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a b s t r a c t 

We present a novel multi-task neural network called Temporal SonoEyeNet (TSEN) with a primary task to 

describe the visual navigation process of sonographers by learning to generate visual attention maps of 

ultrasound images around standard biometry planes of the fetal abdomen, head (trans-ventricular plane) 

and femur. TSEN has three components: a feature extractor, a temporal attention module (TAM), and an 

auxiliary video classification module (VCM). A soft dynamic time warping (sDTW) loss function is used 

to improve visual attention modelling. Variants of the model are trained on a dataset of 280 video clips, 

each containing one of the three biometry planes and lasting 3–7 seconds, with corresponding real-time 

recorded gaze tracking data of an experienced sonographer. We report the performances of the different 

variants of TSEN for visual attention prediction at standard biometry plane detection. The best model 

performance is achieved using bi-directional convolutional long-short term memory (biCLSTM) in both 

TAM and VCM, and it outperforms a previous spatial model on all static and dynamic saliency metrics. 

As an auxiliary task to validate the clinical relevance of the visual attention modelling, the predicted 

visual attention maps were used to guide standard biometry plane detection in consecutive US video 

frames. All spatio-temporal TSEN models achieve higher scores compared to a spatial-only baseline; the 

best performing TSEN model achieves F1 scores on these standard biometry planes of 83.7%, 89.9% and 

81.1%, respectively. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

At least 60% of neonatal deaths worldwide are associated with

ow birth weight and therefore identification of growth restricted

etuses is clinically important ( Lawn et al., 2005 ). Obstetric ultra-

ound (US) is the chosen modality for pregnancy imaging due to

ts non-invasiveness, absence of radiation, high accessibility, high

eliability and low cost ( Abramowicz, 2013 ). Obstetric sonogra-

hy largely relies on identification and acquisition of standard-

zed anatomical landmarks followed by performance of an accu-

ate measurement ( Salomon et al., 2006 ). There are three basic

tandard biometry measurement planes which are the head cir-

umference plane(HCP), the abdominal circumference plane (ACP),

nd the femur length plane (FLP) ( Papageorghiou et al., 2014 ).

hese standard planes are captured in the majority of second-

nd third-trimester ultrasound scans. However, the detection of
E-mail address: yifan.cai@eng.ox.ac.uk (Y. Cai). 

o  

n  
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hese standard planes requires a high level of operator skills, lead-

ng to common problems such as intra- and inter-observer vari-

bility ( Sarris et al., 2012 ). Inaccurate measurement can lead to

rroneous detection of growth restriction and thus to unneces-

ary intervention, maternal anxiety and iatrogenic perinatal mor-

idity; or may lead to inadvertently overlooking growth-restricted

etuses and classifying them as normal ( Mongelli et al., 1998 ).

s a result, automated methods, most recently based on random

orest ( Yaqub et al., 2015 ) and deep neural network-based mod-

ls ( Baumgartner et al., 2017 ), have been investigated for stan-

ard plane detection in fetal ultrasound motivated by the poten-

ial to increase work flow efficiency as well as to reduce variabil-

ty in fetal ultrasound image acquisition. In addition, the standard

iometry plane finding navigation process requires a sonographer

o choose a single frame for biometric measurement from a prox-

mity with similar video frame contents, demanding a high level

f hand-eye coordination. Plane-finding navigation process has

ot been studied in the medical image analysis literature to our
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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knowledge. This paper is the first to investigate the visual attention

of sonographers in standard biometry plane-finding navigation. 

In this paper, we propose an original gaze-based spatio-

temporal network called Temporal SonoEyeNet (TSEN) with the

primary task to model sonographer visual attention during stan-

dard biometry plane-finding navigation, and validate the predicted

visual attention maps on an auxiliary task of gaze-guided stan-

dard biometry plane detection. The models are built using a novel

dataset containing real-time screen recordings of US anomaly scans

coupled with simultaneous gaze-tracking. This paper (1) investi-

gates architectures to model temporal visual attention variations

of a sonographer in 2-D US videos using a Temporal Attention

Module (TAM), and the best-performing model is based on a bi-

directional convolutional long-short term memory ( Xingjian et al.,

2015 ) (biCLSTM) as a recurrent module; (2) further improves

spatio-temporal visual attention prediction by training TSEN with a

novel loss function for saliency prediction, the soft Dynamic Time

Warping (sDTW) ( Cuturi and Blondel, 2017 ) loss, for visual at-

tention alignment; and (3) uses the learnt visual attention maps

to guide standard plane detection on all three standard biometry

planes: ACP, HCP and FLP. 

2. Related works 

2.1. Visual attention modelling 

Machine Learning methods that predict human visual atten-

tion are referred to as saliency prediction models ( Treisman and

Gelade, 1980 ). Early saliency prediction models followed the fea-

ture integration theory (FIT) ( Treisman and Gelade, 1980 ), defin-

ing saliency by the fusion of several hand-crafted features, such

as edges, color, disparity and direction of movement ( Koch and

Ullman, 1987 ), extracted at multiple scales ( Itti et al., 1998 ). Re-

cent developments of deep learning in computer vision have led

to state-of-the-art performance saliency prediction models built on

neural networks. Huang et al. (2015) designed a saliency prediction

model using convolutional neural networks (CNNs) pre-trained on

ImageNet to extract spatial information from static images; the

model is fine-tuned using saliency metrics such as the Kullback-

Leibler divergence (KLD), Normalized Scanpath Saliency (NSS), and

Correlation Coefficient (CC) to predict human visual attention on

static images. Wang et al. (2018) proposes a CNN-LSTM (long-short

term memory) architecture to exploit both the spatial and tem-

poral information for video saliency prediction. With a supervised

attention mechanism, it explicitly captures static saliency informa-

tion of each frame, which is then fed into an LSTM to focus on

learning dynamic information to predict dynamic visual attention. 

Human visual attention has been used in a number of

ways for image analysis: one class of algorithms record hu-

man gaze information in order to perform inter-observer com-

parisons ( Nodine and Kundel, 1987; James et al., 2007; Ahmed,

2014 ); another class uses recorded human gaze information as

input, in addition to medical images, to assist medical im-

age analysis tasks ( Ramanathan et al., 2009; Xu et al., 2013;

Shanmuga Vadivel et al., 2015 ). In ultrasound image analysis,

Ahmed and Noble (2016) built a vocabulary of visual words

trained on SURF descriptors ( Bay et al., 2006 ) extracted around

eye fixations to classify head, abdomen and femur image frames.

Cai et al. (2018b) built a CNN model for US abdominal standard

plane classification assisted by predicted visual attention maps.

The visual attention maps were fine-tuned using an adversarial

regulariser. Droste et al. (2019a) modelled sonographer visual at-

tention on static ultrasound video frames through visual saliency

prediction as well as gaze-point regression. Those models only

learn static visual attention by treating each US video frame as an

independent image. However, sonographer visual attention changes
n subsequent frames, transitioning between key anatomical land-

arks. Our hypothesis is that dynamic visual attention models

 Xingjian et al., 2015 ) can learn the temporal transition of visual at-

ention between frames to predict the attention maps on US video

 Droste et al., 2019b ). This paper models both spatial and temporal

isual attention on US video clips using original convolutional and

ecurrent neural network architectures with a novel soft Dynamic

ime Warping (sDTW) loss function to regularize the alignment of

redicted and ground truth visual attention during training, which

s the first time that sDTW has been used in the context of visual

ttention modelling. 

