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Abstract
Purpose For highly operator-dependent ultrasound scanning, skill assessment approaches evaluate operator competence
given available data, such as acquired images and tracked probe movement. Operator skill level can be quantified by the
completeness, speed, and precision of performing a clinical task, such as biometry. Such clinical tasks are increasingly
becoming assisted or even replaced by automated machine learning models. In addition to measurement, operators need to be
competent at the upstream task of acquiring images of sufficient quality. To provide computer assistance for this task requires
a new definition of skill.
Methods This paper focuses on the task of selecting ultrasound frames for biometry, for which operator skill is assessed
by quantifying how well the tasks are performed with neural network-based frame classifiers. We first develop a frame
classification model for each biometry task, using a novel label-efficient training strategy. Once these task models are trained,
we propose a second taskmodel-specific network to predict two skill assessment scores, based on the probability of identifying
positive frames and accuracy of model classification.
Results We present comprehensive results to demonstrate the efficacy of both the frame-classification and skill-assessment
networks, using clinically acquired data from two biometry tasks for a total of 139 subjects, and compare the proposed skill
assessment with metrics of operator experience.
Conclusion Task model-specific skill assessment is feasible and can be predicted by the proposed neural networks, which
provide objective assessment that is a stronger indicator of task model performance, compared to existing skill assessment
methods.

Keywords Skill assessment · Ultrasound · Fetal ultrasound · Deep learning

Introduction

Skill assessment of imaging specialists has long been estab-
lished as an essential tool in training, continuing education,
and clinical service auditing and improvement [1]. Ultra-
sound imaging is a particularly hard skill to learn and is
known to be operator dependent. Ultrasound skill needs to
capture both the ability to read and to take accurate diagnos-
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tic measurements on images (as in radiology) but also the
ability to capture diagnostic images (unlike in radiology).
Traditional quantitative metrics such as time-to-completion
and clinical outcome have been used to provide quantita-
tive evidence to inform, design, and deliver skill assessment
methods [2,3] but are considered simplistic.

Building on recent advances in machine learning in imag-
ing, especially in deep learning, recent efforts have proposed
neural network-based automatic skill assessment approaches
[4–8]. Most of these learning-based methods automate skill
assessment by predicting the skill level from available intra-
procedure data, including imaging [4], motion [5,6], or a
combination of both [7]. The training labels that represent
skill level include operator experience, such as length of
practice [6] and other competence indicators such as dif-
ferent clinical roles [8]. Machine learning algorithms have
also been proposed to measure task-specific image quality

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-022-02642-y&domain=pdf
http://orcid.org/0000-0002-9589-7177


1438 International Journal of Computer Assisted Radiology and Surgery (2022) 17:1437–1444

[9] that may be partially indicative of skill assessment and
directly relevant to the clinical tasks to hand.

Standard plane selection [10], gestational age regression
[11], and direct biometry estimation [12] are common clini-
cal fetal ultrasound imaging tasks that have been considered
for automation bymachine learning approaches. Indeed, suf-
ficient progress has been made for some solutions to appear
in commercial systems. In this paper, we consider the impact
that the introduction of such task models has on the skills
required to acquire, interpret, and report ultrasound images
and the assessment of the “new” skills. For example, a frame
classifiermay indicate that sufficiently accurate biometry can
be reliably measured on an ultrasound frame deemed “posi-
tive”, while a “negative” frame potentially suggests the need
for image re-acquisition. Such a classification model may
relax the definition of a standard plane and subsequently alter
the skill required to acquire frames amenable to the classifier.

In this paper, we focus on two established clinical tasks
in fetal ultrasound examination, measuring the head circum-
ference and the abdomen circumference on ultrasound video
frames. Firstly, for each task, a frame classification model
is trained using a novel label-efficient approach that utilises
mixed manual and image-similarity-based surrogate labels
from a high volume of ultrasound video frames. Secondly,
we propose to measure how well these task models per-
form for assessing operator skill level, then develop new
neural networks to predict these skill levels based on real-
time ultrasound images and synchronised probe motion data.
These skill assessment predictors are trained to quantify two
proposed criteria that are directly informed by frame clas-
sification performance. In addition to these methodological
developments, our contributions in this paper include a set
of systematic results showing the efficacy of both task mod-
els and skill assessment predictors, together with detailed
analysis with ablation studies evaluating the importance of
a selection of network hyperparameters, training strategy
options, varying input data combinations, and different skill
level definitions.

