representative. Secondly, R0 was poorly estimated with

the datasets employed in this study and as such the results should be

interpreted with caution. Thirdly, participants in the two datasets

were recruited prior to the emergence of SARS-CoV-2 variants of

concern and, therefore, the results here ought to be interpreted

within this context. Further studies should explore the performance

of these models with SARS-CoV-2 emerging variants. In addition, our

analysis was restricted to models proposed to describe antiviral

effects in clinical trials and we did not test viral dynamic models from

epidemiological studies,18,19 which would be interesting to address in

future work. Future studies may also consider a joint pharmacometric

and epidemiological modelling approach to broaden the understanding

of SARS-CoV-2 viral dynamics. Finally, we did not compare the per-

formance of the different models in addressing other potential goals

in viral dynamics modelling such as detecting antiviral effects and the

impact of timing of therapeutic interventions on treatment outcomes.

Such evaluations may therefore necessitate the use of more complex

models and a minimalist model may not be the best choice. In such

context, complex models may be considered, particularly where their

structural identifiability could be improved without compromising the

intended modelling goal.

In conclusion, as shown in the present study, we found no advan-

tage of the complex models over simplified forms. This emphasises

the need to explore both simplified and extended models to ascertain

the most appropriate pharmacodynamic model development for

SARS-CoV-2 viral dynamics.
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