.2. Standard plane detection in fetal ultrasound 

Chen et al. (2015) developed a model based on AlexNet to de-

ect Fetal Anomaly Screening Programme (FASP) standard planes

n a dataset acquired using a sweeping protocol, achieving a preci-

ion of 71.4%. Gao et al. (2016) used pre-trained weights of AlexNet

n ImageNet to classify fetal US images including fetal skull, ab-

omen, heart, and demonstrated that the features learnt on natu-

al images could be transferred to an US image dataset. The mean

lassification accuracy reached 91.5% compared to 87.9%, the per-

ormance achieved by a network of the same architecture but ini-

ialised using random weights. SonoNet ( Baumgartner et al., 2017 )

as built on VGGNet Simonyan and Zisserman (2014) for FASP

tandard plane detection ( Kirwan, 2010 ) on routine free-hand US

can on a large dataset of 2694 2D ultrasound examinations. Three

ariants of the SonoNet were tested. The largest was SonoNet-

4, which uses the same architecture as VGG-16, while the oth-

rs, SonoNet-32 and SonoNet-16, adopt architectures with halved

nd quartered number of kernels in all layers. The best perform-

ng model was SonoNet-64, achieving mean F1 score of 82.8%.

chlemper et al. (2018) introduced a self-gated soft-attention

echanism that allows the network to contextualise local spatial

nformation useful for detection of US standard planes and weakly-

upervised object localisation. Cai et al. (2018a) used pre-processed

onographer visual attention maps as an additional input to assist

bdominal standard planes detection, and Cai et al. (2018b) fur-

her improved the potential clinical usefulness of the previous

ork by learning to predict attention maps on input US im-

ges without compromising standard plane classification accuracy.

roste et al. (2019a) learnt a feature extractor by predicting sono-

rapher visual attention, and then fine-tuned the feature extractor

or standard planes detection in a transfer learning manner. These

orks focused on learning spatial information in images to assist

S image classification but forfeited the temporal information in

S video. 

.3. Novelty 

Similar to Droste et al. (2019a) and Cai et al. (2018b) , TSEN ex-

lores the inherent information in sonographer gaze-tracking data

s a strong prior to guide US standard plane navigation. How-

ver, different from Droste et al. (2019a) , which takes a two-stage

raining scheme for plane classification, TSEN is trained end-to-

nd by employing a multi-task network structure. TSEN learns a

eature representation of input US videos for both sonographer vi-

ual attention map prediction and standard plane detection. Dif-

erent from Cai et al. (2018b) , which explores spatial visual atten-

ion information of a single US image, TSEN extends into the tem-

oral dimension by exploring spatio-temporal feature representa-

ions of US videos using variants of convolutional Recurrent Neu-

al Networks. Specifically, it utilizes a soft Dynamic Time Warping

sDTW) loss to regularise the alignement of predicted visual atten-

ion maps with ground-truth attention maps, which proves to be

n effective regularisation method for visual attention modelling. 
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Fig. 1. Frame count distribution for all US video clips used in this dataset. 
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. Methods 

.1. Data collection and processing 

This study is part of an on-going project entitled Perception

ltrasound by Learning Sonographic Experience (PULSE). A novel

ataset of clinical ultrasound exams with real-time gaze-tracking

ata is being collected. This study was approved by the UK Re-

earch Ethics Committee (Reference 18/WS/0051), and written in-

ormed consent was given by all participating pregnant women.

onographers also consented to participate in the study at the out-

et, but do not have any visual or other signal to know that track-

ng devices are functioning. Data were stored according to local

ata governance rules. 

.1.1. Data collection 

All free-hand ultrasound exams were performed on a GE Volu-

on E8 version BT18 (General Electric Healthcare, Zipf, Austria) ul-

rasound machine equipped with standard curvilinear (C2-9-D, C1-

-D), and 3D/4D (RAB6-D) probes; its LCD monitor has a resolution

f 1920 × 1080 pixels and refreshes at a frequency of 60 Hz , while

he video signal is recorded lossless at 30 Hz. Synchronized eye

racking was undertaken using an eye-tracker (Tobii Eye-tracking

ye Tracker 4C, Danderyd, Sweden) that records the point-of-gaze

relative x and y coordinates with corresponding timestamps) and

-D eye position of each eye at a rate of 90 Hz, effectively record-

ng 3 gaze points per frame. The eye tracker was rigidly attached

nder the display area with a magnetic mounting bracket as per

he instruction of the product. The calibration of the eye-tracker

as previously studied in Chatelain et al. (2018) . 

Sonographers were free to adjust the height of the chair and

he inclination of the monitor, and operate the ultrasound probe

n order to perform ultrasound examinations without being af-

ected by the presence of an eye tracker so that authentic and clin-

cally relevent gaze data were recorded. The eye tracker was cali-

rated for each sonographer following a 9-point calibration pro-

ocol as described in Chatelain et al. (2018) . During ultrasound

xamination, sonographers identify key fetal anatomies and make

orresponding measurements according to the UK FASP guidelines

or mid-pregnancy ultrasound examinations ( Kirwan, 2010 ). The

ideo signal of the scanner and sonographer gaze tracking data are

tored for later processing. Video were stored as.mp4 video files,

nd each video file was converted to individual video frames stored

s.png image files. A normal examination takes 34 ± 14 minutes. 

.1.2. US Scan video processing 

A subset of the PULSE dataset containing 93 anomaly scans

280 video clips in total) performed by a single sonographer was

elected. An optical character recognition algorithm was used to

dentify the standard biometry planes on which sonographers

ade measurements, including the standard ACP, HCP and FLP.

ince it is common for sonographers to hold the probe still or

ake very small movements when a standard plane is found, mul-

iple consecutive frames could contain the same standard plane. It

s also common for a sonographer to move the probe away from

he already found standard plane to confirm that it is the best

vailable plane before entering freeze frame, a static video frame

n which the sonographer makes biometric measurements. Thus,

n each anomaly scan, an experienced biomedical engineer man-

ally annotated the location of all such standard biometry planes.

ach frame in this dataset was assigned one of the following seven

rame-level labels: standard AC Plane (std ACP), non-standard ab-

omen (bg Ab), standard HC plane (std HCP), non-standard head

bg Head), standard FL plane (std FLP), non-standard Femur (bg

emur), and Others. A sonographer’s navigation and plane-finding

ecision-making process for a particular standard biometry plane
as represented in a video clip C x (where x is the plane type),

tarting from a video frame containing a non-standard view of that

natomy up until the frame before a freeze frame that captures

he standard biometry plane. For each anomaly scan, C A , C H and

 F were sampled to reflect the navigation refinement process of

nding standard ACP, HCP and FLP. An “Others” class video clip

 O that does not contain any clear anatomical structures was also

ampled from the scans. A total of 89 C A , 71 C H , 76 C F , and 44 C O 
ere selected. Each of these clips contains between 200 and 500

rames (approximately corresponding to 6–17 seconds), of which

etween 10 and 40 frames are standard biometry planes. In total,

his dataset contains 1910 ACPs, 2359 HCPs and 2151 FLPs from

2,927 abdomen frames, 24,437 head frames, 12,762 femur frames,

nd 8982 Other frames. The distribution of frame count for all

lips is summarized in Fig. 1 . All frames containing Doppler over-

ay, 3-D/4-D, split-screens, or freeze frames containing bounding

oxes/circles were excluded from the dataset. Text information and

he Graphical User Interface (GUI) on each frame was cropped out.

xamples of the standard planes are shown in Fig. 2 . 

.1.3. Gaze data processing 

Using the gaze data, binary maps B of the same dimensions as

he corresponding video frames were generated, with pixels cor-

esponding to gaze points labelled as 1 and others labelled as

ero (0). A sonographer visual attention map A was generated for

ach binary map by convolving it with a truncated Gaussian Ker-

el G ( σ x,y ): A = B ∗ G (σx,y ) , where G ( σ x,y ) has 30 pixels along x, y -

imensions corresponding to visual angle of 1.5 ◦ with an observer-

o-screen distance of 0.5m. A was further normalised such that all

ixel values add up to 1. Examples of sonographer visual attention

aps overlaid on their corresponding B-mode image for 6 consec-

tive frames of C A , C F , C H and C O can be seen in Fig. 3 . 