Method

Anoverview of the proposed taskmodel-specific skill assess-
ment framework is shown in Fig. 1. Let J i be the available
number of ultrasound video frames from i th subject. A total
of

∑I
i J i video frames {{v j

i | j = 1, . . . , J i }|i = 1, . . . , I },
sampled from a set of I video clips Vi = {v j

i | j = 1, . . . , J i },
provide the training input for the task model which performs
a clinical task of interest, developed in section “Frame classi-
fication networks”. The task labels {{g j

i | j = 1, . . . , J i }|i =
1, . . . , I } are application dependent, such as the suitability of
given frames for fetal biometry (see “Label-efficient mixed

ground-truth generation” section). The ultrasoundvideo clips
{Vi } are then combined with synchronised probe motion
data {Mi}, for training a second neural network for skill
assessment, supervised by a measure of task performance
{ fskill(Ĝi )|i = 1, . . . , I }, based on the task model predic-
tions Ĝi = {Ĝ j

i | j = 1, . . . , J i } at inference. This skill
assessment predictor is described in section “Skill assess-
ment predictors”, with two proposed definitions of task
performance fskill(·).

Taskmodels

Frame classification networks

Without loss of generality, we consider an end clinical task
being a binary classification. Specifically in this work, the
tasks are to classify whether a sufficiently accurate measure-
ment can be obtained on individual frames in the ultrasound
video. For each clinical task described in “Clinical tasks and
data acquisition” section, a deep neural network ftask(V; θ) :
V → G, with learnable parameters θ , is trained to predict
the probability ĝ j

i = ftask(V; θ̂ ) of a positive class for each

input frame V = v
j
i . Optimising parameters θ̂ requires a

ground-truth label G = g j
i for every input frame v

j
i , during

the supervised network training. The details of network train-
ing are summarised in “Model implementation and training”
section.

Label-efficient mixed ground-truth generation

In the routine second trimester fetal ultrasound examination,
the fetal head circumference (HC) and abdominal circum-
ference (AC) are measured on biometry planes selected
manually by operators following the standard plane defini-
tions detailed in widely-adopted guidelines [13]. In order to
train the frame classification networks, labels are required for
all image frames in the entire ultrasound video. We therefore
propose a practical approach to utilise a limited number of
manually annotated labels fromeach subject, thenuse them to
regress the binary labels on the unlabelled frames using a set
of image similarity measures between a given frame and the
one selected as the diagnostic plane v

d.p.
i for the i th subject.

Five image similaritymetrics were adopted, cosine similarity
in feature space [14], mean squared error, cross correlation
[15],mutual information, and structural similarity index [16].
To calculate the cosine similarity, an in-house ultrasound-
based pre-trained model was used to extract image features.

For any given frame v
j
i , the percentage relative error is

defined directly between the biometry fbiometry(v
j
i ) obtained

on the frame and that from the diagnostic plane of the same

i th subject: δ j
i = fbiometry(v

j
i )

fbiometry(v
d.p.
i )

×100%. Then, the fitted linear
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Fig. 1 Overview of the task model-specific skill assessment framework

model δ̂ j
i = flinear(V = v

j
i ; v

d.p.
i ) predicts an estimation δ̂

j
i

of the percentage relative error. Thus, the surrogate binary
label g j

i for an unlabelled frame v
j
i can be generated using

a minimum threshold δmin on the estimated δ̂
j
i , such that:

g j
i =

{
0, δ̂

j
i > δmin

1, otherwise
. The threshold δmin has a direct clinical

interpretation, the precision of target biometry, which is of
significance in controlling the quality of the mixed labels.

