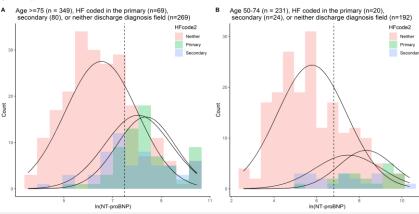
Age-stratified utility of NT-proBNP testing as part of a blind Emergency Department shortness of breath orderset (Jan-Dec 2019). MA. Peterzan¹, A. Hemida¹, J. Black¹, CT. Madada¹, K. Wardman¹, S.

Pavasovic¹, S. Bright¹, R. Ray¹, N. Shanmugam¹, LJ. Anderson¹. 1. St George's University Hospital NHS Foundation Trust, Cardiology Clinical Academic Group, London, United Kingdom of Great Britain & Northern Ireland

St George's University Hospitals


INTRODUCTION & PURPOSE

NT-proBNP was added to our emergency department (ED) triage blind 'shortness of breath (SOB) orderset' for presenters aged >70. Evidence-based thresholds for acute heart failure (HF) diagnosis are >900/1800 pg/ml for ages 50-75/>75 respectively (1, 2); their utility in contemporary UK practice is uncertain.

Purpose: To assess the relation between blind NT-proBNP testing in this setting and (1) coded discharge diagnosis stratified by age, and (2) all-cause mortality at medium-term follow-up.

METHODS

We retrieved all ED 'SOB' blood ordersets (1.1.2019– 31.12.2019), including NT-proBNP, Hb, electrolytes, creatinine, troponin, CRP, d-dimer, and coded discharge diagnoses. Multivariate logistic regression models for all-cause survival (at 9.9.2021) were assessed. FIGURE. Histograms of numbers of patients discharged with HF coded in the primary, secondary, or neither discharge diagnosis field for (A) patients aged >=75, and (B) patients aged 50-74, plotted against presenting ln(NT-proBNP).

TABLE 1 (continued). Lab results by age.

(continued): Eab rooano by ago:												
Age	All	<60	60-69	70-74	75-79	80-84	>85					
D-dimer (IQR), ug/ml	278 (410)	170 (136)	278 (411)	330 (670)	410 (400)	344 (320)	381 (735)					
Trop T (IQR)	21 (29)	7 (8.5)	15 (20)	20 (26)	25 (35)	27 (28)	37 (29)					
Hb (IQR), g/dL	126 (28)	138 (18)	130 (31)	127 (25)	121 (32)	120 (23)	121 (21)					
Na ⁺ (IQR), mmol/L	139 (6)	140 (4)	139 (5)	138 (6)	140 (5)	139 (6)	139 (5)					
K⁺ (IQR), mmol/L	4.3 (0.6)	4.3 (0.6)	4.3 (0.6)	4.4 (0.7)	4.4 (0.6)	4.4 (0.6)	4.4 (0.6)					
Ur (IQR), mmol/L	6.5 (4.8)	4.6 (2.6)	6.2 (3.8)	6.8 (4.1)	7.0 (5.2)	7.0 (4.6)	8.5 (5.9)					
Cr (IQR), umol/L	83 (47)	73 (23)	78 (34)	84 (54)	88 (64)	92 (52)	94 (53)					
CRP (IQR)	11 (31)	7 (20)	14 (49)	10 (29)	13 (42)	11 (34)	10 (22)					

RESULTS

There were 638 presentations (median age 76.1), unexpectedly including 198 <70 years. Modal and median lengths of stay were 0 and 1 day respectively.

Stratified by age (<60, 60-69, 70-74, 75-79, 80-84, ≥85y), the proportion with HF coded as primary discharge diagnosis (5, 7, 9, 17, 18, 25% respectively) and all-comer all-cause mortality at 2.2±0.3 years (13, 42, 40, 48, 48, 49%) steadily increased (Table; orderset variables presented as median (inter-quarity range).