.1.4. Training sample (snippet) generation 

We define an ultrasound video snippet as a short video seg-

ent extracted from a video clip with defined time depth and

kip size to train TSEN. A number of ultrasound video snippets

ere sampled from the aforementioned video clips, as illustrated

chematically in Fig. 4 . Time depth is defined as the number of

rames in a video snippet that forms an input to the network, and

kip size is the number of frames skipped in the original video clip

 between consecutive sampled frames. Arrows of different colors

nd line styles indicate 4 possible ways of sampling from a clip C

ith the same skip size ( left ), while the stacked frames with dif-

erent colors and line styles shows the 4 resultant training sam-

les with the same time depth ( right ). In order to model tempo-

al attention of different time scales, time depth of 5, 10, 15, and
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Fig. 2. Standard Biometry Planes and an example of background frame. (a) Abdominal Circumference Plane; (b) Head Circumference Plane; (c) Femur Length Plane; (d) 

Background. 
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20 frames were tested. Sampling with skip sizes of 5, 10, 15 and 20

was also considered. Based on empirical analysis, this study uses

time depth of 10 for most efficient use of GPU memory, and a

skip size of 10, as this skip size strikes a good balance between

reducing temporal redundancy and not losing temporal informa-

tion. Each video snippet was coupled with frame-wise anatomy la-

bels as well as frame-wise sonographer visual attention maps. In

addition, a snippet-level label (one label per snippet) was assigned

for each snippet: if the snippet contained one or more instances of

a standard biometry plane, it was labelled as a standard snippet;

otherwise a non-standard snippet of that anatomy. 

It is worth noticing that not all snippets have corresponding

sonographer visual attention maps for every frame in the snippet.

The reason for this is that sonographers are not guaranteed to be

looking at the screen and they can check the position of ultrasound

probe, talk to patients, or move away from the receptive field of

the eye tracker. In these cases, no gaze-data are recorded, thus no

valid sonographer visual attention maps are generated; a sampled

snippet containing frames with no corresponding sonographer vi-

sual attention maps was discarded. 

3.2. Temporal SonoEyeNet (TSEN) architecture 

The previously reported multi-task SonoEyeNet (MSEN)

( Cai et al., 2018b ) captures spatial information in 2-D US im-

ages by predicting sonographer visual attention maps to assist

a binary classification task of detecting standard Abdominal Cir-

cumference Planes (ACP) from non-standard abdominal images.

However, MSEN does not utilize temporal information inherent in

2-D US videos, which is hypothesized to assist sonographers in
tandard biometry plane detection. This subsection describes Tem-

oral SonoEyeNet (TSEN), which expands on the idea of Multi-task

onoEyeNet by modelling temporal visual attention variations of a

onographer and, in addition, expands detection targets from ACP

o all three standard biometry planes: ACP, HCP, and FLP. 

.2.1. Convolutional recurrent neural networks 

Vanilla (ungated) Recurrent Neural Networks (RNNs)

 Pearlmutter, 1989; Giles et al., 1994 ) are commonly used to

ncode temporal or spatio-temporal information. Comparing to

anilla RNNs, Long-Short Term Memory (LSTM) ( Hochreiter and

chmidhuber, 1997 ) and Gated Recurrent Units (GRUs) ( Cho et al.,

014 ) use gating mechanisms with additional internal recurrence

o control the flow of information so that they can solve the

ong-term dependency problem of vanilla RNNs. LSTMs and GRUs

ave been successfully used in computer vision ( Vinyals et al.,

015 ) and natural language processing ( Bahdanau et al., 2014 ),

ut the dot product operation in all gating mechanisms is es-

ecially redundant for spatial information such as images with

igh dimensional feature representations ( Xingjian et al., 2015 ). In

nput-to-state and state-to-state transitions, no spatial information

s encoded. To address this problem, Xingjian et al. (2015) ex-

ended the LSTM concept by replacing the dot product operation

y a convolution operation in input-to-state and state-to-state

ransitions, as shown in Fig. 5 . Similarly, an extension to GRUs

as proposed by Cho et al. (2014) to incorporate convolutional

perations. 

.2.2. Network architecture 

The architecture of TSEN is described in Fig. 6 . The network

akes a sample input snippet X = [ X 

1 ; . . . ; X 

T ] ∈ [ | 0 , 255 | ] H×W ×T ,
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Fig. 3. Sonographer visual attention maps on 6 consecutive frames of (a) Standard Abdomen snippet (b) Standard Head snippet (c) Standard Femur snippet and (d) non- 

standard snippet. 
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here X 

t is a frame, H, W represent the height and width of input

rames, and T the number of frames in a sample; the notation | a, b |

ndicates integer intervals between a and b , with a and b included.

or each X 

t , a CNN feature extractor is used to extract spatial fea-

ure representations φt , which are subsequently fed into a Tem-

oral Attention Module (TAM), a recurrent module that produces

ynamic Attention Maps (DAMs) M = [ M 

1 ; . . . ; M 

T ] ∈ [0 , 1] H×W ×T 

or each input video frame, where H, W represent the height and
idth of the predicted attention maps. The generated attention

aps are then fed into the Video Classification Module (VCM),

hich is also recurrent, that predicts frame-wise class label k ∈ [|1,

 |] for each frame X 

t , t ∈ [|1, T |], where K = 7 (bg Ab, std ACP, bg

ead, std HCP, bg Femur, std FLP, and an additional “other” class).

he labels are one-hot encoded so that for a class k , the corre-

ponding target is y = (y i ) 
K 
1 

with y k = 1 and ∀ i : i � = k, y i = 0 . In

ny trained module compared below, TAM and VCM use the same



6 Y. Cai, R. Droste and H. Sharma et al. / Medical Image Analysis 65 (2020) 101762 

Fig. 4. Illustration showing sampling video snippets with defined Time Depth and Skip Size from the original video clip. Different colors and line styles indicate 4 different 

training samples. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Schematic of convolution operation for input-to-state and state-to-state 

transitions. 
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recurrent module, both in terms of bi-direction/uni-directional, and

CLSTM/CGRU. In the following sections, schematics of the TAM and

VCM are presented in the case of bi-directional RNNs. 

3.2.3. Spatial feature extractor 

The Spatial Feature Extractor is derived from VGG-16

( Simonyan and Zisserman, 2014 ) with a quarter of the num-

ber of convolutional kernels in each layer, as can be seen in

Fig. 7 . The Spatial Feature Extractor consists of three convolutional

blocks, the first two of which consist of two convolutional layers,

and the third block consists of three convolutional layers. All

convolutional layers use 3 × 3 convolutional kernels; the number

of convolutional kernels used in the three blocks are 16, 32, and

64, respectively. 

3.2.4. Temporal attention module 

A detailed architecture of the Temporal Attention Module (TAM)

is given in Fig. 8 , where yellow cubes represent tensors of feature

maps from convolution operations, orange stripes represent activa-

tion function (ReLUs), and blue cubes represent tensors of hidden

state of recurrent neural networks (Convolutional GRU or Convo-

lutional LSTM). Since the recurrent modules are bi-directional, fea-

ture maps extracted by CNN φt , t ∈ [|1, T |] from sample video clips

are fed into TAM in both positive (bottom) and reverse order (top),

as demonstrated in Fig. 8 . Extracted spatial features φt (bottom-

left and top-right) are passed through several convolutional layers

to generate a Static Attention Map (SAM) ˜ M 

t (bottom-middle and
op-middle), which is then processed through a residual operation

o generate ˜ φt : 

˜ t = φt 
� ˜ M 

t + φt . (1)

˜ φt from both the positive order ( ̃  φt+ ) and reverse order ( ̃  φt−)

re each fed into a convolutional recurrent neural network to gen-

rate ˜ h t+ and 

˜ h t−, respectively. These two hidden-states are con-

atenated to generate ˜ h t , which, after further convolution and sig-

oid activation, generates Dynamic Attention Map M 

t . Loss func-

ion between ground truth visual attention maps A and M are de-

ned in Section 3.3 . 

