1	The association of antibody immunity with cryptococcal antigenemia and mortality in a
2	South African cohort with advanced HIV disease
3	
4	Hyunah Yoon ¹ *, Rachel M. Wake ^{2,3,4} *, Antonio S. Nakouzi ^{1,5} , Tao Wang ⁶ , Ilir Agalliu ^{6,7} ,
5	Caroline T. Tiemessen ^{8,9} , Nelesh P. Govender ^{2,3,8,10,11} , Joseph N. Jarvis ^{12,13} , Thomas S.
6	Harrison ^{2,4,10} , Liise-anne Pirofski ^{1,5}
7	
8	1. Division of Infectious Diseases, Department of Medicine, Albert Einstein College of
9	Medicine, Montefiore Medical Center, Bronx, New York, USA
10	2. Institute for Infection and Immunity, St George's University Hospital NHS Foundation
11	Trust, London, UK
12	3. Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses,
13	National Institute for Communicable Diseases, a Division of the National Health
14	Laboratory Service, Johannesburg, South Africa
15	4. Clinical Academic Group in Infection and Immunity, St George's University Hospital
16	NHS Foundation Trust, London, UK
17	5. Department of Microbiology and Immunology, Albert Einstein College of Medicine,
18	Bronx, New York, USA
19	6. Department of Epidemiology and Population Health, Albert Einstein College of Medicine
20	and Montefiore Medical Center, Bronx, New York, USA
21	7. Department of Urology, Albert Einstein College of Medicine and Montefiore Medical
22	Center, Bronx, New York, USA
23	8. Faculty of Health Sciences, University of the Witwatersrand, South Africa

© The Author(s) 2022. Published by Oxford University Press on behalf of Infectious Diseases Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

1	9.	Centre for HIV & STIs, National Institute for Communicable Diseases, a Division of the
2		NHLS, South Africa

- 3 10. MRC center for Medical Mycology, University of Exeter, Exeter, UK
- 4 11. Division of Medical Microbiology, University of Cape Town, South Africa
- 5 12. Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London
- 6 School of Hygiene and Tropical Medicine, United Kingdom
- 7 13. Botswana Harvard AIDS Institute Partnership, Botswana
- 8
- 9 ***HY and RW contributed equally to this manuscript.**
- 10

11 Corresponding author:

- 12 Liise-anne Pirofski, MD
- 13 Division of Infectious Diseases, Department of Medicine
- 14 Albert Einstein College of Medicine
- 15 1300 Morris Park Ave, Room 610
- 16 Belfer Building, Bronx, NY, USA 10461
- 17 <u>l.pirofski@einsteinmed.edu</u>
- 18
- 19 **Running title:** Antibody immunity and CrAg in PLWH.

1 Abstract

2 Background:

3 Asymptomatic cryptococcal antigenemia (positive blood cryptococcal antigen [CrAg]) is

4 associated with increased mortality in HIV-positive individuals even after adjusting for CD4

5 count and despite receiving antifungal treatment. The association of antibody immunity with

6 mortality in HIV-positive adults with cryptococcal antigenemia is unknown.

7 Methods:

8 *Cryptococcus* spp. capsular glucuronoxylomannan (GXM)- and naturally occurring β-glucans

9 (laminarin, curdlan)-binding antibodies were measured in blood samples of 197 South Africans

10 living with HIV who underwent CrAg screening and were prospectively followed up to 6

11 months. Associations between antibody titers, CrAg status and all-cause mortality were sought

12 using logistic and Cox proportional hazards regression, respectively.

13 **Results:**

Compared to CrAg-negative (n=130), CrAg-positive individuals (n=67) had significantly higher
IgG1 (median, 6,672 [interquartile range, IQR, 4,696-10,414] vs. 5,343 [3,808-7,722]µg/ml; *P*=0.007), IgG2 (1,467 [813-2,607] vs. 1,036 [519-2,012]µg/ml; *P*=0.01), GXM-IgG (1:170 [61-

17 412] vs. 1:117 [47-176]; *P*=0.0009) and lower curdlan-IgG (1:47 [11-133] vs. 1:93 [40-206];

18 *P*=0.01) titers. GXM-IgG associated directly with cryptococcal antigenemia adjusted for CD4

19 count and antiretroviral therapy use (odds ratio, 1.64 for each log increase in titer; 95%

20 confidence interval [CI], 1.21-2.22). Among CrAg-positive individuals, GXM-IgG inversely

associated with mortality at 6 months adjusted for CD4 count and active or prevalent

tuberculosis (hazard ratio, 0.50; a two-fold reduction per log increase in titer; 95% CI, 0.33-

23 0.77).

1 Conclusions:

2	The finding of an inverse association of GXM-IgG with mortality in CrAg-positive individuals
3	suggests that GXM-IgG titer may have prognostic value in such individuals. Prospective
4	longitudinal studies of antibody levels to investigate this hypothesis and identify mechanisms by
5	which antibody may protect against mortality are warranted.
6	
7	
8	Keywords: cryptococcal antigenemia, HIV/AIDS, serology, GXM-IgG, mortality
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	

1 Introduction

2	Despite an ongoing international effort to end cryptococcal-associated deaths [1], cryptococcosis
3	remains a major cause of morbidity and mortality among people living with human
4	immunodeficiency virus (HIV). Most cases occur in sub-Saharan Africa, where substantial
5	research efforts have advanced treatment and prevention of cryptococcosis [2, 3]. The
6	implementation of cryptococcal antigen (CrAg) screening in individuals with CD4 counts <200
7	cells/mm ³ makes it possible to identify HIV-positive individuals at risk for developing
8	cryptococcal meningitis (CM) before the onset of symptoms, thereby facilitating earlier
9	diagnostic testing and treatment [2].
10	While the incidence of CM has declined with CrAg screening and preemptive treatment
11	programs, mortality remains higher in HIV-positive individuals with asymptomatic cryptococcal
12	antigenemia than those without cryptococcal antigenemia, even after adjustment for CD4 count
13	and despite preemptive antifungal therapy [3, 4]. Non-CD4 T-cell associated factors are likely to
14	affect the pathogenesis of cryptococcosis since cryptococcosis occurs in HIV-positive
15	individuals with CD4 T-cell counts >200 cells/mm ³ [5] and in HIV-negative individuals [6].
16	Previous studies show that Cryptococcus neoformans (CN) capsular glucuronoxylomannan
17	(GXM) and β -glucan (laminarin, a branched β -[1-3]-glucan and curdlan, a linear β -[1-3]-glucan)-
18	binding antibody levels associate with CrAg or CM status in HIV-infected and HIV-uninfected
19	individuals [6-9]. In this study, we investigated associations between antibody immunity,
20	cryptococcal antigenemia, and mortality in a South African cohort with advanced HIV disease
21	with and without asymptomatic cryptococcal antigenemia.
22	