Median NT-proBNP was 3672, 2667, and 321 pg/ml when HF was in the primary, secondary, or neither coded discharge diagnosis field respectively; 2.2-year-all-cause mortality was 54%, 60%, and 35%. In those with a primary HF discharge code, 77% of 349 presenters ≥75y and 88% of 231 aged 50-74 had NT-proBNP >1800/900 pg/ml respectively. In those without an HF code, 26% in both age cohorts had NT-proBNP>1800/900 pg/ml (dotted lines in Figure, panels A/B, respectively represent NT-proBNP thresholds).

Independent predictors of all-cause mortality for patients with a primary or secondary HF code were In(NT-proBNP) (OR 1.26, 95% CI 1-1.59) and serum Na⁺ (OR 0.93, 0.88-0.99); for patients without an HF code, these were serum K⁺ (1.87, 1.21-2.88), In(NT-proBNP) (1.35, 1.15-1.58), In(CRP) (1.18, 1.02-1.36), length of stay (1.08, 1.03-1.12), and age (1.03, 1.01-1.06).

TABLE 1. Characteristics of presentations by age.

Age	All	<60	60-69	70-74	75-79	80-84	>85
Presentation (n), all	638	101	97	90	120	113	116
1st	583	95	90	77	107	100	114
2nd	47	4	6	10	12	12	2
3rd	7	1	1	3	1	1	0
4th	1	1	0	0	0	0	0
HF coded in primary	89	5	7	8	20	20	29
discharge diagnosis field	(14.0%)	(5.0%)	(7.2%)	(8.9%)	(16.7%)	(17.7%)	(25.0%)
HF coded in secondary	105	4	10	11	20	35	25
discharge diagnosis field	(16.5%)	(4.0%)	(10.3%)	(12.2%)	(16.7%)	(31%)	(21.6%)
HF coded in either field	168	8	15	17	35	47	46
	(26.3%)	(7.9%)	(15.5%)	(18.9%)	(29.2%)	(41.6%)	(39.7%)
HF coded in neither field	470	93	82	73	85	66	70
	(73.7%)	(92.1%)	(84.5%)	(81.1%)	(70.8%)	(58.4%)	(60.3%)
Median NT-proBNP (IQR),	630	75 (146)	288	448	1086	1009	1712
pg/ml	(2379)		(1423)	(1579)	(3013)	(2982)	(3240)
Deceased at follow-up (%)	258	13	41	36	57	54	57
	(40.4%)	(12.9%)	(42.3%)	(40.0%)	(47.5%)	(47.8%)	(49.1%)
HF f/u on discharge note	80	4	7	9	17	20	23
	(12.8%)	(4.0%)	(7.4%)	(10.1%)	(14.3%)	(18.2%)	(20.9%)
Length of stay, days (IQR)	1 (5)	0 (1)	1 (6)	1.5 (4)	1 (7)	1 (4)	2 (10.5)

CONCLUSIONS

HF detection with NT-proBNP in a blind SOB orderset showed increasing sensitivity with age with the best specificity >75 years. Most presenters stayed ≤1 day, so blind testing at triage facilitates HF detection. NT-proBNP independently predicted 2.2-yearall-cause mortality irrespective of discharge HF coding. This is notable as the commonest non-HF causes of acute SOB are prognostically important at >70 years and follow-up occurred through the Covid-19 pandemic. The findings may reflect disease severity in patients without HF, but also suggest that discharge HF coding status does not identify all those with prognostically relevant HF.

References

1. Januzzi JL, van Kimmenade R, Lainchbury J, et al. NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patientsThe International Collaborative of NT-proBNP Study. Eur Heart J. 2006;27(3):330-337 2. Januzzi JL, Chen-Tournoux AA, Christenson RH, et al. N-Terminal Pro-B-Type Natriuretic Peptide in the Emergency Department: The ICON-RELOADED Study. JACC. 2018;71(11):1191-1200