Skill assessment predictors

The skill assessment predictor fassess(V,M;ω) : V,M →
S is a multi-modal neural network with trainable param-
eters ω, which takes τ consecutive frames V = {v j

i | j =
n, . . . , n+ τ −1} as well as the corresponding probe motion
segments M = {m j

i | j = n, . . . , n + τ − 1} and predicts

a task performance score S = Ŝni during this time interval,
where n = 1, . . . , J i −τ +1 and each video sequence forms
J i − τ + 1 training data. The network is optimised with
the mean-squared-error (MSE) loss L = Ei,n[(Sni − Ŝni )2],
where Ei,n[·] is the expectation over all training data and
Sni = fskill({ĝ j

i | j = n, . . . , n + τ − 1}) is the supervising
task performance score obtained from the frame classifica-
tion networks, and is considered as an estimate of fskill(Ĝi ),
for the i th subject at the nth available time point. In the fol-
lowing subsections, two types of task performance score are
introduced for operator skill assessment.

Expected positive task prediction

For both tasks considered in this paper, positive frames enable
successful biometric measurement. Therefore, we first inves-
tigate a task performance score defined as the expected value
of probability E[ĝ j

i ], for the positive class predicted by the

task models. Namely, for the i th subject at the nth time point:

f posskill({ĝ j
i }; n) = 1

τ

n+τ−1∑

j=n

ĝ j
i , (1)

Expected task prediction accuracy

A second skill assessment criterion determines how accurate
the task model predicts both a positive and a negative class,
rather than the probability of obtaining a positive class. Cor-
rect prediction of a negative class is therefore considered as
important as the correct prediction of a positive frame. This
definition takes into account both risks with positive and neg-
ative frames being incorrectly classified, corresponding to
Types 1 and 2 errors, rather than favouring a high positive
rate only (as Eq. 1 could). Let TPni (c) and TN

n
i (c) represent

the number of true positive and true negative frames respec-
tively. The second task performance score for assessing skill
level is then defined in terms of the binary classification accu-
racy, at the nth time point:

f accskill({ĝ j
i }; n, c) = TPni (c) + TNn

i (c)

τ
, (2)

where c is a pre-defined cut-off on the task model-predicted
class probability.

Experiments

Clinical tasks and data acquisition

Ultrasound video and probe motion data used in this study
were acquired as part of the PULSE study, approved by
the UKResearch Ethics Committee (reference 18/WS/0051)
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[17]. Scans were performed from June 2018 to February
2020 at the Oxford University Hospitals NHS Foundation
Trust, by sonographers and fetal medicine doctors (col-
lectively referred to as operators in this paper) using a
Voluson E8 scanner (GE Healthcare, USA), with curvilin-
ear (C2-9-D, C1-5-D) and 3D/4D (RAB6-D) probes.Written
informed consent was given by all participating operators
and pregnant women. To acquire probe motion data, an iner-
tial measurement unit (Next Generation IMU (NGIMU),
x-io Technologies Limited, Bristol, UK) was fixed at the
same probe position during all scans. The raw motion sig-
nal was recorded at 400 Hz and then down-sampled with the
timestamp-synchronised ultrasound video frames, losslessly
frame-grabbed and recorded at 30 Hz.

A subset of the second trimester scans from the PULSE
dataset was used, with manual labels of head circumference
and abdominal circumference obtained using the available
user interface on the scanner. Up to 12 s of video before
the operator stops scanning for measurement was extracted,
which resulted in an average of 10.61 s of consecutive frames.
A total of 294 clips, for scanning fetal head and abdomen
which have consistent zoom factors and a length of at least
6 s, formed the dataset used in this study, for the purpose of
controlled experiments. In summary, up to 84 clips with 27k
video frames from each of the 11 individual sonographers
were included in this study. Further details of the data con-
tributions with respect to different operators are included in
the supplementary materials.

Head circumference (HC) measurement is a routine clin-
ical task that indicates a number of clinical anomaly con-
ditions and is also used for gestational age estimation. HC
measurement is typically taken on a manually selected diag-
nostic plane. In this experiment, we investigate a frame
classification model to assist this task by differentiating indi-
vidual ultrasound image frames, from which the measured
HC is sufficiently accurate, using a total of 146 HC video
clips. To generate the task model labels for this task, 345
frames from randomly sampled 22 clipswere annotatedman-
ually. The circumferences were calculated on fitted ellipses,
in an “outer-to-outer” manner [18].