1 Methods

2	Study design. This is a retrospective study of serum samples obtained at enrollment of a
3	prospective cohort study of asymptomatic CrAg-positive and CrAg-negative HIV-positive adults
4	followed over 6 months after CrAg screening at two large urban hospitals in Johannesburg,
5	South Africa [4]. Participants were screened for asymptomatic/subclinical CM (positive
6	cerebrospinal fluid [CSF] using culture, India Ink microscopy, or CrAg test) when logistically
7	possible. All participants were started on antifungal therapy, and then antiretroviral therapy
8	(ART) as per local management guidelines (National Department of Health, South Africa, 2015).
9	Baseline demographic, clinical, and mortality data for up to 6 months were collected.
10	
11	Study population. Eligible individuals were HIV-positive adults ≥ 18 years with CD4 count <100
12	cells/mm ³ . Consecutive CrAg-positive and 1:2 ratio of CrAg-negative individuals attending
13	study sites following CrAg screening were invited to participate. Exclusion criteria were a
14	previous diagnosis of CM, or symptoms or signs of cryptococcal meningitis.
15	
16	Sample collection and processing. Serum samples collected at baseline were frozen and stored at
17	-20 °C. Before analysis, they were heat-inactivated at 56 °C for 30 minutes to inactivate HIV
18	and/or other heat-sensitive viruses as well as complement and stored at 4 °C.
19	
20	Antibody measurements. Serum immunoglobulin (Ig), cryptococcal capsular GXM
21	polysaccharide-, and β -glucan (laminarin, curdlan)-binding antibodies were analyzed. The latter
22	bind conserved microbial determinants that are found on the cryptococcal cell wall and that of
23	other fungi [10]. IgM, IgG1, and IgG2 concentrations were measured using a Luminex platform

1 (Austin, TX) and quantified in units of μ g/ml as previously described [7, 11]. GXM-

2 IgM/IgG/IgA and β -glucan-binding IgM/IgG were detected by antigen-capture enzyme-linked

3 immunosorbent assays (ELISA) using plates coated, respectively, with GXM (from CN strain

4 24067) and laminarin or curdlan and reported as inverse titers as previously described [7, 11].

5 These assays have been used extensively for the detection of human GXM- and β -glucan-binding

6 antibodies [11-15].

7

Ethics. Samples were obtained during a cohort study [4], approved by the Ethics Committees at
the University of the Witwatersrand and the London School of Hygiene and Tropical Medicine.
All patients provided written or witnessed verbal informed consent, and de-identified serum
samples were studied under an Albert Einstein College of Medicine Institutional Review Boardapproved protocol (1989-228). Samples were transported outside of South Africa with the
permission of the local research ethics committee.

14

15 Statistical analysis.

Bivariate analysis. Baseline demographic, clinical characteristics, and antibody levels stratified by plasma CrAg status were compared using the Wilcoxon rank-sum test for continuous and Fisher's exact or χ^2 test for categorical variables. All tests were 2-sided (α =0.05). Correlations between measured antibody variables and between antibody variables and plasma CrAg titer were assessed using Spearman's correlation coefficient.

21

22 *Model building*. Association between antibody levels and cryptococcal antigenemia was

estimated using multivariable logistic regression and association between antibody levels and

1 time to mortality was estimated using Cox proportional hazards regression. A priori decision was 2 made to include CD4 count in the model. Other variables were included in the full model if P-3 value <0.20 in the univariable model. Variables assessed include ART use prior to enrollment, tuberculosis diagnosed within 6 months prior to, or on the day of enrollment, and log-4 5 transformed antibody levels. Total IgG1 or IgG2 were not included in the full model as they may 6 biologically be in the same causal pathway as the antigen-specific antibodies. Variables were 7 selected by backward elimination, checked for confounding and interaction with the main independent variable of interest, GXM-IgG. In the survival analysis, GXM-IgG was evaluated as 8 both a continuous and a categorical variable in tertiles to demonstrate dose-response as Kaplan-9 Meier curves. Hosmer-Lemeshow goodness of fit and Schoenfeld residuals were assessed in the 10 logistic regression and Cox model, respectively. 11

12

Mediation analysis. We fitted a linear regression model for the mediator (log of GXM-IgG) with
the exposure status (CrAg positive vs. negative) as the independent variable. The Cox
proportional hazards model for the outcome (mortality by 6 months) was built with the exposure
status and the mediator as independent variables and potential confounders as covariables. The
model also included the exposure-mediator interaction term to assess for potential interactions.
Regmedint package in R was used for the analysis [16, 17].

19

Principal component analysis (PCA). Baseline antibody markers were analyzed using PCA to
 reduce complex correlated datasets into a series of linear, non-correlated principal components
 (PCs) and avoid multiple comparisons as described [6]. Log-transformed antibody markers were

- normalized to the mean. Differences in top PC scores by CrAg status (positive vs. negative) and
 mortality were examined using a linear regression model.
- 3

4 All statistical analyses were performed in R and Stata/IC 16.1 software (College Station, TX:

- 5 StataCorp LLC).
- 6

7 **Results:**

Study cohort. Demographics and clinical characteristics of the 130 CrAg-negative and 67 CrAg-8 positive cases are shown in Table 1. The median age was 39 years, 51% were male, 97% self-9 identified as Black race, with no difference between the CrAg status groups. Compared to CrAg-10 negative individuals, CrAg-positive individuals had lower CD4 counts (median 27 vs. 40.5 11 cells/mm³; P=0.003) and a greater proportion were on ART prior to enrollment (23.9% vs. 12 10.0%; P=0.01). The median plasma CrAg titer was 1:40 (interquartile range [IQR], 5-320). The 13 prevalence of tuberculosis within the past 6 months did not differ between the groups. There 14 were significantly more deaths in the CrAg-positive than CrAg-negative group (25.4% vs. 8.5%; 15 hazard ratio [HR], 3.43; 95% confidence interval [CI], 1.61-7.33) (Table 1, Supplementary Table 16 17 1).

