

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ierv20

Comparing reactogenicity of COVID-19 vaccines: a systematic review and meta-analysis

Natalina Sutton, Alberto San Francisco Ramos, Emily Beales, David Smith, Sabina Ikram, Eva Galiza, Yingfen Hsia & Paul T. Heath

To cite this article: Natalina Sutton, Alberto San Francisco Ramos, Emily Beales, David Smith, Sabina Ikram, Eva Galiza, Yingfen Hsia & Paul T. Heath (2022): Comparing reactogenicity of COVID-19 vaccines: a systematic review and meta-analysis, Expert Review of Vaccines, DOI: 10.1080/14760584.2022.2098719

To link to this article: https://doi.org/10.1080/14760584.2022.2098719

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

6

View supplementary material

Published online: 15 Jul 2022.

Submit your article to this journal 🕝

Article views: 22

View related articles 🗹

則 🛛 View Crossmark data 🗹

META-ANALYSIS

OPEN ACCESS OPEN ACCESS

Comparing reactogenicity of COVID-19 vaccines: a systematic review and meta-analysis

Natalina Sutton^a*, Alberto San Francisco Ramos ^a*, Emily Beales^a, David Smith^a, Sabina Ikram^a, Eva Galiza^a, Yingfen Hsia^{a,b} and Paul T. Heath ^a

^aCentre for Neonatal and Paediatric Infection & Vaccine Institute, Institute for Infection and Immunity, St George's University of London, London, United Kingdom of Great Britain and Northern Ireland; ^bSchool of Pharmacy, Queen's University Belfast, Belfast, United Kingdom of Great Britain and Northern Ireland

ABSTRACT

Objectives: A number of vaccines have now been developed against COVID-19. Differences in reactogenicity and safety profiles according to the vaccine technologies employed are becoming apparent from clinical trials.

Methods: Five databases (Medline, EMBASE, Science Citation Index, Cochrane Central Register of Controlled Trials, London School of Hygiene and Tropical Medicine COVID-19 vaccine tracker) were searched for relevant randomized controlled trials between 1 January 2020 and 12 January 2022 according to predetermined criteria with no language limitations.

Results: Forty-two datasets were identified, with 20 vaccines using four different technologies (viral vector, inactivated, mRNA and protein sub-unit). Adults and adolescents over 12 years were included. Control groups used saline placebos, adjuvants, and comparator vaccines. The most consistently reported solicited adverse events were fever, fatigue, headache, pain at injection site, redness, and swelling. Both doses of mRNA vaccines, the second dose of protein subunit and the first dose of adenovirus vectored vaccines were the most reactogenic, while the inactivated vaccines were the least reactogenic.

Conclusions: The different COVID-19 vaccines currently available appear to have distinct reactogenicity profiles, dependent on the vaccine technology employed. Awareness of these differences may allow targeted recommendations for specific populations. Greater standardization of methods for adverse event reporting will aid future research in this field.

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (COVID-19) has been associated with more than 513 million cases and 6.2 million deaths worldwide as of 6 May 2022 [1]. To control this pandemic, safe and effective vaccines were developed rapidly and several vaccine candidates have emerged. Currently, 344 COVID-19 vaccine candidates are in various stages of development and 126 candidates have reached clinical trials [2]. Thirty-eight vaccines have now been approved for emergency use in 197 countries [3].

Different strategies and technologies have been utilized for the development of vaccines against SARS-CoV-2. While these include conventional approaches such as inactivated and protein subunit vaccines, they also include novel technologies such as messenger ribonucleic acid (mRNA) and viralvectored vaccines. Already, clear differences in the efficacy of these vaccines are emerging from clinical trials [4,5] and it is also apparent that the reactogenicity and safety profiles differ according to the platform employed. A detailed understanding of the side effect profiles of different vaccines is required for decisions to be made about their deployment and in informing the general public about the risk-benefit ratios of vaccination. Additionally, such data may have implications for the populations in which they are to be used, for example, vaccines associated with low rates of adverse events (AEs) may be prioritized for use in pregnant women, young children, the immunocompromised and the elderly.

An early systematic review and meta-analysis of COVID-19 vaccines by Yuan et al. [6] (to October 2020) showed that there were significant differences between vaccine and placebo recipients in terms of local and systemic AEs. Pormohammad et al. [5] concluded that mRNA-based vaccines had the highest level of side effects (except for diarrhea and arthralgia) and aluminum-adjuvanted vaccines had the lowest side effect profile (except for injection site redness). Another review by Ling et al. [4] concluded that the incidence of adverse reactions was highest for the adenovirus vector vaccines. Chen et al. [7] drew a similar

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

ARTICLE HISTORY

Received 16 May 2022 Accepted 4 July 2022

KEYWORDS

Systematic review; Metaanalysis; COVID-19 vaccines; reactogenicity; adverse events

CONTACT Paul T. Heath pheath@sgul.ac.uk C Centre for Neonatal and Paediatric Infection & Vaccine Institute, Institute for Infection and Immunity, St George's University of London, Jenner Wing, Cranmer Terrace, London SW17 ORE, United Kingdom of Great Britain and Northern Ireland *Joint first author.