In the case when a uni-directional RNN is used, the branch that

rocesses reverse order feature maps is discarded. Dynamic atten-

ion maps are generated from 

˜ φt+ directly. 

.2.5. Video classification module 

A detailed architecture of the Video Classification Module

VCM) can be seen in Fig. 9 . Feature maps φt from the t th frame

re fed into a bi-directional RNN to generate ˆ h t+ and 

ˆ h t− from the

ositive and reverse order, which are subsequently concatenated to

orm 

ˆ h t . After three convolution layers, the resultant feature maps

re merged with M 

t through element-wise multiplication to pro-

uce ˆ φt . Class prediction is performed on each 

ˆ φt through three

onvolutional layers, two adaptation layers, and a global average

ooling layer before producing video-wise class prediction ˆ y . The

oss function for classification is discussed in Section 3.3 . 

Similarly, in the case when a uni-directional RNN is used, the

ranch that processes reverse-order feature maps is discarded. ˆ h t+ ,
nstead of ˆ h t , is used for further processing to predict the input

lasses. 

.3. Loss functions 

.3.1. Classification loss 

For an input video snippet X = [ X 

1 ; . . . ; X 

T ] ∈ [ | 0 , 255 | ] h ×w ×T ,

he first loss function is a classification loss L c between class-

rediction ˆ y = { ̂ y 1 , . . . , ̂  y T } ∈ [0 , 1] C×T and ground truth class label

 = [ y 1 ; . . . ; y T ] ∈ { 0 , 1 } C×T , with C being the number of classes. To
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Fig. 6. Architecture of Temporal SonoEyeNet, consisting of a Feature Extractor, Temporal Attention Module (TAM), and a Video Classification Module (VCM). The clock symbol 

in the figure indicates it is a recurrent module, as temporal information is encoded. 

Fig. 7. Schematic of the Spatial Feature Extractor used in TSEN. X t represents the t th frame in an input US video clip; φt represents a tensor of extracted features from X t . 
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tackle class imbalance, the Focal Loss ( Lin et al., 2017 ), a variant

of cross-entropy loss, is used. Focal Loss allows hard (less well-

classified) samples to contribute more to total loss, and down

weights the contribution from easy (well-classified) samples by

adding a modulating factor (1 − ˆ y p ) 
ξ to cross-entropy loss: 

F L (p t ) = −(1 − ˆ y t p ) 
ξ log ( ̂  y t p ) . (2)

Thus, for X the classification loss L c can be written as: 

L c = −
T ∑ 

t=1 

(1 − ˆ y t p ) 
ξ log ( ̂  y t p ) . (3)

3.3.2. Saliency loss 

The Kullback-Leibler Divergence (KLD) loss is used for Saliency

Loss L s . The KLD between predicted dynamic visual attention maps

M = { M 

1 , . . . , M 

T } ∈ [0 , 1] h ×w ×T and a ground truth sonographer

visual attention map A = { A 

1 , . . . , A 

T } ∈ [0 , 1] h ×w ×T can be written

as: 

L s = D KL (A || M ) = −
T ∑ 

t=1 

h ∑ 

i =1 

w ∑ 

j=1 

A 

t 
i, j log 

M 

t 
i, j 

A 

t 
i, j 

. (4)

3.3.3. Temporal regularisation loss 

Soft Dynamic Time Warping (sDTW) ( Cuturi and Blondel, 2017 )

is used as the temporal regularisation Loss L t . sDTW is a dif-

ferentiable function, derived from Dynamic Time Warping (DTW)

( Sakoe et al., 1990 ), that can be used as a loss function to enforce

alignment of two time series. Dynamic Time Warping (DTW)

measures the discrepancy between two time series by computing

the best possible alignment between the two time series x and y

with lengths n and m . It first computes the n × m pairwise cost

matrix �(a , b ) ∈ R 

n ×m between points ( Fig. 10 (A)), and then finds

an Alignment Matrix � that defines a path on a n × m matrix that

connects the upper-left (1, 1) matrix entry to the lower-right (n, m)

one using only down ↓ , right → and down-right ↘ moves. The

DTW score is defined as the minimised sum of cost; it is found by

solving a dynamic program (DP) problem using Bellman’s recursion

( Bellman, 1952 ) with a quadratic ( nm ) cost. A soft-minimum func-

tion was used to guarantee the differentiability of the score so that

it can be used as a loss function. 

In the context of visual attention map prediction, we want to

minimise the sDTW score between predicted dynamic visual atten-

tion maps M = { M 

1 , . . . , M 

T } ∈ [0 , 1] h ×w ×T and ground truth sono-

grapher visual attention maps A = { A 

1 , . . . , A 

T } ∈ [0 , 1] h ×w ×T . Let

�T,T ⊂ {0, 1} T × T be a set of binary alignment matrices describing

the path connecting top-left to bottom-right of the cost matrix �
using only right, down, or right-down connections, as presented in

Fig. 10 (B). The sDTW score is defined by: 

dtw γ ( M , A ) = min 

γ {〈 �, �(M , A ) 〉 , � ∈ �T,T } , (5)

min 

γ { a 1 , . . . , a n } = −γ log 

n ∑ 

i =1 

e 
−a i 
γ , (6)

where 〈·, ·〉 represents the inner product operator, γ the smooth-

ing parameter, and a 1 , . . . , a n represent elements in a vector. To

find the optimal alignment matrix �∗ that minimises DTW( M, A ),

an intermediary alignment cost matrix R ( Fig. 11 (B)) is constructed

using Bellman’s Recursion ( Fig. 11 (A)) to calculate the minimum

summed cost ( i.e. sDTW) achieved by �∗. Bellman’s recursion to

construct R is calculated through the following equations: 

r i, j = δi, j + min 

γ
(r i −1 , j , r i, j−1 , r i −1 , j−1 ) , (7)

δi, j = MSE(M 

i , A 

j ) , (8)
here r i,j represents an element in R and δi,j an element in �;

SE indicates the Mean Squared Error . When R is complete through

ellman’s Recursion, the final sDTW score is: 

tw γ ( M , A ) = r T,T . (9)

The algorithm for calculating dtw γ ( M, A ) as well as the inter-

ediate alignment cost matrix R γ are summarised in Algorithm 1 .

lgorithm 1 Forward recursion to compute dtw γ ( M, A ) and R 

γ . 

equire: 

Predicted dynamic visual attention maps M ∈ [0 , 1] h ×w ×T 

Ground truth sonographer visual attention maps A ∈
[0 , 1] h ×w ×T 

Smoothing temperature term γ > 0 

Empty intermediary alignment cost matrix R ∈ R 

T ×T 

1: for j = 1 , . . . , T do 

2: for i = 1 , . . . , T do 

3: δi, j = MSE(M 

i , A 

j ) 

4: end for 

5: end for 

6: r 0 , 0 = 0 ; r 0 ,i = r j, 0 = ∞ ; i ∈ [ | 1 , T | ] , j ∈ [ | 1 , T | ] � Initialisation

7: for j = 1 , . . . , T do 

8: for i = 1 , . . . , T do 

9: r i, j = δi, j + min 

γ (r i −1 , j , r i, j−1 , r i −1 , j−1 ) 

10: end for 

11: end for 

12: return (r T,T , R ) 

.3.4. Overall loss 

The network is trained with all three losses: the classification

oss L c , , the saliency loss L s , and the temporal regularisation

oss L t that encourages alignment of dynamic attention maps over

ime. The total loss L is represented as: 

 = αL c + βL s + λL t (10)

here α, β , λ are hyperparameters that control the contribution

f each loss to the total loss. 