18

Antibody marker levels. In the bivariate analysis, CrAg-positive individuals had higher inverse
titers of GXM-IgG (median, 169.5 [IQR, 61.1-411.9] vs. 117.3 [47.0-176.3]; *P*=0.0009) and
concentrations of IgG1 (6,672.2 [4,695.5-10,414] vs. 5,343.4 [3,807.7-7,721.9] μg/ml; *P*=0.007)
and IgG2 (1,467.4 [812.8-2,607] vs. 1,036.0 [519.2-2,012.4] μg/ml; *P*=0.01), and lower curdlanIgG (46.6 [11.1-133.0] vs. 93.2 [39.6-205.9]; *P*=0.01) than CrAg-negative individuals (Figure 1).

- There were no between-group differences in laminarin-binding antibodies. There was
 collinearity among GXM-IgG, GXM-IgM, and GXM-IgA (Supplementary Figure 1).
- 3

Associations of antibody markers with CrAg status. Higher GXM-IgG and lower curdlan-IgG
were each associated with CrAg-positive status adjusted for CD4 count and ART use prior to
enrollment in the multivariable logistic regression model (adjusted odds ratio [aOR], 1.64; 64%
increase in odds per log increase in GXM-IgG titer; 95% CI, 1.21-2.22 and aOR, 0.71; 29%
reduction in odds per log increase in curdlan-IgG titer; 95% CI, 0.58-0.87, respectively) (Figure
2).

10

Correlation between plasma CrAg titer and antibody levels. In the CrAg-positive group (n=67),
there were inverse correlations between CrAg titer and IgG1 (ρ=-0.33; *P*=0.007), IgG2 (ρ=-0.29; *P*=0.02), laminarin-IgG (ρ=-0.24; *P*=0.05), and while not significant, GXM-IgG (ρ=-0.19; *P*=0.13) (Supplementary Table 2).

15

Associations of antibody markers with mortality. Variables significantly associated with death 16 within 6 months in the univariable analysis included: positive plasma CrAg (HR, 3.43; 95% CI, 17 1.61-7.33), CrAg titer (HR, 1.19; 19% increase in hazard per log increase in titer; 95% CI, 1.05-18 19 1.36), tuberculosis diagnosis within the prior 6 months (HR, 2.66; 95% CI, 1.26-5.59), and GXM-IgM (HR, 0.67; 33% decrease in hazard per log increase in titer; 95% CI, 0.45-1.00) 20 (Supplementary Table 1). In the multivariable Cox proportional hazards analysis, there was an 21 interaction between CrAg status and GXM-IgG (interaction term, P=0.04), so the model was 22 23 stratified by CrAg status. In CrAg-positive individuals, GXM-IgG was inversely associated with mortality in both unadjusted (HR, 0.55; a 1.8-fold reduction per log increase in titer; 95% CI,
0.36-0.84) and adjusted (HR, 0.50; a two-fold reduction per log increase in titer; 95% CI, 0.330.77) model for CD4 count and tuberculosis (Table 2, Figure 3). GXM-IgG was not associated
with mortality in the CrAg-negative cohort. GXM-IgM was not associated with mortality in the
multivariable model.

6

7 *Mediation analysis.* Mediation analysis [16, 18] was performed to examine whether the influence of the exposure (CrAg status) on the potential mediator (GXM-IgG) explains some or all of the 8 significance of the association between an exposure and an outcome (mortality) statistically. A 9 significant interaction between the exposure and mediator variable was detected and CrAg status 10 was significantly associated with GXM-IgG and mortality. The direct effect of CrAg status on 11 mortality was 1.71 (95% CI, 0.88, 2.54), the indirect effect mediated by GXM-IgG was -0.35 12 (95% CI, -0.67, -0.03), and -57% of the total effect on mortality was mediated by GXM-IgG 13 (95% CI, -1.21, 0.08) (Supplementary Figure 2). 14

15

Principal component analysis. Most of the variance in the dataset was explained by PC1 (35%) 16 and PC2 (19%), which were used to explore associations between antibody markers and CrAg 17 status and mortality. PC1 was composed primarily of GXM-IgA, GXM-IgG, and GXM-IgM. 18 PC2 was composed of curdlan-IgG, laminarin-IgG and a negative loading of laminarin-IgM 19 20 (Supplementary Figure 3). Among CrAg-positive individuals, PC1 score had a significant inverse association with 6-month mortality; mean PC1 score was 0.32 among the CrAg-positive 21 individuals who survived, and -0.66 among the CrAg-positive individuals who died, a difference 22 23 of 0.98; 95% CI, 0.04, 1.92; P=0.04, indicating that higher levels of GXM-IgA, GXM-IgG, and

GXM-IgM were associated with higher survival rates in this population (Supplementary Table 3,
 Supplementary Figure 4). There was no association between PC score and mortality in CrAg negative group. No association was found between PC score and CrAg status in the overall
 cohort.

5

6 **Discussion**

7 In this retrospective serological study of HIV-positive CrAg-positive and negative participants with CD4 <100 cells/mm3, higher enrollment GXM-IgG and lower curdlan-IgG 8 titers were associated with CrAg-positive status, but not CrAg titer. In addition, for CrAg-9 positive participants, enrollment GXM-IgG, prior to antifungal therapy, was inversely associated 10 with mortality and a partial mediator on the causal pathway between CrAg and mortality by 6 11 months. This suggests that lower levels of GXM-IgG may in part contribute to excess mortality 12 in CrAg-positive HIV-positive individuals [3, 4] and echoes a pre-AIDS-era study in which an 13 absence of cryptococcal antibodies was a poor prognostic factor in patients with cryptococcal 14 15 meningitis [19].

Our data show that HIV-positive CrAg-positive participants with CD4 counts <100 16 cells/mm³ had higher IgG1 and IgG2 levels than CrAg-negative participants. However, IgG2 17 levels in both CrAg-positive and CrAg-negative participants were lower than normal HIV-18 negative adult values. HIV is associated with hypergammaglobulinemia, generally manifested as 19 20 increased IgG1, but IgG2 is decreased [20]. IgG2 is the predominant IgG subclass of human antibodies to capsular polysaccharides, including GXM [13, 21]. Thus, as in a prior study [7], 21 higher IgG2 levels in CrAg-positive than CrAg-negative participants may reflect a cryptococcal 22 23 response. We did not determine GXM-IgG subclasses in this study.