B Supplemental data for this article can be accessed online at https://doi.org/10.1080/14760584.2022.2098719

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

Article highlights

- The scientific community's response to the COVID-19 pandemic has resulted in the development of numerous COVID-19 vaccines in a short period of time.
- Four main vaccine types (mRNA, adenovirus-vector, protein subunit and inactivated) are in advanced clinical trials or approved for general use in different populations.
- Each vaccine type has a unique reactogenicity profile with mRNA vaccines being most reactogenic and inactivated vaccines being least reactogenic.
- High heterogeneity is evident within each vaccine type. This reduced when age was restricted to adults aged 16–55 years and individual vaccines were analyzed separately.
- Lack of standardization of COVID-19 vaccine trial design makes comparison of different vaccines challenging. The main differences noted were in variation in the number and type of post-vaccine symptoms participants were asked to report, the choice of control used and whether data was reported by single dose or combined doses.
- Use of a control (adjuvants or MenACWY vaccine) instead of a placebo (0.9% saline) reduced the risk ratios of AEs, thereby underestimating reactogenicity.
- Standardization of vaccine trial design and reporting will aid comparison of vaccines in the future.
- Awareness of the reactogenicity profile of different vaccine types will aid health-care workers and policy makers to make decisions around the use of different vaccine types in different settings and populations. For example, the use of less reactogenic vaccines for pregnant women and children.

conclusion and also observed that the overall incidence of adverse events was higher for vaccinees aged 16–55 years than older adults (aged over 55 years), an observation also reported in the systematic review by Wang et al. [8]. The most recently published meta-analyses of the safety of COVID-19 vaccines (to 17 June 2021) concluded that all vaccines increased the risk of non-serious AEs. Due to the inconsistencies reported in past reviews and the speed at which new data in this area is published, we undertook a systematic review and meta-analysis of the reactogenicity of COVID-19 vaccines assessed in randomized controlled trials (RCTs), with a focus on commonly reported systemic and local AEs.

2. Methods

2.1. Database and search terms

A systematic review and meta-analysis was carried out to compare the reactogenicity of COVID-19 vaccines developed using different technologies: viral vector, mRNA, inactivated and protein subunit vaccines. The following databases were searched: Medline, EMBASE, Science Citation Index (Web of Science), Cochrane Central Register of Controlled Trials (CENTRAL) and the London School of Hygiene and Tropical Medicine (LSHTM) COVID-19 vaccine tracker [2]. Medical subject headings (MESH) terms and free text synonyms were used to search the databases for the following search themes: 'vaccines,' 'reactogenicity,' and 'COVID-19.' The Cochrane highly sensitive search strategy was used to narrow the search results to RCTs [9]. The search results were limited to human studies published between January 2020 – 12 January 2022. The full search strategy for each database can be found in supplementary Table S1.

This review was registered in the PROSPERO International prospective register of systematic reviews (13 April 2021, PROSPERO 2021 CRD42021248766).

2.2. Systematic review: inclusion and exclusion criteria

The search results were imported into the web application Rayyan, a recommended screening tool for systematic reviews [10]. Duplications were removed and the remaining papers were independently assessed in duplicate by NS, ASFR and EB against the inclusion and exclusion criteria, disagreements were resolved by consensus. Papers were deemed suitable for inclusion if they described a blinded randomized control trial of a COVID-19 vaccine, in participants aged 12 years and over, with either a placebo or control arm. Only studies of vaccines that were in active phase III clinical trials (recruitment or follow-up) before the 6th of January 2022, according to the LSHTM vaccine tracker [11] were included. A full list of eligible vaccines can be found in supplementary Table S2. Studies were excluded if they described only i) heterologous or booster regimes, ii) immunogenicity or efficacy, iii) the study protocol, vi) vaccines that were not administered intramuscularly, and v) COVID-19 vaccines which were co-administered with other vaccines. Preprint papers, not yet peer-reviewed and listed on the LSHTM tracker were not included.

2.3. Risk of bias assessment

Each paper was independently assessed in duplicate for risk of bias by NS, ASFR, EB, SI, DS, and YH using the Revised Cochrane risk-of-bias tool for randomized trials (RoB 2) [12]. Any discrepancies were resolved by discussion between the two authors. If they were unable to resolve their differences, discrepancies were resolved by discussion with the rest of the review team. Studies which were assessed to have a high risk of bias were not included in the meta-analysis, and only data regarding study characteristics were extracted for these papers.

2.4. Data extraction

The following data regarding the study characteristics were extracted: the countries where the trials were conducted, participant characteristics (age, sex, and ethnicity), vaccine characteristics (vaccine platform, dose, and schedule) and the placebo or control used. For the studies which were assessed to have a 'low' or 'some concerns' risk of bias, data on reactogenicity were extracted. For each dose of vaccine or control, the number of participants who experienced fever, fatigue, headache, pain at injection site, redness, swelling, any local AE, any systemic AE or any AEs were extracted. Although differences in the grading of AEs used in the different trials were small, in order to minimize any potential bias, data was analyzed for 'all' AEs in each category and not further categorized by AE grade. If the trials reported data on different doses of vaccines, only data related to the dose that was taken forward into Phase 3 trials were collected.

2.5. Missing data requested from authors

For papers which did not report the reactogenicity separately for each vaccine dose administered, or papers where the data were only presented in graphs, the authors were contacted to request the data. Raw data received by authors were summarized in R studio statistical software (version 1.4.1717). The data received from authors had two potential denominators – number of participants who received a vaccine dose and should have completed the reactogenicity diary and number of participants who completed any part of the diary (per-protocol). We used the former in our analysis to remain consistent with the approach taken by other papers included in this review. When data was not provided by authors but was available in graph format in the manuscript, a web-based plot digitizer tool (WebPlotDigitiser V 4.5) [13] was used for data extraction.