.4. Training details 

All images were resized to 240 × 240 pixels and randomly

ropped into size 224 × 224 pixels on-the-fly for data augmen-

ation during training. In addition, all image frame intensities were

ormalised to zero-mean and unit variance. All TSEN variants were

nitialised using a zero-mean Gaussian distribution with standard

eviation of 0.01. They were trained using adaptive moment esti-

ation (Adam) ( Kingma and Ba, 2014 ) with an initial learning rate

f 2 × 10 −4 for 100 epochs and weight decay of 5 × 10 −4 . All video

nippets X were sampled from video clips with a skip size of 10

nd time depth T of 10 with a mini-batch size of 16. TSEN models

ere trained with three losses: Classification loss L c , Saliency loss

 s , and temporal regularisation loss L t . α and β for L c and L s were

et to 0.5 to give the two tasks equal weighting. λ for L t was set at

.01 after searching through 5 logarithmically spaced weights be-

ween 10 −4 and 1. The best performing model used focal loss for

 c and the weight ξ was set at a value of 2 to suppress gradients

f easy negative samples; other variants used cross-entropy loss

or L c . The dataset was split at scan-level into 5 folds for cross-

alidation. 

In order to tackle severe class imbalance, the frequency of

nippet-level labels for standard and non-standard snippets for

ach anatomy (Abdomen, Head, Femur) and “Other” was calcu-

ated. During training, each snippet is drawn with a probability

qual to the inverse of its snippet-level label’s frequency. 
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Fig. 8. Schematic of the Temporal Attention Module (TAM). 

Fig. 9. Schematic of the Video Classification Module (VCM). 
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SonoNet models ( Baumgartner et al., 2017 ) and MSEN ( Cai et al.,

018b ) were trained as baseline comparisons; SonoNet was ran-

omly initialised and trained for 100 epochs using Adam optimiser

ith a learning rate of 10 −4 and weight decay of 5 × 10 −4 ; MSEN

as also trained from randomly-initialised weights for 100 epochs.

ideo frames were treated as independent images and sampled at

he inverse of the frequencies of their corresponding frame-wise

abel. 

.5. Performance metrics 

.5.1. Classification metrics 

Precision, Recall and F1 score are used to measure classifica-

ion performances of all models. For each model, these metrics are

eported on a per-anatomy basis. In addition, the overall perfor-
ance across all anatomies is reported for each metric using macro

verage, i.e. an un-weighted average of the performance metric

cross all anatomies to avoid results from being skewed due to

eavy class imbalance. 

.5.2. Static saliency metrics 

Five static saliency metrics discussed in Bylinskii et al.

2018) were used to quantify the similarity between ground truth

nd predicted visual attention maps: Area Under ROC Curve ( AUC ),

ormalized Scanpath Saliency ( NSS ), Information Gain ( IG ), Simi-

arity ( Sim ), and Pearson’s Correlation Coefficient ( CC ). In addition,

he Kullback-Leibler divergence ( KLD ) is also reported. All metrics

re reported on a per-anatomy basis as well as on a macro-average

asis. 
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Table 1 

Static saliency scores of different models, including area under curve (AUC), Pearson cross-correlation (CC), similarity 

(SIM), information gain (IG), normalized saliency scan path (NSS), and Kullback-Leibler Divergence (KLD) ( Bylinskii et al., 

2018 ). 

AUC [%] CC[%] SIM [%] IG NSS KLD ↓ 
biCLSTM + sDTW 64.8 ± 0.6 69.9 ± 1.1 57.7 ± 2.6 1.50 ± 0.02 2.76 ± 0.05 1.06 ± 0.08 

biCLSTM 62.3 ± 0.6 41.2 ± 2.2 36.8 ± 3.1 1.27 ± 0.04 2.16 ± 0.01 1.79 ± 0.12 

biCGRU + sDTW 54.2 ± 0.4 51.9 ± 2.8 36.7 ± 2.5 0.71 ± 0.02 2.18 ± 0.05 1.50 ± 0.04 

biCGRU 47.5 ± 0.5 29.6 ± 2.4 19.8 ± 3.0 0.12 ± 0.04 1.32 ± 0.07 2.08 ± 0.05 

uniCLSTM 61.4 ± 0.2 41.7 ± 1.0 33.0 ± 2.7 0.18 ± 0.03 1.53 ± 0.05 1.62 ± 0.07 

uniCGRU 43.9 ± 0.8 27.5 ± 2.0 20.3 ± 2.9 0.10 ± 0.03 1.30 ± 0.10 2.21 ± 0.07 

MSEN ( Cai et al., 2018b ) 40.1 ± 0.3 27.4 ± 1.8 18.4 ± 2.4 0.13 ± 0.03 1.45 ± 0.08 1.82 ± 0.05 

Table 2 

Scanpath similarity scores of different models, including Vector Similarity (VecSim), 

Length Similarity (LenSim), Direction Similarity (DirSim), and Position Similarity (Pos- 

Sim) ( Dewhurst et al., 2012 ). 

VecSim DirSim LenSim PosSim 

biCLSTM + sDTW 97.6 ± 0.4 75.9 ± 0.2 97.1 ± 0.3 95.9 ± 0.6 

biCLSTM 96.1 ± 0.8 69.3 ± 0.3 94.5 ± 0.3 88.8 ± 0.8 

biCGRU + sDTW 92.7 ± 0.7 70.6 ± 0.8 87.9 ± 0.3 79.5 ± 0.2 

biCGRU 95.1 ± 0.6 68.5 ± 0.7 93.2 ± 0.4 84.5 ± 0.5 

uniCLSTM 96.1 ± 0.3 69.5 ± 0.2 94.8 ± 0.6 87.8 ± 0.7 

uniCGRU 92.5 ± 0.2 66.1 ± 0.6 89.6 ± 0.4 83.0 ± 0.5 

MSEN ( Cai et al., 2018b ) 93.0 ± 0.3 69.1 ± 0.5 92.9 ± 0.5 86.7 ± 0.4 

Table 3 

Classification results of different models. 

biCLSTM + FL biCLSTM biCGRU uniCLSTM uniCGRU 

Precision 89.4 ± 1.7 84.4 ± 7.2 81.8 ± 5.2 83.7 ± 7.6 79.0 ± 5.3 

Recall 85.1 ± 5.7 80.9 ± 6.0 79.2 ± 7.5 80.9 ± 6.1 80.9 ± 7.8 

F1 score 87.1 ± 3.4 82.4 ± 6.0 80.4 ± 9.3 82.2 ± 6.6 79.7 ± 4.6 

F1 scores by class 

bg Ab 90.6 ± 2.3 89.9 ± 2.4 87.1 ± 1.7 90.3 ± 1.9 85.5 ± 2.9 

std ACP 83.7 ± 1.5 75.6 ± 2.5 74.4 ± 2.6 73.7 ± 3.0 72.3 ± 4.8 

bg Head 90.7 ± 2.5 91.3 ± 4.1 89.6 ± 3.1 89.4 ± 3.1 90.8 ± 2.7 

std HCP 89.9 ± 1.1 79.5 ± 2.3 75.1 ± 2.7 79.3 ± 5.9 74.2 ± 2.2 

bg Femur 86.4 ± 4.0 83.3 ± 4.7 78.7 ± 2.1 82.4 ± 3.8 80.3 ± 3.7 

stdFLP 81.1 ± 2.3 74.4 ± 3.0 72.9 ± 2.6 73.1 ± 3.5 68.6 ± 3.3 

Others 87.1 ± 2.7 83.1 ± 4.8 84.9 ± 3.4 86.9 ± 4.2 86.3 ± 2.4 

Table 4 

F1 scores of different baseline models by anatomy. 