1	Higher GXM-IgG in CrAg-positive participants parallels multiple previous studies that
2	found higher GXM-IgG titers in HIV-positive and HIV-negative individuals with, than without,
3	cryptococcosis [7-9, 15]. Notably, in participants with cryptococcal antigenemia, lower GXM-
4	IgG was associated with mortality, while in an unadjusted analysis of the entire cohort, lower
5	GXM-IgM was associated with mortality. These associations were supported by the PCA, in
6	which the top principal component, primarily GXM-binding antibodies, was inversely associated
7	with CrAg titer and mortality in CrAg-positive individuals, although the GXM-IgG specific
8	signal in predicting CrAg-positive status was reduced by adding noise from GXM-IgM and
9	GXM-IgA. While association is not causation, these data suggest that GXM-binding antibodies
10	may have a protective role in those with cryptococcal antigenemia. This is consistent with a large
11	body of data showing that GXM monoclonal antibodies (mAbs) mediate beneficial effects,
12	including anticryptococcal activity in vitro [22], GXM clearance, including in a clinical trial in
13	patients with cryptococcal meningitis [23], and protection against lethal cryptococcal infection in
14	experimental models [24].
15	As previously reported [7], we found CrAg-negative participants had detectable GXM-
16	binding antibodies. Most likely, this reflects cryptococcal infection early in life or latency [25]
17	and/or ongoing environmental exposure, though we cannot rule out cross-reactivity with an
18	unknown determinant [21]. GXM-binding antibodies have been detected in HIV-negative and
19	HIV-positive individuals with and without a history of cryptococcosis as well as young children
20	[8, 14]. Thus, higher GXM-IgG titers in CrAg-positive compared to CrAg-negative individuals
21	most likely reflect an immune response to fungal growth. HIV infection impairs responses to
22	new, but not previously encountered antigens [20]. Although fungal growth is not always
23	detected (or quantified if present) in CrAg-positive persons, it is logical to posit that serum

cryptococcal antigenemia emerges when host defense is unable to contain latent or newly
acquired cryptococcal infection. Thus, an increase in GXM-IgG might signal cryptococcosis risk
in CrAg-negative individuals. Consistent with this idea, anti-mannan antibodies, which can
protect mice against experimental candidiasis [26], were detected in patients with candidiasis
prior to the development of positive blood cultures [27].

6 β -glucan-binding antibodies are part of the natural serum antibody repertoire, which binds conserved microbial determinants found on the cryptococcal cell wall and other fungi and 7 is the first line of defense against pathogens [10, 28]. Although we did not find associations 8 between laminarin- or curdlan-binding antibodies and mortality, lower curdlan-IgG was 9 associated with CrAg status and laminarin-IgG inversely correlated with CrAg titer, a correlate 10 of risk for meningitis [29] and death [30]. Previous reports show associations between lower 11 laminarin-antibody titers and CrAg-positive status [7] as well as HIV-associated cryptococcus-12 associated immune reconstitution inflammatory syndrome [11]. Evidence that naturally 13 occurring β-glucan-binding antibodies could contribute to host defense against cryptococcosis 14 includes that laminarin-binding antibodies have direct anti-cryptococcal effects in vitro [31], 15 indirect effects on the inflammatory response [11], and protect mice in vivo [32, 33]. Similar to 16 17 our findings in CrAg-positive participants, candidemic patients had higher β-glucan-associated-18 protein MP65 titers than non-candidemic patients and survivors had higher titers than nonsurvivors [34]. 19

We found increased mortality in CrAg-positive participants with tuberculosis and lower curdlan-IgM in participants with than without tuberculosis (Supplementary Table 4). Notably, mycobacterial cell walls contain multiple glucans [35] and decreased levels of serum mycobacterial cell wall-binding IgG were associated with disseminated tuberculosis [36]. Given

that tuberculosis is an independent risk factor for cryptococcosis [37, 38], more work is needed
to identify possible shared susceptibility factors.

3

4 Strength and limitations

5 We used well-established antigen-capture ELISAs to detect GXM-, laminarin-, and curdlan-binding antibodies [9, 12, 15]. While previous studies examined the relationship between 6 7 antibody markers and cryptococcal disease status, we sought associations between antibody markers and all-cause mortality. We used mediation analysis to establish that GXM-IgG partially 8 mediated a causal association between CrAg and mortality and PCA to eliminate 9 multicollinearity between antibody variables. Use of these platforms led to a novel result that 10 implicates GXM-binding antibody levels in survival of HIV-positive CrAg-positive individuals. 11 Our study also has limitations. Serum CrAg may have affected GXM-binding antibody 12 measurements, we did not assay for immune complexes. Since our assays were performed on a 13 single sample from one point in time, our data does not address longitudinal or temporal 14 variations in antibody levels. We did not perform functional assays and did not investigate the 15 relationship between B cells and cryptococcal disease status [39] or antibody levels as we did not 16 have access to peripheral blood mononuclear cells. Misclassification bias is possible. Though 17 rare, cryptococcal meningitis can occur in CrAg-negative individuals [40] and this may have 18 affected the difference in antibody levels by CrAg status. ART use prior to enrollment associated 19 20 with cryptococcal antigenemia, most likely reflecting prolonged immune suppression in ARTexperienced, non-adherent individuals. While we adjusted for ART use, our understanding of 21 22 possible interactions between ART and antibody levels is limited. There may have been other

unmeasured or latent confounders that could shed more light on the association between
 antibody markers, ART, and mortality.

3

4 Conclusion:

Levels of IgG1, IgG2, GXM-IgG and β-glucan binding antibodies differed in CrAg-5 positive and CrAg-negative individuals, GXM-IgG associated with CrAg status as did lower 6 curdlan-IgG, and lower GXM-IgG associated with an increased risk of all-cause mortality in 7 CrAg-positive individuals. These findings support the hypothesis that GXM- and β-glucan-8 binding antibodies may enhance cryptococcal host defense, highlighting the need for mechanistic 9 and larger-scale prospective longitudinal clinical studies. Such studies may provide a better 10 understanding of the antifungal activities of GXM- and β -glucan-binding antibodies, identify 11 much needed biomarkers of cryptococcal pathogenesis and mortality, and inform opportunities 12 for earlier risk stratification and therapeutic intervention. 13 14

1 NOTES

2 Acknowledgments

3 Samples and data collection performed by Neo Legare, Matshediso Mkhwanazi, Siphiwe Kutta,

4 and Tracey Shabangu.