2.6. Statistical analysis

The descriptive analyses were performed and summarized using percentage, frequency, and median with minimummaximum ranges. Meta-analysis was carried out in RevMan Version 5.4. The studies were divided into two groups: studies which had data for each vaccine dose and studies in which the data were combined for the whole vaccine course. Single dose vaccines were included in the analysis of studies where data were available by dose. The Mantel-Haenszel random-effects model was performed to estimate risk ratios (RRs) and 95% confidence intervals (Cls) for each symptom by vaccine platform for dose 1 and dose 2, or all doses combined. This model was selected because of the high potential heterogeneity across trials. Low, moderate, and high heterogeneity were defined as l^2 values of 25%, 50%, and 75%, respectively [14].

2.7. Sensitivity analysis

A sensitivity analysis was carried out comparing intention to treat (ITT) and per-protocol populations by plotting separate forest plots with the same denominators for the first and second doses. In the per-protocol population, the denominators for participants who received dose one and dose two were different as some participants did not receive the second dose. In the ITT population, the denominators for doses one and two were the same, based on the number of participants who received dose one of the vaccine. If there was no significant difference between the two analyses, the per-protocol data was reported in order to be consistent with the published trial reports.

2.8. Investigating heterogeneity and publication bias

Factors that could contribute to high heterogeneity were identified as age, phase of vaccine trial, type of placebo or active control used by different trials, and multiple vaccines being included in each vaccine platform group. Four additional groups of forest plots were created which included only adult participants aged 16–65 years, only trials which used a placebo control (0.9% saline or water for injection), only phase II and III studies, and only vaccines which had three or more papers published. The l^2 statistic was compared to assess which of the factors was contributing to high heterogeneity. Due to lack of granularity in the data, we were unable to perform meta-regression to further investigate heterogeneity in this review.

To assess publication bias of included clinical trials, funnel plots of the RRs against the standard error for each individual study were performed.

2.9. Comparison of control types and analysis of individual vaccines

Further analysis was carried out to assess the impact of the different controls that were used across trials. For the vaccines with trials using different control groups, forest plots were constructed with each control group as an independent subgroup. Additional forest plots were constructed to compare individual vaccines which had at least three papers published.

3. Results

The database search was carried out on 12 January 2022 and yielded 1335 results. After duplications were deleted, 865 papers were screened. See Figure 1 for the study selection flowchart. Forty-eight papers describing 20 vaccines met the inclusion criteria for the review and underwent a risk of bias assessment. Most papers were assessed as having a low risk of bias, six had some concerns [15–20] and four had a high risk of bias [21–24]. A breakdown of the risk of bias assessment for each paper can be found in the supplementary Table S3. Seven papers were excluded from the meta-analysis: four [21–24] due to a high risk of bias and three [25–27] due to missing data which was not available from the authors. One of the papers [28] included data on two vaccines, resulting in 42 datasets describing 17 vaccines. Thirty-two of the datasets[15–18,20,29–55] presented data divided by dose, whereas ten [19,28,56–61] combined data for all doses.

Of the 20 vaccines included in the systematic review, the vaccine platforms were: viral vector (4), inactivated (6), mRNA (3), and protein sub-unit (7). For the control groups, 29 of the trials used a placebo (0.9% saline, water for injection, or vaccine excipients), 18 used an adjuvant (aluminum hydroxide, Algel, or Algel-IMDG) and two used a Meningococcal ACWY (MenACWY) conjugate vaccine. Most trials recruited adults over the age of 18 years. Four trials included adolescent participants (aged over 12 years) [38,41,44,62]. Overall, there was an equal mix of male and female participants in the trials, although three trials had less than 30% female trial participants (see Figure 2), which resulted in a mix of ethnicities among participants. See Table 1 for a summary of the study characteristics.

Analysis of solicited AEs focused on the six symptoms which were consistently reported in most papers: fever, fatigue, headache, pain at injection site, redness, and swelling. There was variability in the number of local and systemic AEs that were solicited in the individual trials (median four [range 3–7] and eight [range 4–16] respectively). For this reason, data on total local AEs, total systemic AEs and total 'any AEs' were not analyzed.

1. Other reasons for not meeting the inclusion criteria - Vaccine not administered IM, booster study, superseded by more recent paper, control was a COVID vaccine, co-administration with another vaccine, conference abstract, protocol, doesn't include dose taken to Phase III, heterologous regime, monoclonal antibody, participants aged <12 years.

Figure 1. Study selection flow chart.

Figure 2. World map of countries hosting vaccine trial sites by vaccine type (note: some trials took place in more than one country).