MSEN SonoNet-64 SonoNet-32 SonoNet-16 

bg Ab 87.2 ± 3.5 87.3 ± 1.6 87.6 ± 2.1 85.3 ± 4.3 

std ACP 68.3 ± 2.6 40.2 ± 8.7 39.8 ± 9.2 40.4 ± 8.0 

bg Head 92.1 ± 3.2 91.0 ± 2.1 91.4 ± 1.9 91.4 ± 1.7 

std HCP 68.1 ± 4.1 49.7 ± 5.6 45.0 ± 13.7 44.5 ± 14.0 

bg Femur 76.7 ± 2.4 77.8 ± 4.7 76.8 ± 6.0 75.9 ± 6.0 

std FLP 60.0 ± 2.6 43.5 ± 12.3 44.8 ± 12.1 44.5 ± 10.5 

Others 87.1 ± 2.7 72.8 ± 3.2 74.0 ± 4.6 73.4 ± 4.5 
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3.5.3. Scanpath metrics 

A scanpath is defined as a set of fixation points (( x, y )-

coordinate of the maxima on a visual attention map) on consec-

utive video frames and the transitions between each pair of fix-

ation points, as can be seen in Fig. 12 (A) where red dots repre-

sent fixation points and the dotted arrows represent transitions;

different color-coding for visual attention maps indicate different

time points. Following MultiMatch ( Dewhurst et al., 2012; Jarodzka

et al., 2010 ), a set of metrics is used to measure scanpath similari-

ties, four different metrics are calculated for two scanpaths: Vector

Similarity ( VecSim ), Length Similarity ( LenSim ), Direction Similarity

( DirSim ), and Position Similarity ( PosSim ). The MultiMatch metrics

represent the scanpath as a set of vectors on a 2-D plane, as can

be seen in Fig Fig. 12 (B); each vector originates from the fixation
oint at time point t and points to the fixation point at time point

 + 1 . 

Specifically, for two scanpaths P 1 = { p 

1 
1 , . . . , p 

T 
1 } and P 2 =

 p 

1 
2 
, . . . , p 

T 
2 
} where each element in the scanpath is a fixation point

, y in a 2-D space, their corresponding saccadic vector represen-

ations S 1 = { v 1 1 , . . . , v 
T −1 
1 

} and S 2 = { v 1 2 , . . . , v 
T −1 
2 

} are calculated

uch that v t 
1 

= p 

t+1 
1 

− p 

t 
1 

and v t 
2 

= p 

t+1 
2 

− p 

t 
2 
. 

Four metrics are calculated, as illustrated in Fig. 12 (C): 

 ecSim = 1 − 1 

T − 1 

T −1 ∑ 

t=1 

‖ v t 1 − v t 2 ‖ 

2 × d 
(11)

enSim = 1 − 1 

T − 1 

T −1 ∑ 

t=1 

‖ v t 1 ‖ − ‖ v t 2 ‖ (12)

irSim = 1 − 1 

T − 1 

T −1 ∑ 

t=1 

1 

π
cos −1 v t 1 · v t 2 

‖ v t 
1 
‖‖ v t 

2 
‖ 

(13)

 osSim = 1 − 1 

T 

T ∑ 

t=1 

‖ p 

t 
1 − p 

t 
2 ‖ 

2 × d 
(14)

here d represents the diagonal size of the visual attention maps.

t is worth noting that Duration Similarity ( DurSim ) in the origi-

al paper is not calculated in this study, because the input video

rames are sampled at 30 Hz and the duration of each fixation is

hus approximately 0.033 seconds. 
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Fig. 10. Schematic showing (A) A cost matrix � between time series x, y with orange, green and purple as color codes for three different possible connections between 

top-left and bottom right elements. (B) Binary Alignment matrices with corresponding color codes. The figure is adapted from ( Cuturi and Blondel, 2017 ). (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Schematic showing (A) Bellman’s Recursion. (B) A complete Intermediary alignment cost matrix R. 
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Fig. 12. Schematic outlining the MultiMatch scanpath similarity metrics. (A) Car- 

toon representation of a scanpath through 9 visual attention maps on consecutive 

US video frames. (B) Vector representation of the scanpath on 2-D plane (C) Cartoon 

of the 4 similarity metrics. The figure is adapted from ( Dewhurst et al., 2012 ). 

f  

b  

i  
. Results 

.1. Temporal visual attention modelling 

Different TSEN variants were trained. The models presented in

his section are named by the specifications of RNNs used in the

AM. For example, the model “biCLSTM” indicates that the model

sed bi-directional CLSTM in the TAM, and “biCLSTM+sDTW” indi-

ates that it was trained with the additional Temporal Regulariser

oss L t using sDTW; “biCLSTM” wasn’t trained with L t . As men-

ioned before, for all variants, VCM shares the same RNNs specifi-

ations with TAM; the VCM of all variants reported in this section

re trained with Focal Loss as L c . 

.1.1. Qualitative assessment 

Predicted visual attention maps generated by different TSEN

ariants on three video snippets in the test set are shown in

ig. 13 for the fetal abdomen, Fig. 14 for the fetal head, and

ig. 15 for the fetal femur. In general, by visual inspection, the

est performing model in all three anatomies is “biCLSTM+sDTW”,

emonstrating good synchronisation of saccadic transitions with

he sonographer visual attention map ground truth. In Fig. 13 , as

he ACP gradually appears, the predicted visual attention moves
rom the middle of the view to the area between the stomach bub-

le and umbilical vein in the same fashion as the ground truth;

n Fig. 14 , the predicted visual attention follows the ground truth



12 Y. Cai, R. Droste and H. Sharma et al. / Medical Image Analysis 65 (2020) 101762 

Fig. 13. Visual attention maps generated by different TSEN variants on an example of fetal abdomen clip. From left to right: US video frames, ground truth (sonographer’s 

actual attention map), biCLSTM+sDTW, biCLSTM, biCGRU+sDTW, biCGRU, uniCLSTM, uniCGRU, MSEN. 
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“uniCGRU”. 
by scanning along the centerline of the brain before focusing on

the cavum septum pellucidum ; in Fig. 15 , the prediction replicates

the scanning behavior along the femur bone, even with the tran-

sient appearance of other structures. The model “biCLSTM”, trained

without temporal regularisation, demonstrated less-focused atten-

tion and the fixations are not well-synchronised with the ground

truth. Similar improvement can be seen by comparing the predic-

tion of “biCGRU+sDTW” with “biCGRU”. 

In general, CLSTM models demonstrate better capacity to learn

temporal visual attention transitions than CGRU models. Overall,

the predicted visual attention of CGRU models are more “spread

out” with no clear points of fixation compared to CLSTM models.

In addition, it is observed that bi-directional models are able to

predict visually higher-quality visual attention maps compared to

uni-directional models. 

4.1.2. Quantitative assessment 

In order to quantitatively assess visual attention prediction per-

formance of different TSEN variants, static saliency scores ( Table 1 )
nd scanpath similarity scores ( Table 2 ) were computed on test set

or each variant. Higher scores in all metrics with the exception of

LD indicate a higher performance; for KLD, the lower the score,

he better a model performs. 