5

6 Author contributions.

7 Conception or design of the work (HY, RW, TH, NG, JJ, LP), data analysis (HY, RW, TW, AI,

8 JJ, TH, LP) and interpretation (all authors), drafting the article (HY, RW, TH, LP), critical

9 revision of the article (all authors), and final approval of the version to be published (all authors).

10

11 Funding

12 This work was supported by the Einstein-Rockefeller-City University of New York, Center for

13 AIDS Research [Grant Number P30-AI124414] which is supported by the following National

14 Institutes of Health (NIH) Co-Funding and Participating Institutes and Centers: NIAID, NCI,

15 NICHD, NHLBI, NIDA, NIMH, NIA, FIC, NIMHD, NIGMS, NIDDK, and OAR, and

16 NIH/National Center for Advancing Translational Service (NCATS) Einstein-Montefiore

17 Clinical and Translational Science Awards (CTSA) [Grant Number UL1TH001073] to HY,

18 National Institutes of Health [Grant Number R01-AI143453] to LP, Meningitis Research

19 Foundation [Grant Number 1604.0], Sir Ratanji Dallal Trust (research, grant), St Georges NHS

20 Trust Charity (research grant), Health Education England (HEE)/NIHR [Grant Number CL-

21 2019-16-001] to RW, South African Research Chairs Initiative of the Department of Science and

22 Innovation and National Research Foundation of South Africa [Grant Number 84177] to CTT,

23 Meningitis Research Foundation [Grant Number 1604.0] (paid to institution with RW), National

1	Institutes of Health [Grant Number R01AI118511], and a Cooperative Agreement between the
2	National Health Laboratory Service and US Centers for Disease Control and Prevention [CDC-
3	RFA-GH15-1575], to NPG, and EDCTP (paid to institution) and National Institute for Health
4	Research (NIHR) through a Global Health Research Professorship [Grant Number RP-2017-08-
5	ST2-012] using UK aid from the UK Government to support global health research to JNJ. The
6	views expressed in this publication are those of the author(s) and not necessarily those of the
7	NIH, CDC, NIHR, NHS, or the UK Department of Health and Social Care.
8	
9	Potential conflicts of interest.
10	NPG reports grants or contracts from NIH, UK MRC, Gates foundation, CDC, NHLS Research
11	trust (paid to institution), payment or honoraria for lectures, presentations, speakers bureaus,
12	manuscript writing or educational events from SA HIV Clinicians Society (paid to author), a role
13	as president (2017-2021) and council member (2022) of FIDSSA, and receipt of equipment,
14	materials, drugs, medical writing, gifts or other services from Immy – CrAg LFA strips (paid to
15	institution). TSH reports payment or honoraria for lectures, presentations, speakers bureaus,
16	manuscript writing or educational events from Gilead Sciences and Pfizer (paid to author). JNJ
17	reports grants from Centers for Disease Control and Prevention, speaker fees from Gilead,
18	participation on DSMB as the TSC chair for ASTRO, HARVEST, ARTIST, ACACIA,
19	CASTLE, and received donation of drug for clinical trial from Gilead Sciences Inc. There are no
20	reported conflicts of interest by all other authors.
21	✓

1	Reference	es
1	Reference	es

2	1.	Ending Cryptococcal Meningitis Deaths by 2030 – Strategic Framework. South Africa;
3		2021. https://dndi.org/wp-
4		content/uploads/2021/05/EndCryptococcalMeningitisDeaths2030-StrategicFramework-
5		EN-2021.pdf. Accessed July 6, 2022.
6	2.	Jarvis JN, Lawn SD, Vogt M, Bangani N, Wood R, Harrison TS. Screening for
7		cryptococcal antigenemia in patients accessing an antiretroviral treatment program in
8		South Africa. Clin Infect Dis 2009; 48(7): 856-62.
9	3.	Longley N, Jarvis JN, Meintjes G, et al. Cryptococcal Antigen Screening in Patients
10		Initiating ART in South Africa: A Prospective Cohort Study. Clin Infect Dis 2016; 62(5):
11		581-7.
12	4.	Wake RM, Govender NP, Omar T, et al. Cryptococcal-related Mortality Despite
13		Fluconazole Preemptive Treatment in a Cryptococcal Antigen Screen-and-Treat Program.
14		Clinical Infectious Diseases 2019; 70(8): 1683-90.
15	5.	Tugume L, Rhein J, Hullsiek KH, et al. HIV-Associated Cryptococcal Meningitis
16		Occurring at Relatively Higher CD4 Counts. J Infect Dis 2019; 219(6): 877-83.
17	6.	Yoon H, Nakouzi A, Pappas PG, Hemmige VS, Pirofski L-a. Cryptococcus neoformans-
18		specific and non-Cryptococcous neoformans-specific antibody profiles in organ
19		transplant recipients with and without cryptococcosis. Open Forum Infectious Diseases
20		2022.
21	7.	Hlupeni A, Nakouzi A, Wang T, et al. Antibody Responses in HIV-Infected Patients
22		With Advanced Immunosuppression and Asymptomatic Cryptococcal Antigenemia.
23		Open Forum Infect Dis 2019 ; 6(1): ofy333.