Table 1. Stu	dy characteristics.								
Vaccine char	acteristics						Part	icipant ch	aracteristics
Vaccine platform	Vaccine name (developer)	Study	Phase	Dose (b)	Dosing schedule	Control	Age	% Female	Ethnicity (%) <i>(c)</i>
Viral Vector	Ad26.COV2.S (Janssen Pharmaceutical	Sadoff et al [15].	l/lla	$5 \times 10^{10} \text{ vp}$	Single dose	0.9% Saline	18–55, ≥65	51.3	White (94.5), Black (2.9)
	Companies)	Sadoff et al (<i>d</i>) [27].	III	5 × 10 ¹⁰ vp	Single dose	0.9% Saline	18–59, ≥60	45	White (58.7), Black (19.4)
	Ad5-nCov (CanSino Biological Inc,	Halperin et al [31].	III	5 × 10 ¹⁰ vp	Single dose	Vaccine excipients	≥18	29.2	Hispanic/Latino (37), Other (63)
	Beijing Institute of Biotechnology)	Zhu et al [30].	II	5 × 10 ¹⁰ vp	Single dose	Vaccine excipients	≥18	50	Not reported
		Zhu et al [29].	llb	5 × 10 ¹⁰ vp	D0-D56	Vaccine excipients	18–55, >56	41	Not reported
	ChAdOx1 (University of Oxford,	Asano et al [36].	1/11	5 × 10 ¹⁰ vp	D0-D28	0.9% Saline	18–55, 56–69, ≥70	33.9	Japanese (100)
	AstraZeneca)	Falsey et al [16].	III	5 × 10 ¹⁰ vp	D0-D28	0.9% Saline	18–64, ≥65	44.4	White (79), Black (8.3)
		Folegatti et al [32].	1/11	5 × 10 ¹⁰ vp	D0-D28	MenACWY Vaccine	18–55	49.8	White (90.9), South Asian (3.2)
		Madhi et al [34].	lb/ll	5 × 10 ¹⁰ vp	D0-D28	0.9% Saline	18–64	43.5	Black African (70.6), Mixed (15.0)
		Madhi et al [33].	lb/lla	5 × 10 ¹⁰ vp	D0-D28	0.9% Saline	18–65	61	Black (99), White (1)
		Ramasamy et al [35].	II	5 × 10 ¹⁰ vp	D0-D28	MenACWY Vaccine	18–55, 56–69, ≥70	49.8	White (94.9), Asian (3.4)
	Gam-COVID-Vac (Gamaleya Research Institute)	Logunov et al (e) [21].	III	10 ¹¹ vp	D0-D21	Vaccine excipients	≥18	38.8	White (98.5), Asian (1.4)
Inactivated	BBV152 (Bharat Biotech)	Ella et al [49].	Ι	6 µg	D0-D14	Algel-IMDG only	18–55	20.8	Not reported
		Ella et al [50].	Ш	6 µg	D0-D28	Algel only	18–60, ≥60	32.7	Indian (100)
	BIBP (Sinopharm's Beijing Institute of	Al Kaabi et al [28].	III	4 µg	D0-D21	Aluminum Hydroxyde	≥18	15.3	Not reported
	Biological Products)	Xia et al [56].	+	4 µg	D0-D21	Aluminum Hydroxyde	18–59	55	Not reported
		Xia et al [44].	1/11	4 µg	D0-D28-56	Aluminum Hydroxyde	13–17	47.9	Han Chinese (97.5), Hui (2.3)
	CoronaVac (Sinovac)	Bueno et al [48].	III	3 µg	D0-D14	Aluminum Hydroxyde	18–59, ≥60	61.8	White (93.8), Other (6.2)
		Fadlyana et al [47].	III	3 µg	D0-D14	Water for Injection	18–59	35.4	Not reported
		Han et al [62].	1/11	3 µg	D0-D28	Aluminum Hydroxyde	12–17	46.0	Han Chinese (100)
		Tanriover et al [57].	III	3 µg	D0-D14	Aluminum Hydroxyde	18–59	42.2	Not reported
		Wu et al [45].	1/11	3 µg	D0-D28	Aluminum Hydroxyde	≥60	51.1	Han Chinese (99.8)
		Zhang et al [46].	1/11	3 µg	D0-D14, D0-D28	Aluminum Hydroxyde	18–59	53.4	Han Chinese (100)
	Inactivated Vaccine (IMBCAMS(a))	Che et al <i>(e)</i> [22].	II	150 U	D0-D14	Aluminum Hydroxyde	18–59	62.3	Han Chinese (70.1), Yi (19.2)
		Pu et al [20].	Ι	150 U	D0-D14	Aluminum Hydroxyde	18–59	55.2	Han Chinese (96.9), Tibetan (1.6)
	QazCovid-in (Scientific Research Institute for Biological Safety Problems of the Republic of Kazakhstan)	Zakarya et al (e) [23].	I	5 µg	D0-21	0.9% Saline	18–50	34.1	Not reported
	WIBP (Sinopharm's Wuhan Institute of	Al Kaabi et al [28].	III	4 µg	D0-D21	Aluminum Hydroxyde	≥18	15.6	Not reported
	Biological Products)	Guo et al [58].	II	5 µg	D0-21, D0-28	Aluminum Hydroxyde	18–59	50.4	Not reported

(Continued)

Table 1. (Continued).