Abdominal circumference (AC) measurement is another
important biometry that is correlated to fetal growth parame-
ters, such as weight and gestational age. Similar to the frame
classifier defined for assisting the HC measurement task,
experiments were designed to examine a frame classifica-
tion model for accurate AC reporting. From 19 out of 149
available AC clips, 298 frames were annotated manually for
generating the mixed labels.

Model implementation and training

The linear regression models for training label generation
were fitted on 266 and 228 images from 17 and 14 clips and

were tested on 79 and 70 holdout test images, for the HC and
AC tasks, respectively.

All ultrasound images used in this work were resized to
224 × 288 pixels and normalised to zero-mean and unit-
variance. A VGG-based network [19] was adopted with the
same implementation details as the task models for the pur-
pose of a reference quality benchmark in this work. For skill
assessment prediction, a VGG16 network [20] was adopted
for extracting features from a stack of consecutive ultrasound
images, with a 1D ResNet18 network [21] for extracting
features from 1D probe motion signals, here, the three-axis
angular velocities formed the three-channel 1D input. The
input window size is referring to the number of input images
and the length of the synchronised probemotion signals. Fea-
tures from the two branches were concatenated via adaptive
pooling, resulting in a feature vector with a length of 32,
and this feature vector was fed into linear layers which pre-
dict the task performance score, as illustrated in Fig. 1. All
networks were implemented in PyTorch and trained with a
mini-batch size of 64 on the NVIDIA Quadro GV100 GPUs
using an Adam optimiser with a learning rate of 10−4. The
taskmodels and skill assessment predictorswere trainedwith
cross-entropy andMSE losses, for 50 and700 epochs, respec-
tively.

Model evaluation and ablation studies

Taskmodelswere evaluated on the acquired ultrasound video
dataset as detailed in “Clinical tasks and data acquisition”
section. The dataset was randomly partitioned into a devel-
opment set and a holdout test set, without any operators or
subjects in both sets. This partition was repeated to form the
A and B “splits” for the HC task and the C and D “splits” for
the AC task. Further details of dataset split are provided in
the supplementary material. A further 85:15 random split of
the development set resulted in a training set and a validation
set during developing the models, while models were trained
with different hyperparameters and those with the highest
class-balanced accuracy on the validation set were selected.
The results reported in this paper are based on these selected
models tested on the holdout test set. All models were trained
and tested using the generated surrogate labels. The reason to
only test the surrogate labels is that, in real-world ultrasound
scanning, we do not expect the sonographers to makemanual
annotations on frames that are not selected as the diagnos-
tic plane. Hyperparameters investigated in this work include
learning rate, mini-batch size and, for training the task mod-
els, multiple consecutive frames for contextualising the input
(a five-gram context) were also tested. A ResNet18 network
[21] for extracting ultrasound image features was also tested
and the results were not found significantly different to those
using VGG16, therefore they are included in supplementary
material.

123



International Journal of Computer Assisted Radiology and Surgery (2022) 17:1437–1444 1441

The accuracy, sensitivity, and specificity were computed
for ablation studies to evaluate the task models, with vary-
ing precision requirements, δmin ∈ {1%, 2%, 3%, 4%}, and
different cut-off values on predicted class probabilities, such
that the resulting specificity values are controlled at 0.8 and
0.9 as examples of clinically acceptable false positive rates.

Skill assessment predictors were tuned on the validation
set and those that achieved the lowest root mean square error
(RMSE) were used to report results on the test set. Two met-
rics were computed to compare ablation studies on varying
window size τ , for each of the development-test splitting
strategies and for each of the HC and AC tasks, (1) the
RMSE between the predicted and the task model-generated
performance scores and (2) the Pearson correlation coeffi-
cient (PCC) between them. The impact from different types
of input data types was also compared, by using either the
video data or motion data alone for training and testing the
skill assessment predictors.