1	8.	Fleuridor R, Lyles RH, Pirofski L. Quantitative and qualitative differences in the serum
2		antibody profiles of human immunodeficiency virus-infected persons with and without
3		Cryptococcus neoformans meningitis. J Infect Dis 1999 ; 180(5): 1526-35.
4	9.	Subramaniam K, French N, Pirofski LA. Cryptococcus neoformans-reactive and total
5		immunoglobulin profiles of human immunodeficiency virus-infected and uninfected
6		Ugandans. Clin Diagn Lab Immunol 2005; 12(10): 1168-76.
7	10.	Trevijano-Contador N, Pianalto KM, Nichols CB, Zaragoza O, Alspaugh JA, Pirofski
8		LA. Human IgM Inhibits the Formation of Titan-Like Cells in Cryptococcus neoformans.
9		Infect Immun 2020 ; 88(4).
10	11.	Yoon HA, Nakouzi A, Chang CC, et al. Association Between Plasma Antibody
11		Responses and Risk for Cryptococcus-Associated Immune Reconstitution Inflammatory
12		Syndrome. J Infect Dis 2019 ; 219(3): 420-8.
13	12.	Casadevall A, Mukherjee J, Scharff MD. Monoclonal antibody based ELISAs for
14		cryptococcal polysaccharide. Journal of immunological methods 1992; 154(1): 27-35.
15	13.	Deshaw M, Pirofski LA, Antibodies to the Cryptococcus neoformans capsular
16		glucuronoxylomannan are ubiquitous in serum from HIV+ and HIV- individuals. Clin
17		Exp Immunol 1995 ; 99(3): 425-32.
18	14.	Abadi J, Pirofski L. Antibodies reactive with the cryptococcal capsular polysaccharide
19		glucuronoxylomannan are present in sera from children with and without human
20		immunodeficiency virus infection. J Infect Dis 1999; 180(3): 915-9.
21	15.	Rohatgi S, Nakouzi A, Carreño LJ, et al. Antibody and B cell subset perturbations in
22		HIV-uninfected patients with cryptococcosis. Open Forum Infectious Diseases 2017:
23		ofx255-ofx.

1	16.	Valeri L, Vanderweele TJ. Mediation analysis allowing for exposure-mediator
2		interactions and causal interpretation: theoretical assumptions and implementation with
3		SAS and SPSS macros. Psychol Methods 2013; 18(2): 137-50.
4	17.	Li Y, Mathur MB, Yoshida K. R package regmedint: extension of regression-based
5		causal mediation analysis with effect measure modification by covariates. OSF Preprints;
6		Center for Open Science 2022.
7	18.	Hafeman DM, Schwartz S. Opening the Black Box: a motivation for the assessment of
8		mediation. Int J Epidemiol 2009 ; 38(3): 838-45.
9	19.	Diamond RD, Bennett JE. Prognostic factors in cryptococcal meningitis. A study in 111
10		cases. Annals of internal medicine 1974; 80(2): 176-81.
11	20.	Lane HC, Masur H, Edgar LC, Whalen G, Rook AH, Fauci AS. Abnormalities of B-cell
12		activation and immunoregulation in patients with the acquired immunodeficiency
13		syndrome. N Engl J Med 1983; 309(8): 453-8.
14	21.	Houpt DC, Pfrommer GS, Young BJ, Larson TA, Kozel TR. Occurrences,
15		immunoglobulin classes, and biological activities of antibodies in normal human serum
16		that are reactive with Cryptococcus neoformans glucuronoxylomannan. Infect Immun
17		1994 ; 62(7): 2857-64.
18	22.	Zhong Z, Pirofski LA. Opsonization of Cryptococcus neoformans by human
19		anticryptococcal glucuronoxylomannan antibodies. Infect Immun 1996; 64(9): 3446-50.
20	23.	Larsen RA, Pappas PG, Perfect J, et al. Phase I evaluation of the safety and
21	Y	pharmacokinetics of murine-derived anticryptococcal antibody 18B7 in subjects with
22		treated cryptococcal meningitis. Antimicrob Agents Chemother 2005; 49(3): 952-8.

1	24.	Fleuridor R, Zhong Z, Pirofski L. A human IgM monoclonal antibody prolongs survival
2		of mice with lethal cryptococcosis. J Infect Dis 1998; 178(4): 1213-6.
3	25.	Garcia-Hermoso D, Janbon G, Dromer F. Epidemiological evidence for dormant
4		Cryptococcus neoformans infection. J Clin Microbiol 1999 ; 37(10): 3204-9.
5	26.	Zhang MX, Bohlman MC, Itatani C, et al. Human Recombinant Antimannan
6		Immunoglobulin G1 Antibody Confers Resistance to Hematogenously Disseminated
7		Candidiasis in Mice. Infection and Immunity 2006 ; 74(1): 362-9.
8	27.	Clancy CJ, Nguyen ML, Cheng S, et al. Immunoglobulin G responses to a panel of
9		Candida albicans antigens as accurate and early markers for the presence of systemic
10		candidiasis. J Clin Microbiol 2008; 46(5): 1647-54.
11	28.	Maddur MS, Lacroix-Desmazes S, Dimitrov JD, Kazatchkine MD, Bayry J, Kaveri SV.
12		Natural Antibodies: from First-Line Defense Against Pathogens to Perpetual Immune
13		Homeostasis. Clin Rev Allergy Immunol 2020; 58(2): 213-28.
14	29.	Wake RM, Britz E, Sriruttan C, et al. High Cryptococcal Antigen Titers in Blood Are
15		Predictive of Subclinical Cryptococcal Meningitis Among Human Immunodeficiency
16		Virus-Infected Patients. Clin Infect Dis 2018; 66(5): 686-92.
17	30.	Rajasingham R, Wake RM, Beyene T, Katende A, Letang E, Boulware DR. Cryptococcal
18		Meningitis Diagnostics and Screening in the Era of Point-of-Care Laboratory Testing. J
19		Clin Microbiol 2019 ; 57(1).
20	31.	Rodrigues ML, Travassos LR, Miranda KR, et al. Human antibodies against a purified
21		glucosylceramide from Cryptococcus neoformans inhibit cell budding and fungal growth.
22		Infect Immun 2000 ; 68(12): 7049-60.