Vaccine char	racteristics						Pai	ticipant ch	aracteristics
Vaccine platform	Vaccine name (developer)	Study	Phase	Dose (b)	Dosing schedule	Control	Age	% Female	Ethnicity (%) <i>(c)</i>
mRNA	BNT162b2 (Pfizer, BioNTech)	Frenck et al	III	30 µg	D0-D21	0.9% Saline	12–15	50.1	White (84.7), Black (6.1)
	Diotricelly	Haranaka et al	I/II	30 µg	D0-D21	0.9% Saline	20–64, 65–85	49.3	Asian (100)
		Polack et al (d)	11/111	30 µg	D0-D21	0.9% Saline	16–55, ≥55	49.4	White (82.9), Black (9.3)
		Thomas et al (d) [25].	11/111	30 µg	D0-D21	0.9% Saline	≥16	49.1	White (82), Black (9.6)
		Walsh et al [39].	Ι	30 µg	D0-D21	0.9% Saline	18–55, 65–85	55.2	White (88.6); Asian (8.6)
	CVnCoV (CureVac N.V.)	Kremsner et al	llb	12 µg	D0-D28	0.9% Saline	18–60, >61	45	White (25.3), Latin American (74.7)
	mRNA-1273 (Moderna)	Ali et al [41].	11/111	100 ug	D0-D28	0.9% Saline	12–17	49	White (84), Asian (6)
		Chu et al [42]		100 µg	D0-D28	0.9% Saline	18-<55 >55	65.0	White (94.8) Black (2.7)
		El Sahly et al	ili	100 μg	D0-D28	0.9% Saline	18-<65, ≥65	47.4	White (79.2), Black (10.2)
Protein	EpiVacCorona (Vector	[43]. Ryzhikov et al	1/11	225 µg	D0-D21	0.9% Saline	18–60	44.0	Not reported
Subunit	MVC-COV1901 (Medigen Vaccine Biologics Corporation,	(e) [24]. Hsieh et al [55].	II	15 μg	D0-D28	0.9% Saline	20–64, ≥65	43.5	Asian (99.9)
	Dynavax, NIAID) NVX-CoV2373 (Nevavax)	Dunkle et al	III	5 µg	D0-D21	0.9% Saline	18–64, ≥65	48.2	White (75.9), Black (11)
	(NOVAVAX)	Formica et al	II	5 µg	D0-D21	0.9% Saline	18–59, 60–84	50.9	White (86.8), Asian (7.6)
		Heath et al	III	5 µg	D0-D21	0.9% Saline	18–84	48.4	White (94.5), Asian (2.9)
		Keech et al	I/II	5 µg	D0-D21	0.9% Saline	18–59	49.6	White (78.6), Hispanic/ Latino (14.5)
		Shinde et al	II	5 µg	D0-D21	0.9% Saline	18–84	42.6	Black (95.3), White (3.5)
	S-Trimer/SCB-2019 (Clover Biopharmaceuticals, GSK, Dinavax)	Richmond et al [18].	I	30 µg	D0-D21	0.9% Saline	18–54, 55–75	65	Asian (13), White (87)
	Sf9 (West China Hospital, Sichuan University)	Meng et al [19].	1/11	40 µg	D0-D14-D28	Aluminum Hydroxyde	18–55, ≥56	60.2	Not reported
	V-01 (Guandong Provincial CDC,	Zhang et al [46].	I	10 µg	D0-D21	Aluminum Hydroxyde	18–59, >60	40	Han Chinese (100)
	Gaozhou CDC, Livson Pharmaceutical Group)	Ya-Jun et al [61].	II	10 µg	D0-D21	Aluminum Hydroxyde	18–59, >60	47	Han Chinese (100)
	ZF2001 (Anhui Zhifei Longcom Biopharmaceutical, Chinese Academy of Sciences)	Yang et al [59].	II	25 μg	D0-D30-D60	Aluminum Hydroxyde	18–59	58.0	Han Chinese (99.3)

a- IMBCAMS – Institute of Medical Biology, Chinese Academy of Medical Sciences; b- Dose which is being taken forward to Phase 3 trials; c- The top two ethnicities are listed; d- Not included in meta-analysis due to missing data; e- Not included in meta-analysis due to high risk of bias; vp = viral particles

3.1. Systemic adverse events

3.1.1. Fever

Forest Plot 1 shows the RR of developing fever, as compared with the control, by each vaccine type, for those papers that divided data by dose. The overall RR of developing fever after any vaccine type was 4.21 (95% Confidence Interval [CI] 2.56–6.94). The mRNA vaccines had the highest RR for fever, especially after the second vaccination: 6.64 (95% CI 2.21–19.96) after dose one and 31.17 (95% CI 15.91–61.05) after dose two, compared to 5.97 (95% CI 2.95–12.09) for dose one of the adenovirusvectored vaccines and 5.61 (95% CI 1.94–16.23) for dose two of the protein subunit vaccines. Inactivated vaccines had the lowest RR of fever against control for both doses (1.38 [95% CI 1.05–1.81] for dose 1 and 1.10 [95% CI 0.82–1.47] for dose two), while the risk after dose one for the adenovirus vectored (1.52 [95% CI 0.89–2.59]) and protein subunit vaccines (1.14 [95% CI 0.85–1.54]), was no greater than that of the control group.

3.1.2. Fatigue

Data on fatigue according to dose is shown in Forest Plot 2. Overall, pooled RR for fatigue after any dose was 1.69 (95% Cl 1.50–1.90). A second dose of vaccine was associated with a higher RR for both mRNA (1.54 [95% CI 1.31–1.82] for dose 1 and 2.65 [95% CI 2.44–2.87] for dose 2) and protein subunit vaccines (1.14 [95% CI 1.10–1.19] and 2.00 [95% CI 1.63–2.45]). In contrast, adenovirus-vectored vaccines showed similar RRs for dose one (1.68 [95% CI 1.50–1.59]) and dose two (1.40 [95% CI 1.25–1.57]). RR for fatigue in the inactivated vaccine studies were not different to control for either dose one or two (1.34 [95% CI 0.97–1.86] and 1.27 [95% CI 0.68–2.34] respectively).