Results

Quality of themixed label generation

Themixed label generator flinear described inSection “Label-
efficient mixed ground-truth generation” was tested on an
independently sampled subset with manual labels as ground
truth. The predicted relative percentage error δ̂ achievedMSE
values of 0.00076± 0.00046 and 0.00084± 0.00048, on the
HC and AC datasets, respectively. Of note, this error is with
a normalised range of [0, 1], therefore the absolute MSE
is reported. Further visualisation results of the mixed label
generator performance are provided in the supplementary
materials.

The head circumference task

Task model performance

For both datasetsA andB, the taskmodel accuracy for theHC
task generally increases as the allowed percentage error δmin

increases, with consistent sensitivity and specificity values
observed at a default cut-off value of 0.5. The performance
of the task model with HC dataset is summarised in Table 1.

Skill assessment predictor performance

As summarised in Table 2, for both criteria of f accskill and f posskill,
the skill assessment predictors using both motion and video
as the input achieved the highest accuracy, which indicates
that using complementary multi-modality data significantly
improved performance on f accskill (both p values< 0.01, paired

t test at α = 0.05), while using video input alone can predict
f posskill well.
Table 3 summarises the results with controlled specificity

values by different cut-off values. The performance of the
skill assessment predictors, therefore, demonstrates the accu-
racy with a controlled false positive rate which is critical in
many use cases for the skill assessment predictors. Table 4
summarises the ablation results using different window sizes
for the two criteria. For f accskill, the RMSEs decrease as the
window size increases, with a decreasing PCC. Notably for
predicting f posskill, the RMSEs with window size 4 are signifi-
cantly lower than others (p values< 0.01), on both data splits
A and B.

The abdominal circumference task

Task model performance

The performance of the AC task model on two dataset splits
is presented in Table 1. Different from the HC task reported
in Section “Task model performance”, we observed that the
accuracy of the AC task model decreases as the allowed per-
centage error δmin increases. This might be because there are
more anatomical landmarks required to determine the AC
plane than that of HC. A higher δmin may result in higher
increased variance in the positive class of the AC task and
perhaps more challenging cases too, compared with those in
the HC task.

Skill assessment predictor performance

The performance of two skill assessment predictors for the
AC task is presented in Table 5. The RMSEs generally
decrease as δmin increases for f accskill. A slight increase in
RMSE was also observable for f accskill, perhaps a consequence
of the above-discussed biased prediction from the task mod-
els.

Case studies: comparison with operator experience

With the above-summarised quantitative results, three real-
world cases are included in Fig. 2 to demonstrate the clinical
relevance and potential use scenarios for these developed
skill assessment predictors. More cases are included in the
supplementary materials for further reference. Case 1 was
performed by an operator with 7 years of experience. Scores
reflect a visible discrepancy in the middle part of the clip,
where f posskill indicates a low possibility of positive class and
f accskill still retain a high accuracy of the task; Case 2 was
scanned by a newly qualified operator, yet measured stable
and relatively high scores for both criteria during the tested
period; Case 3 was assessing an operator with 6 years of
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Table 1 Task model performance for different data splits as δmin varies

Task Split δmin Accuracy Sensitivity Specificity Task Split δmin Accuracy Sensitivity Specificity

HC A 0.01 0.58 0.79 0.52 AC C 0.01 0.80 0.38 0.84

0.02 0.74 0.80 0.64 0.02 0.71 0.62 0.75

0.03 0.73 0.71 0.82 0.03 0.71 0.58 0.82

0.04 0.89 0.90 0.66 0.04 0.64 0.59 0.76

B 0.01 0.68 0.34 0.82 D 0.01 0.60 0.57 0.60

0.02 0.67 0.60 0.80 0.02 0.73 0.69 0.75

0.03 0.77 0.79 0.66 0.03 0.77 0.79 0.74

0.04 0.85 0.87 0.56 0.04 0.65 0.61 0.77

Table 2 Ablation study results for different input data modalities at δmin = 0.04

Criterion Data modality RMSE PCC Criterion Data modality RMSE PCC

f accskill Both 0.164 ± 0.189 − 0.176 ± 0.201 f posskill Both 0.171 ± 0.116 0.212 ± 0.257