1	32.	Rachini A, Pietrella D, Lupo P, et al. An anti-beta-glucan monoclonal antibody inhibits
2		growth and capsule formation of Cryptococcus neoformans in vitro and exerts
3		therapeutic, anticryptococcal activity in vivo. Infect Immun 2007; 75(11): 5085-94.
4	33.	Torosantucci A, Chiani P, Bromuro C, et al. Protection by anti-beta-glucan antibodies is
5		associated with restricted beta-1,3 glucan binding specificity and inhibition of fungal
6		growth and adherence. PLoS One 2009; 4(4): e5392.
7	34.	Torosantucci A, Tumbarello M, Bromuro C, et al. Antibodies against a beta-glucan-
8		protein complex of Candida albicans and its potential as indicator of protective immunity
9		in candidemic patients. Sci Rep 2017; 7(1): 2722.
10	35.	Schwebach JR, Glatman-Freedman A, Gunther-Cummins L, et al. Glucan Is a
11		Component of the <i>Mycobacterium tuberculosis</i> Surface That Is Expressed In
12		Vitro and In Vivo. Infection and Immunity 2002; 70(5): 2566-75.
13	36.	Costello AM, Kumar A, Narayan V, et al. Does antibody to mycobacterial antigens,
14		including lipoarabinomannan, limit dissemination in childhood tuberculosis? Trans R Soc
15		Trop Med Hyg 1992 ; 86(6): 686-92.
16	37.	Jarvis JN, Harrison TS, Corbett EL, Wood R, Lawn SD. Is HIV-associated tuberculosis a
17		risk factor for the development of cryptococcal disease? Aids 2010; 24(4): 612-4.
18	38.	Wake RM, Ismail NA, Omar SV, et al. Prior Pulmonary Tuberculosis is a Risk Factor for
19		Asymptomatic Cryptococcal Antigenemia in a Cohort of Adults living with Advanced
20		HIV Disease. Open Forum Infectious Diseases 2022.
21	39.	Subramaniam K, Metzger B, Hanau LH, et al. IgM(+) memory B cell expression predicts
22		HIV-associated cryptococcosis status. J Infect Dis 2009; 200(2): 244-51.

1	<u> </u>	40.	Nanfuka V, Mkhoi ML, Gakuru J, et al. Symptomatic Cryptococcal Meningitis with
2	2		Negative Serum and Cerebrospinal Fluid Cryptococcal Antigen Tests. HIV AIDS
3	5		(Auckl) 2021 ; 13: 861-5.
4	Ļ		
5	.		
		C	
	7		
			24

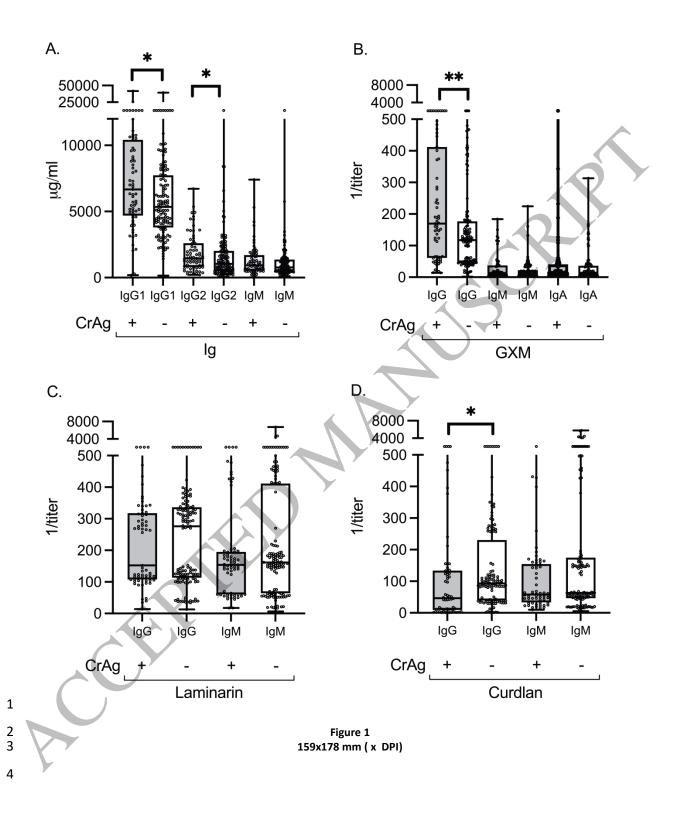
Covariables	Total (n=197)	CrAg-negative	CrAg-positive	<i>P</i> -value
		(n=130)	(n=67)	
Age, year	39.0 (32.4-47.1)	39.1 (33.0-47.8)	38.7 (31.7-47.1)	0.67
Sex				2 '
Male	100 (50.8)	70 (53.9)	30 (44.8)	0.23
Female	97 (49.2)	60 (46.2)	37 (55.2)	
Race		~		
Black	191 (97.0)	125 (96.2)	66 (98.5)	0.67
Others	6 (3.1)	5 (3.9)	1 (1.5)	
CD4 count (cells/mm ³)	33 (12-61)	40.5 (16-64)	27 (7-40)	0.003
Plasma CrAg titers	1:40 (5-320)	n/a	1:40 (5-320)	
Baseline blood fungal	5 (2.5)	0	5 (7.5)	0.002
growth				
Tuberculosis in the	51 (25.9)	33 (25.4)	18 (26.9)	0.82
past 6 mo. ¹				
Tuberculosis	29 (14.7)	18 (13.9)	11 (16.4)	0.63
treatment				
ART prior to	29 (14.7)	13 (10.0)	16 (23.9)	0.01
enrollment				
Vital status at 6 mo.				
Alive	160 (81.2)	113 (86.9)	47 (70.2)	0.01
Dead	28 (14.2)	11 (8.5)	17 (25.4)	

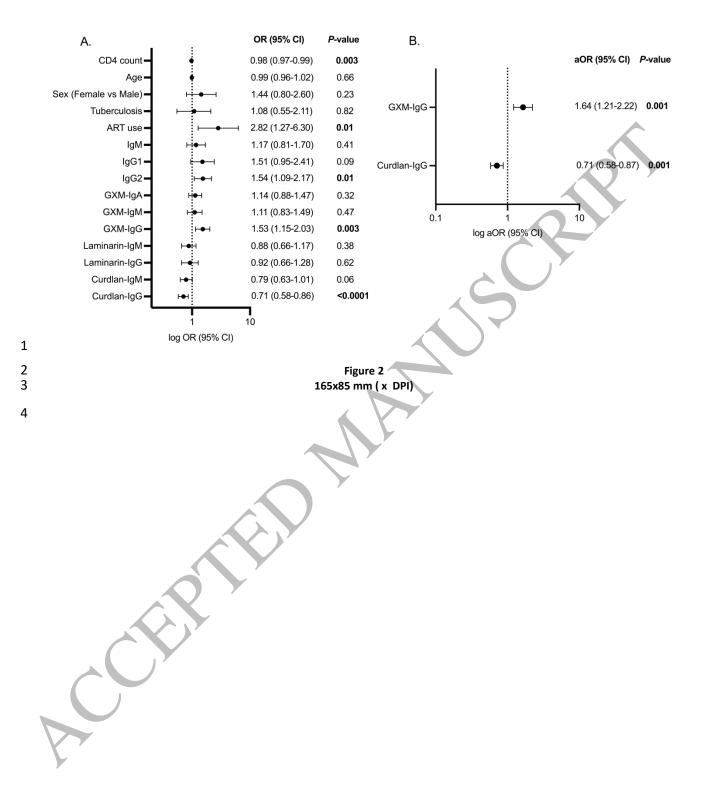
1 Table 1. Baseline and clinical characteristics of participants by CrAg status