3.1.3. Headache

The RR of headache for all subgroups was 1.59 (95% Cl 1.41–1.80). Data divided by dose (Forest plot 3) show that the second dose of mRNA vaccines had the highest RR (2.63 [95% Cl 2.42–2.85]) compared to 1.44 [95% Cl 1.16–1.77] for the first dose. An increase between doses was also seen for protein subunit vaccines (1.09 [95% Cl 1.05–1.14] for dose one and 1.73 [95% Cl 1.33–2.23] for dose two) while it was similar between doses for the adenovirus-vectored vaccines (1.64 [95% Cl 1.47–1.83] for dose one and 1.38 [95% Cl 1.24–1.54] for dose two). Overall, inactivated vaccines had smaller RRs (1.21 [95% Cl 1.00–1.45] and 1.18 [95% Cl 0.91–1.55] for the first and second doses respectively).

3.2. Local adverse events

3.2.1. Pain at the injection site

Data for localized pain divided by dose is presented in Forest plot 4. Overall risk of developing pain at the injection site versus control after any dose of vaccine was 3.30 [95% Cl 2.92–3.72]. Second doses of mRNA (5.22 [95% Cl 4.04–6.74]) and protein subunit vaccines (4.67 [95% Cl 3.76–5.80]) had the highest RR, followed by mRNA first dose (4.75 [95% Cl 3.62–6.24]), adenovirus-vectored vaccines (3.59 [95% Cl 2.65–4.88] for first dose and 2.62 [95% Cl 1.53–4.49] for second dose) and the second dose of protein subunit vaccines 3.23 [95% Cl 2.78–3.76]. Inactivated vaccines had the lowest RRs (1.38 [95% Cl 1.11–1.72] for dose one and 1.19 [95% Cl 0.96–1.46] for dose 2).

3.2.2. Redness

RR of redness at the injection site after any vaccine dose versus control was 3.71 [95% CI 2.52–5.48]. Data divided by dose are shown in forest plot 5. Adenovirus vaccines had comparable rates following each dose (1.77 [95% CI 0.96–3.27] and 2.03 [95% CI 1.46–2.81] respectively). Conversely, there was a marked increase in the risk of redness compared to control for mRNA (first dose 6.32 [95% CI 3.69–10.82] versus second dose 12.77 [95% CI 7.64–21.34]) and protein subunit vaccines (first dose 3.39 [95% CI 2.37–4.83] versus second dose 18.78 [95% CI 10.82–32.57]). Inactivated vaccines did not show statistically significant RRs for redness compared to controls.

3.2.3. Swelling

Data analysis divided by dose is shown in forest plot 6. Inactivated vaccines had non-significant RR versus placebo for both doses and RR were similar for adenovirus-vectored vaccine dose 1 (2.50 [95% CI 1.29–4.84]) and dose 2 (1.95 [95% CI 1.52–2.50]). mRNA vaccines were at least 10 times more likely to cause local swelling compared to placebo (RR 10.78 [95% CI 7.40–15.70] for dose 1 and 17.06 [95% CI 9.97–29.18] for dose 2). There was a substantial increase in the risk of swelling after the second dose of protein subunit vaccines (18.43 [95% CI 12.47–27.23]) compared to the first (RR 3.42 [95% CI 2.41–4.84]). The RR of swelling for pooled subgroups was 4.23 (95% CI 2.74–6.52).

3.3. Analysis of data not divided by dose

Forest plots for all six symptoms for studies which did not report data divided by dose can be found in the supplement (Forest plots S1-S6). These only included inactivated and protein subunit vaccines. There were non-statistically significant RRs for fever, fatigue, headache, pain at injection site and redness for both vaccine types. For swelling, protein subunit vaccines had an overall RR of 5.87 (95% CI 1.93–17.86) whereas inactivated vaccines showed no statistically significant increased risk compared to control.

3.4. Sensitivity analysis

The sensitivity analyses were performed to compare ITT and perprotocol population for the six selected solicited AEs. Results for sensitivity analyses are presented in the supplement (Forest plots S7-S12). For all six events, there were no significant differences in the RRs for the second doses in the ITT versus the per-protocol populations except for dose two injection site pain for inactivated vaccines (original RR 1.19 [95% CI 0.96–1.46] versus 1.50 [95% CI 1.01–2.24]). This reflects the fact that the vast majority of participants who received a first dose of vaccine went on to receive their scheduled second dose.

3.5. Heterogeneity and publication bias

Forest plots showing l^2 values for the following analyses: younger adult population only (16–65 years), 0.9% saline control studies only and phase II/III studies can be found in the supplement (Forest plots S13 - S30). When all studies were plotted, the heterogeneity was moderate to high for adenovirus-vectored vaccines dose one (59-92%), mRNA vaccines dose one (54-97%) and dose two (65-96%), generally lowest for inactivated vaccines (both doses), the first dose of protein subunit vaccines and variable for the remaining subgroups. Heterogeneity could not be calculated for inactivated vaccines (both doses) for the 0.9% saline control analysis due to only one study being in the group. A reduction in the heterogeneity values was seen within each vaccine platform subgroup; the effect was greater when the extremes of age (teenagers and older adults) were removed from the analysis, and the heterogeneity was smaller when Phase I trials or non-0.9% saline-controlled studies were not included in the analysis. See Table S4 in the supplement for a summary of I² values. The total heterogeneity remained high (90–98%) in all the analyses in keeping with an expected difference in reactogenicity between vaccine types.

Analysis of publication bias of included clinical trials is shown in Funnel plots S1-6 in the supplement. The publication bias was assessed for each individual AE. Funnel plot asymmetry varied for each symptom. One potential reason for this may be due to the high heterogeneity observed between different trials and vaccine platforms.