Consistent with qualitative assessment findings, the “bi-

LSTM+sDTW” model outperforms other models in all static

aliency scores , reaching mean scores across all classes of 64.8%

or AUC , 69.9% for CC , 57.7% for SIM , 1.50 for IG , 2.76 for NSS ,

nd 1.06 for KLD , as seen in Table 1 . Using sDTW as a tem-

oral regulariser significantly improves models for all all perfor-

ance metrics; this improvement is more prominent for biC-

RU models than for “biCLSTM”. “biCLSTM” outperforms “uni-

LSTM” in 3 out of 6 metrics ( SIM, IG , and NSS ), while “biCGRU”

utperforms “uniCGRU” in 4 out of 6 metrics ( AUC, CC, IG and

SS ), though the improvement in IG and NSS are not significant.

ll TSEN models outperform the baseline “MSEN” for all met-

ics except for IG and NSS , where “MSEN” slightly outperforms
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Fig. 14. Visual attention maps generated by different TSEN variants on an example of fetal head clip. From left to right: US video frames, ground truth (sonographer’s actual 

attention map), biCLSTM+sDTW, biCLSTM, biCGRU+sDTW, biCGRU, uniCLSTM, uniCGRU, MSEN. 
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Similar to the results observed by using static saliency scores,

he performance of “biCLSTM+sDTW” exceeds those of other vari-

nts in all of the scanpath similarities scores . Specifically, it

eaches 97.7% for VecSim , 75.9% for DirSim , 97.1% for LenSim , and

5.9% for PosSim . However, sDTW loss did not significantly im-

rove biCGRU models, as “biCGRU+sDTW” only exceeds “biCGRU”

n DirSim . “biCLSTM” achieved higher scores in all metrics com-

ared to “biCGRU”, and “uniCLSTM” outperforms “uniCGRU” in all

etrics, indicating that CLSTM models have higher capability to

odel saccadic transitions. Finally, there is no significant differ-

nce in performance between “biCLSTM” and “uniCLSTM” except 

n PosSim , while “biCGRU” outperforms “uniCGRU” in all metrics.

biCL STM+sDTW” and “biCL STM” exceeds the performance of the

aseline, “MSEN”, in all scanpath similarities metrics. 

.1.3. Anatomy-specific performances 

In order to gain insight on each TSEN variant’s visual atten-

ion prediction performance on standard and non-standard snip-
ets, the static saliency scores and scanpath similarity scores are

roken down according to snippet-level labels, as can be seen

n Fig. 17 (static saliency scores) and Fig. 18 (scanpath similarity

cores). For each type of anatomy along the x −axis, box plots of

he performance metric are shown for 4 different models. 

“biCLSTM+sDTW” (blue boxes) remains the best-performing 

SEN model for all anatomies across all metrics, with the excep-

ion of the IG score for non-standard Abdomen ( Fig. 17 (C)), the NSS

core for standard HCP ( Fig. 17 (E)), and VecSim score for standard

CP ( Fig. 18 (D)), where “biCLSTM” slightly outperforms. 

It can also be observed that “biCLSTM+sDTW” generally per-

orms better on standard snippets than on non-standard snippets

or each biometry. Specifically, it performs better on standard ab-

omen snippets than on non-standard abdomen snippets on all

tatic saliency scores with the exception of AUC; it also performs

etter on standard head snippets and standard femur snippets

n 3 out of 6 static saliency scores comparing to their respec-

ive counter-parts. Standard head snippets achieve better scores
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Fig. 15. Visual attention maps generated by different TSEN variants on an example of fetal femur clip. From left to right: US video frames, ground truth (sonographer’s actual 

attention map), biCLSTM+sDTW, biCLSTM, biCGRU+sDTW, biCGRU, uniCLSTM, uniCGRU, MSEN. 
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in all scanpath similarity scores, while standard abdomen snip-

pets achieve better scores in 3 out of all 4 scores. Fig. 16 summa-

rizes comparison results based on static saliency scores and scan-

path similarity scores of “biCLSTM+sDTW”. Similar trends were ob-

served for other model variants. 

4.2. Frame classification performance 

Frame-level classification results of all TSEN variants are pre-

sented in Table 3 and results of baseline models are presented in

Table 4 . Macro-averaged Precision, Recall and F1 score are reported

for each variant and baseline model; performances per class are

reported by the F1 score. TSEN variants are named by the spec-

ifications of the RNNs used in the VCM. Similar to the nomen-

clature used in the previous section, the model “biCLSTM” indi-

cates that the model used bi-directional convolutional LSTM in

the VCM which was trained using cross-entropy loss as L c , and

“biCLSTM+FL” indicates that that the choice of classification loss

L c was Focal Loss, instead of cross-entropy. As mentioned before,
ll variants’ TAM share the same RNNs specifications with VCM;

he TAM of all variants reported in this section are trained with

ullback-Leibler loss as L s with additional temporal regularisation

oss L t using sDTW. 

It can be observed that Focal Loss is an effective loss func-

ion for improving frame classification performance: “biCLSTM+FL”

odel achieves the highest macro-averaged precision, recall and F1

cores in all variants compared. Its performance also exceeds those

f other variants in terms of F1 scores in all classes except for non-

tandard Head, on which “biCLSTM” achieves the highest score. 

CLSTM is slightly more effective in encoding spatio-temporal

nformation in input snippets for frame classification. “biCLSTM”

erforms better than “biCGRU” with F1 score of 82.4% compared

o 80.4%; “uniCLSTM” achieved a F1 score of 82.2%, compared to

9.7% of “uniCGRU”. On the other hand, using bi-directional RNNs

oes not improve frame classification performance. 

All TSEN models achieved higher scores in standard biometry

lanes comparing to baseline “MSEN”, which achieved F1 scores
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Fig. 16. Static saliency scores and scanpath similarity scores comparison on snippets that contain standard biometry planes (orange blocks) vs. non-standard clips (green 

blocks) on all anatomy (abdomen, head and femur) based on the result of “biCLSTM+sDTW” model. In general, the model performs better on snippets that contain standard 

biometry planes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 17. Boxplots demonstrating the anatomy-specific static saliency scores (A-F) of four selected variants of TSEN models on standard and non-standard snippets. The four 

variants are, by order, “biCLSTM+sDTW” (blue), “biCLSTM” (orange), “biCGRU+sDTW” (green), and “biCGRU” (red). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

o  

s  

p  

8  

t  

f

b  

t

4

f 68.3% for standard ACP, 68.1% for standard HCP and 60% for

tandard FLP. The best performing TSEN model, “biCLSTM+FL”, im-

roved F1 scores on these standard biometry planes to 83.7%,

9.9% and 81.1%, respectively. These results are also superior to

he values achieved by variants of the SonoNet architecture trained
rom random initialisation for this frame-classification task with S  
est F1 scores of 40.4%, 49.7% and 44.8% on corresponding biome-

ry planes. 

.2.1. t-SNE Feature visualisation 

A feature dimensionality reduction method t-Distributed 

tochastic Neighbor Embedding (t-SNE) ( Maaten and Hinton, 2008 )
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Fig. 18. Boxplots demonstrating the anatomy-specific scanpath similarity scores (A-D) of four selected variants of TSEN models on standard and non-standard snippets. The 

four variants are, by order, “biCLSTM+sDTW” (blue), “biCLSTM” (orange), “biCGRU+sDTW” (green), and “biCGRU” (red). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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d  
was used to visualise the feature embedding generated at O 

t in

VCM and 

˜ h t in the TAM of selected variants of TSEN models. Also,

raw pixel values of the input video frames as well as the feature

embedding of the last layer before adaptation layers in the classi-

fication branch and the last layer of the visual attention branch in

MSEN are visualised for comparison. Compared to the t-SNE repre-

sentation of the original images ( Fig. 19 (I)), feature embedding of

O 

t (the output features of the VCM as seen in Fig. 9 ) in the “bi-

CLSTM+FL” model shows maximum separation between different

classes. O 

t of “biCLSTM” and “biCGRU” demonstrated lesser level

of separation. However, overlaps still exist between the standard

biometry planes and their corresponding non-standard planes due

to anatomical similarities. 