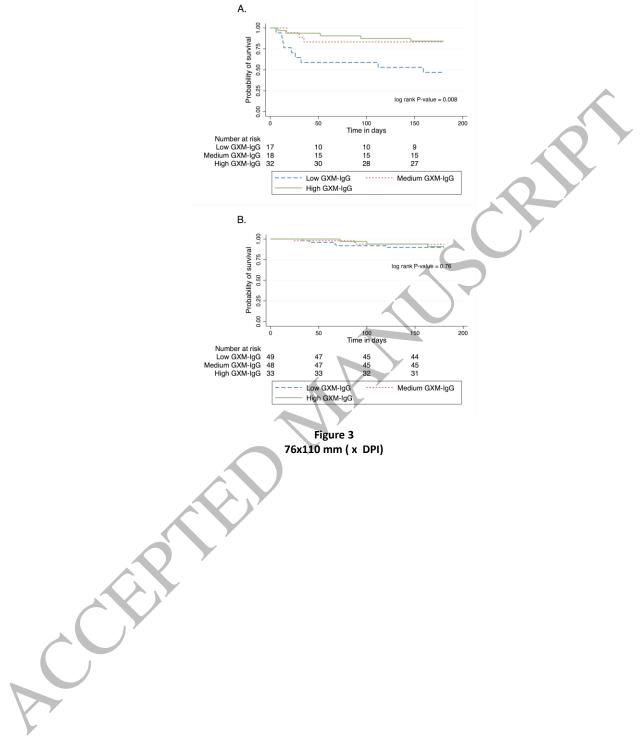
	Unknown	9 (4.6)	6 (4.6)	3 (4.5)	
1					
2	Note: Categorical v	ariables are summariz	zed with counts, perce	entages and P-values	based on
3	Fisher's exact or χ^2	test. Continuous varia	ables are summarized	l with medians, interc	quartile range
4	and <i>P</i> -values based	on Wilcoxon rank-su	m test. <i>P</i> -values < 0.0	05 bolded.	\mathbf{X}
5				Q	
6	¹ Includes pulmonar	y, disseminated, or ex	xtrapulmonary Mycob	pacterium tuberculos	is infection
7	diagnosed within 6	months prior to, or or	n the day of enrollment	nt.	
8				\mathbf{y}	
9	Abbreviations: AR'	Γ, antiretroviral therap	oy; CrAg, cryptococc	al antigen; HIV, hum	ian
10	immunodeficiency	virus; mo, months; n/	a, not applicable.		
11					
12					
13					
14					
15		\mathbf{Q}			
16					
17					
18					
19	<pre>K</pre>				
20	V				
21					
22					

1 Table 2. Stratified Cox proportional hazards regression model estimating GXM-IgG as a

2 predictor of mortality by 6 months following enrollment.


	CrAg-negative (n=130)		CrAg-positive (n=67)	
	HR (95% CI)	<i>P</i> -value	HR (95% CI)	P-value
Death, no. (%)	11 (8.5)		17 (25.4)	
Model 1 – Unadjusted	1.03 (0.58-1.80)	0.93	0.55 (0.36-0.84)	0.006
Model 2 – Adjusted CD4 count	1.04 (0.59-1.82)	0.90	0.56 (0.36-0.86)	0.009
Model 3 – Adjusted CD4 count	1.03 (0.60-1.76)	0.92	0.50 (0.33-0.77)	0.002
and tuberculosis		$ \rightarrow $		
Note: GXM-IgG was log-transformed and used as a continuous variable. <i>P</i> -values < 0.05 bolded				


- 7 Abbreviations: CI, confidence interval; CrAg, cryptococcal antigen; GXM,
- 8 glucuronoxylomannan; HR, hazard ratio.


1 Figure legends

2	Figure 1. Total and antigen-specific antibody levels in 130 CrAg-negative and 67 CrAg-positive
3	individuals at baseline. Total Ig levels were determined by Luminex and GXM, laminarin, and
4	curdlan antibody titers were determined by enzyme-linked immunosorbent assay. Ig
5	concentrations in units of μ g/ml (A) and the inverse of GXM (B), laminarin (C), and curdlan (D)
6	titers, depicted as medians and interquartile ranges, are shown on the y-axis for each group
7	shown on the x-axis. CrAg status is represented by (+) or (-) to indicate positive or negative
8	CrAg status, respectively. * $P < 0.05$; ** $P \le 0.001$. Wilcoxon rank-sum test. Abbreviation: CrAg,
9	cryptococcal antigen; GXM, glucuronoxylomannan; Ig, immunoglobulin.
10	
11	Figure 2. Forest plots of the univariable (A) and multivariable (B) logistic regression analysis
12	estimating the association between antibody markers and plasma CrAg status in a cohort of 130
13	CrAg-negative and 67 CrAg-positive individuals. Antibody variables were log-transformed.
14	Covariables with $P < 0.20$ in the univariable analysis were included in the multivariable analysis
15	(CD4 count and ART use). Tuberculosis includes pulmonary, disseminated, or extrapulmonary
16	infection diagnosed within 6 months prior to enrollment. ART use includes treatment history
17	prior to enrollment. <i>P</i> -values < 0.05 bolded. Abbreviations: aOR, adjusted odds ratio; ART,
18	antiretroviral therapy; CI, confidence interval; CrAg, cryptococcal antigen; GXM,
19	glucuronoxylomannan; OR, odds ratio.
20	
21	Figure 3. Kaplan-Meier Curves for survival by baseline GXM-IgG categories. The range of
22	inverse titers of GXM-IgG was categorized into tertiles; low (1.9-62.2), medium (62.8-172.0),
23	and high GXM-IgG (176.3-3,453.3). Curves are shown for the 67 CrAg-positive individuals

- 1 (Panel A) and 130 CrAg-negative individuals (Panel B). GXM-IgG was log-transformed in the
- 2 survival analysis. Abbreviations: GXM, glucuronoxylomannan.
- 3