3.6. Choice of control groups

Most trials for the same vaccine type used the same control for all included trials, for example, all the mRNA and protein subunit vaccine trials used 0.9% saline as a control. Four trials of the ChAdOx-1 (Oxford-AstraZeneca) vaccine used 0.9% saline as the control group [16,33,34,36] and two used a MenACWY vaccine [32,35]. Forest plots for selected symptoms (fatigue and injection site pain) are shown in the supplement (Forest plots S31 and S32). Trials with 0.9% saline control had higher RR of local pain after each vaccine dose compared to those with MenACWY control (dose one: 4.01 [2.71-5.95] vs 1.80 [1.59-2.04]; dose two 3.61 [3.10-4.21] vs 0.90 [0.62-1.330]), with a similar trend for other symptoms (data not shown). One trial of the CoronaVac vaccine [47] used water for injection (WFI) as the control while three [45,46,48] used an adjuvant (aluminum hydroxide). Forest plots for fatigue and pain are shown in the supplement (Forest plots S33 and S34). RRs were smaller for trials which used an adjuvant as the control compared to those that used WFI, although the differences were not statistically significant.

3.7. Individual vaccines

Six individual vaccines had at least three papers with data available for meta-analysis: Ad5-nCov (Cansino, adenovirus-vector), BNT162b2 (Pfizer-BionTech, mRNA), ChAdOx-1 (Oxford-AstraZeneca, adenovirus-vector), CoronaVac (inacti-vated), mRNA-1273 (Moderna, mRNA) and NVX-CoV2373 (Novavax, protein subunit). The pooled RR were estimated as individual vaccine subgroups rather than vaccine technology (forest plots S35 – S40 in the supplement).

All vaccines except CoronaVac had statistically significant RRs for fatigue against control, with mRNA-1273 (dose one RR 1.36 [95%CI 1.31–1.40] and dose two RR 2.64 [95%CI 2.28–3.06]) and NVX-CoV2373 (dose one RR 1.14 [95%CI 1.09–1.19] and dose two RR 2.19 [95%CI 1.83–2.62]) having higher risk after the second dose compared to the first.

All vaccines were associated with increased risk of fever against control except for CoronaVac (both doses), ChAdOx-1 (second dose), and NVX-CoV2373 (first dose). The second doses of both mRNA vaccines: BNT162b2 (RR 27.26 [95%Cl 15.38–48.33] versus 8.88 [95%Cl 5.48–14.39]) and mRNA-1273 (RR 25.9 [95%Cl 7.78–86.46] versus 2.56 [95%Cl 1.90–3.47]) and the protein subunit vaccine NVX-CoV2373 (RR 6.76 [95%Cl 2.21–20.60] versus 1.13 [95%Cl 0.83–1.52]) had significantly higher risk of fever compared to the first dose.

For headache, all vaccines except CoronaVac had significant RRs against control, which were higher for the second doses of BNT162b2 (2.67 [95%CI 2.43–2.92]), mRNA-1273 (2.46 [95%CI 2.28–2.65]) and NVX-CoV2373 (1.90 [95%CI 1.49–2.43]) compared to the first dose (1.54 [95%CI 1.42–1.66], 1.22 [95% CI 1.18–1.26] and 1.09 [95%CI 1.05–1.14] respectively).

All doses, except for the second dose of CoronaVac, were associated with increased risk of pain at the injection site, with no statistically significant differences between both doses. Analysis for redness showed that all vaccines except CoronaVac had increased risk versus control, statistically higher for dose two in NVX-CoV2373 (17.82 [95%CI 7.57–41.97] versus 3.25 [95%CI 2.26–4.66]) for dose one. Risk of swelling was significantly higher than control for all vaccines except CoronaVac, with increased risk for dose two compared to dose one in mRNA-1273 (28.01 [95%CI 22.21–35.32] versus 14.62 [95%CI 11.64–18.36]) and NVX-CoV2373 (16.81 [95%CI 9.71–29.08] versus 3.01 [2.07–4.38]).

4. Discussion

This systematic review and meta-analysis focuses on data reported in blinded RCTs of COVID-19 vaccines utilizing either placebo or control arms. We believe it is the most comprehensive systematic review and meta-analysis of COVID-19 vaccine reactogenicity available, with data on approximately 200,000 administered vaccine doses. Only studies of vaccines that had reached phase III clinical trials by the start of 2022 were included and thus the results of this review provide a perspective on the reactogenicity of vaccines that are currently relevant to the global community. In contrast to earlier reviews, studies of all relevant vaccine technologies were available for analysis.

Several conclusions can be drawn from these analyses. It is clear that the vaccine type (technology) does influence the likelihood of AEs occurring. This will reflect inherent biological differences between such vaccines (e.g. mRNA vs protein) as well as the inclusion of different adjuvants or vaccine dosage. In general, the mRNA vaccines are associated with the highest risk of AE and the inactivated vaccines with the lowest. This does, however, vary by dose, with higher rates of events after the second dose for both mRNA and protein subunit vaccines (compared to the first dose), higher rates after the first dose for adenovirus vectored vaccines (compared to the second dose) and equivalent rates of AEs after first and second doses for the inactivated vaccines. In fact, for the inactivated vaccines such rates were often no different from those seen in the respective control groups.