It is interesting to notice that ˜ h t (the last features of TAM as

seen in Fig. 8 ) of “biCLSTM+FL” ( Fig. 19 (B)), though not trained

m  
or frame classification, demonstrated a good separation among

ifferent classes. For example, the embedding of original images

 Fig. 19 (I)) shows that the “Other” class is overlaps with the Ab-

omen (“std HCP” and “bg Abdomen”), while in Fig. 19 (B) the

Other” class is clearly separated from Abdomen. Such observation

an also be made for the ˜ h t of “biCLSTM” and “biCGRU”, as well as

MSEN_att”, indicating by learning to model human visual atten-

ion, the learnt feature embedding contain spatio-temporal infor-

ation specific to different classes. 

. Discussion and conclusion 

TSEN potentially would fit nicely into clinical sonography work-

ow as an automated algorithm for standard fetal biometry plane

etection, after which biometric measurements (manual or auto-

atic) and clinical decisions would be made. It could operate in
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Fig. 19. t-SNE visualisation of the feature embedding of selected TSEN variants as 

well as base line model MSEN. The suffix “O t ” indicates the output features of 

the VCM ( Fig. 9 ), while the suffix “˜ h t ” indicates the last features of TAM ( Fig. 8 ). 

“MSEN_cls” and “MSEN_att” indicates the last features from the classification and 

saliency prediction branches, respectively ( Cai et al., 2018b ). 
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ne of two modes: assistive, or fully-automated. When in an assis-

ive mode, the selection of standard biometry planes, and thus the

nal clinical decision-making, is still fully controlled by the sono-

rapher; in this case the accuracy of TSEN overall minimally af-

ects the clinical decision but will affect workflow efficiency. On

he other hand, if TSEN was used in a fully-automated mode, in-

ccuracies in automated standard plane detection would in turn

irectly affect accuracy of biometry estimation and the usability

f the combined solution in practice. Usability also depends on the
ntended end-user (experienced sonographer versus occasional user

or instance). Future work would need to study this. 

It has been demonstrated that TSEN models successfully learn

emporal visual attention and perform better than the MSEN

odel, both qualitatively and quantitatively, even though the lat-

er was demonstrated to produce good quality visual attention

aps in Cai et al. (2018b) . The disparity is attributed to the dif-

erence in the nature of data used, and equally importantly, the

asks that sonographers were performing when gaze-tracking data

ere recorded. In Cai et al. (2018b) , sonographers had the free-

om to view each single frame for as long as they wanted, allow-

ng full inspection of the contents in that particular frame. Thus,

aze information recorded on one frame were less dependent on

he other frames, which is different from the gaze-tracking data

ecorded in the PULSE dataset. The gaze-tracking data used here

ere recorded in real-time during anomaly scan sessions. There-

ore, without RNNs to encode spatio-temporal information from

onsecutive frames with dependent gaze information, MSEN can-

ot model the behavior of sonographers sampling the visual field

oth spatially and temporally. 

The question of which module is better, LSTM or GRU, for mod-

lling temporal information has long been discussed and the re-

ults are not conclusive. The consensus was GRUs are at least com-

arable to LSTM, and performance depends on specific tasks in-

olved ( Chung et al., 2014 ). Our observation is that TSEN vari-

nts trained with CLSTM consistently outperform those with CGRU

 e.g. in Table 1 , “biCLSTM” v.s. “biGRU” and “uniCLSTM” v.s. “uniC-

RU”). This is most probably due to the additional gating mecha-

ism that CLSTM employs (thus additional parameters) that allows

uch TSEN variants to better model complex temporal variation of

onographer visual attention though with additional computational

xpenses. In addition, our observation is consistent with literature

hat bi-directional RNNs are better at modelling temporal informa-

ion than uni-directinal RNNs ( Schuster and Paliwal, 1997 ). Giving

SEN models the ability to examine video frames from both di-

ections allows them to mimic sonographer behavior of comparing

everal candidate frames iteratively before making final decisions. 

It is interesting to notice that TSEN models generally perform

etter on standard snippets than on non-standard snippets of each

iometry, as demonstrated in Fig. 16 . Abdomen and head are the

wo anatomies showing higher static saliency scores and scanpath

imilarity scores in standard snippets than non-standard snippets.

his can be attributed to the fact that abdomen and head are less

ntuitive to interpret, and sonographers follow the protocol guide-

ines when potential candidate standard planes appear. For exam-

le, sonographers consistently search for the stomach bubble and

mbilical veins, according to the study ( Ahmed and Noble, 2016 ),

ith constant reference to the spine when determining the stan-

ard ACP. This consistency makes it easier to learn spatio-temporal

ransitions of visual attention. In non-standard snippets, sonogra-

her gaze data is more unstructured, resulting in less well localised

isual attention predictions with occasional failure, as can be seen

n Fig. 20 , where a non-standard abdomen snippet is presented.

n the five consecuti ve video frames (top to bottom on in the

eft column), key anatomical structures such as the umbilical vein

nd stomach bubble disappear in the third frame and re-appear in

he next two frames, possibly due to out-of-plane rotation of the

robe. In this case, TSEN did not replicate sonographer visual at-

ention; rather, it predicted visual attention with less certainty by

preading predictions in large areas. The reason for such occasional

ailure is a subject of further analysis. 

As demonstrated in Tables 3 and 4 , the Dynamic Attention

aps predicted by TAM of TSEN models assist frame classification

asks, supported by the fact that F1 scores of ACP, HCP and FLP all

emonstrated significant improvement compared to those of base-

ine models. All TSEN models are built upon the architecture used
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Fig. 20. A failure case where visual attention prediction becomes less localised in a non-standard abdominal video snippet. 
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in SonoNet-16 with slightly more computational overhead, and the

frame classification performance surpasses those of heavier mod-

els of SonoNet-64 and SonoNet-32 trained on PULSE dataset. This

result further supports the idea that sonographer gaze information

assists frame classification task, and learning temporal information

in US video snippet and gaze data can further improve frame clas-

sification performance. 

Feature embedding visualisation using t-SNE, as presented in

Fig. 19 , demonstrated that features learnt for visual attention pre-

diction separates samples of different classes even though it did

not receive any information regarding sample classes. As demon-

strated by Droste et al. (2019a) , feature representations learnt for
isual attention modelling on 2D US video frames are predictive

or fetal anomaly standard plane detection. It will be of research

nterest to see if such spatio-temporal features learnt for visual at-

ention modelling on US video snippets are more discriminative for

rame prediction. 

All TSEN models were built on the gaze information of a single

onographer. This was determined by the nature of simultaneous

aze-tracking experiment where each video was viewed only by

ne sonographer, unlike in retrospective gaze-tracking where a US

can video could be presented to multiple sonographers for view-

ng. However, our method can be generalized to potentially incor-

orate gaze information from multiple sonographers. The design
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f such a gaze-tracking experiment, and the mode of combining

ultiple sources of gaze information (with different viewing be-

aviour) to train a single visual attention predictor, are worth fur-

her explorations. 

In conclusion, we have proposed TSEN, a deep-learning based

rchitecture that effectively learns the temporal visual attention

ransitions of a sonographer from 2D US video snippets, and uti-

izes the predicted sonographer visual attention maps for finding

hree standard fetal biometry planes. The proposed TSEN model

chieves better performance in visual attention prediction and

rame classification tasks compared to models that learn only spa-

ial information. It is found that the best architecture employed

 bi-directional CLSTM to model spatio-temporal information, and

DTW as an effective and novel loss function for visual attention

egularisation. 
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