Motion 0.204 ± 0.137 0.059 ± 0.161 Motion 0.209 ± 0.095 0.509 ± 0.191

Video 0.234 ± 0.075 − 0.485 ± 0.218 Video 0.156 ± 0.085 0.798 ± 0.256

Table 3 Ablation study results of f accskill, with different cut-off values, at δmin = 0.04

Split Cut off Specificity RMSE PCC Split Cut off Specificity RMSE PCC

A 0.710 0.8 0.272 ± 0.185 − 0.543 ± 0.323 B 0.702 0.8 0.318 ± 0.257 − 0.017 ± 0.296

0.799 0.9 0.457 ± 0.197 − 0.076 ± 0.165 0.713 0.9 0.474 ± 0.106 0.023 ± 0.310

Table 4 Ablation study results of f accskill and f posskill, with different τ values, at δmin = 0.02

Criterion τ RMSE PCC Criterion τ RMSE PCC

f accskill 15 0.359 ± 0.146 0.373 ± 0.333 f posskill 1 0.295 ± 0.111 0.457 ± 0.204

30 0.328 ± 0.159 0.459 ± 0.397 4 0.229 ± 0.090 0.510 ± 0.185

60 0.262 ± 0.133 0.278 ± 0.327 8 0.240 ± 0.096 0.294 ± 0.223

120 0.230 ± 0.156 0.097 ± 0.332 16 0.266 ± 0.135 0.415 ± 0.193

Table 5 Performance of skill assessment predictor for the AC task

Criterion Split δmin RMSE PCC Criterion Split δmin RMSE PCC

f accskill C 0.01 0.299 ± 0.075 −0.602 ± 0.326 f posskill C 0.01 0.316 ± 0.046 − 0.214 ± 0.179

0.02 0.294 ± 0.09 − 0.383 ± 0.331 0.02 0.456 ± 0.123 0.374 ± 0.170

0.03 0.380 ± 0.128 0.147 ± 0.490 0.03 0.486 ± 0.166 0.253 ± 0.257

0.04 0.389 ± 0.180 0.124 ± 0.382 0.04 0.260 ± 0.099 0.252 ± 0.168

D 0.01 0.371 ± 0.074 0.401 ± 0.166 D 0.01 0.258 ± 0.066 0.092 ± 0.151

0.02 0.374 ± 0.076 − 0.421 ± 0.299 0.02 0.458 ± 0.146 0.310 ± 0.182

0.03 0.363 ± 0.127 0.277 ± 0.444 0.03 0.359 ± 0.133 0.163 ± 0.294

0.04 0.397 ± 0.180 0.145 ± 0.448 0.04 0.312 ± 0.096 0.124 ± 0.267
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Fig. 2 Three example scan clips plotted along the time, with the time-
synchronised skill assessment scores, f posskill in orange and f accskill in blue,
with both task model-generated scores (dotted lines) and the predicted

scores (solid lines). The red boxed frames were the manually annotated
ground truth for the diagnostic planes

experience, as an example of satisfactory prediction from
the skill assessment predictors for both criteria.

Discussion and conclusion

It is important to note that, although the mixed label gener-
ation was found highly effective with available intra-subject
manual labels (section “Quality of the mixed label gener-
ation”), it may not be able to replace the frame classifiers
for generalising to unseen new subjects. These classifiers are
example task models in the proposed skill assessment frame-
work, potentially applicable to a wide range of clinical tasks.

Thiswork compared the proposed skill assessment criteria
with the operator experience. Section “Results” presented our
first proof-of-concept results using clinical data, demonstrat-
ing that it is feasible to predict the task model performance

and for assessing operator skill. The performance of
the skill assessment predictors may be further improved
with data acquired during task model-assisted procedures,
albeit with potential ethical challenges. Future work will
explore the benefits of training the skill assessment predictors
simultaneously with the task models, similar to previously
proposed image quality assessment [9,22]. Investigating the
robustness of the proposed method with respect to data
acquired from different image settings would also be inter-
esting.

In summary, this work first identified a need for new skill
criteria when clinical tasks are assisted by machine learning
models and, in turn, proposed to automatically predict the
skill levels based on task model performance. The experi-
mental results show that the two new skill assessment scores
not only are feasible to predict, but also provide informa-
tive criteria that are different from existing experience-based
metrics.
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