We hypothesized that the nature of the control group employed in the different trials would have a significant impact on the relative risk of AEs. The controls used in the trials varied from 0.9% saline placebo, to aluminum or another adjuvant, through to a (non-COVID-19) active vaccine. As each of these 'controls' will have a different intrinsic AE profile, describing the relative risk of AEs of a specific COVID-19 vaccine will vary according to the control group chosen, as demonstrated in our analysis of the ChAdOx-1 and CoronaVac vaccines by control type. The choice of a control group may be influenced by different considerations; for example, a control group that is likely to be associated with few AEs (such as 0.9% saline) might allow a 'blinded' trial participant to work out whether they have in fact received the COVID-19 vaccine, and thus change their behavior, with a potential impact on trial integrity. However, use of such an inert placebo will allow a full description of the AEs associated with the COVID-19 vaccine being tested. This analysis may be too

Study or Subaroup	Vacci Events	ne Total	Cont Events	rol Total	Weight	Risk Ratio M-H. Random, 95% CI	Risk Ratio M-H. Random, 95% Cl
1.1.1 Adenovirus Vector (dose 1)						22.00/2	
Ad26.COV2.S - Sadoff Ad5-nCov - Halperin	32	323	25	163 1570	1.4%	32.90 [2.03, 533.91]	
Ad5-nCov - Zhu (Phase II)	21	129	12	126	2.3%	1.71 [0.88, 3.33]	
Ad5-nCov – Zhu (Phase IIB)	7	120	0	60	1.4%	7.56 [0.44, 130.22]	
ChAdOx1 nCoV-19 - Asano ChAdOx1 nCoV-19 - Falsey	19 144	2037	0	64 1013	1.4%	13.13 [0.80, 214.49]	
ChAdOx1 nCoV-19 - Folegatti	87	487	2	477	2.1%	42.61 [10.55, 172.10]	
ChAdOx1 nCoV-19 - Mahdhi	36	990	16	1010	2.4%	2.30 [1.28, 4.11]	
ChAdOx1 nCoV-19 - Mahdi (HIV)	3	81	1	78	1.6%	2.89 [0.31, 27.18]	
Subtotal (95% CI)	12	6065	3	4659	2.1%	5.97 [2.95, 12.09]	
Total events	559		66				-
Heterogeneity: $Tau^2 = 0.78$; $Chi^2 = Test for overall effect: Z = 4.97 (P$	42.05, df =	= 9 (P < 1	0.00001); I ² = 79	%		
1 1 2 Adenovirus Vector (dose 2)							
Ad5-nCov - Zhu (Phase IIB)	2	118	1	60	1.6%	1.02 [0.09, 10.99]	
ChAdOx1 nCoV-19 - Asano	3	192	1	64	1.6%	1.00 [0.11, 9.44]	
ChAdOx1 nCoV-19 - Falsey ChAdOx1 nCoV-19 - Mahdhi	24	936	16	968	2.1%	3.95 [1.19, 13.08]	
ChAdOx1 nCoV-19 - Mahdi (HIV)	1	81	1	78	1.4%	0.96 [0.06, 15.13]	
ChAdOx1 nCoV-19 - Ramasamy	0	128	0	98	0.1%	Not estimable	
Total events	49	5417	22	2230	9.1/6	1.32 [0.83, 2.33]	
Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 1.53 (P	3.26, df = = 0.13)	4 (P = 0.	.52); I ² =	0%			
1.1.3 Inactivated (dose 1)							
BBV152 – Ella (Phase I)	2	100	0	75	1.3%	3.76 [0.18, 77.23]	
BBV152 – Ella (Phase III)	108	12879	81	12874	2.4%	1.33 [1.00, 1.78]	<u>├</u>
BIBP – Xia (Adolescents)	6	84	0	28	1.4%	4.44 [0.26, 76.32]	
Coronavac – Buerlo CoronaVac – Fadlvana	10	405	1	135	1.4%	7.03 [0.41, 119.25]	
CoronaVac – Wu	3	124	1	74	1.6%	1.79 [0.19, 16.90]	
CoronaVac - Zhang (D0-14)	3	144	1	84	1.6%	1.75 [0.18, 16.56]	
CoronaVac – Zhang (D0–28)	4	144	2	83	1.9%	1.15 [0.22, 6.16]	
Subtotal (95% CI)	U	14174	0	13541	13.0%	1.38 [1.05, 1.81]	◆
Total events	137		86				-
Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 2.29 (P =	2.92, df = = 0.02)	7 (P = 0.	.89); I ² =	0%			
1.1.4 Inactivated (dose 2)							
BBV152 – Ella (Phase I)	1	100	0	75	1.2%	2.26 [0.09, 54.65]	· · · · · · · · · · · · · · · · · · ·
BBV152 – Ella (Phase III)	86	12879	79	12874	2.4%	1.09 [0.80, 1.48]	+-
BIBP – Xia (Adolescents)	2	83	0	26	1.3%	1.61 [0.08, 32.45]	
CoronaVac – Fadiyana	7	397	3	133	2.1%	0.78 [0.21, 2.98]	
CoronaVac – Wu	1	124	0	72	1.2%	1.75 [0.07, 42.45]	
CoronaVac - Zhang (D0-14)	2	144	0	84	1.3%	2.93 [0.14, 60.33]	
CoronaVac – Zhang (D0–28) IMBCAMS Inactivated Vaccine – Pu	0	141	0	84 24		Not estimable	
Subtotal (95% CI)	0	14131	0	13452	9.5%	1.10 [0.82, 1.47]	◆
Total events	99		82				
Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 0.62 (P =	1.00, df = = 0.54)	5 (P = 0.	.96); I ² =	0%			
1.1.5 mRNA (dose 1)							
BNT162b2 - Frenck	151	1668	17	1690	2.4%	9.00 [5.48, 14.79]	
BNT162b2 – Haranaka	17	119	0	41	1.4%	12.25 [0.75, 199.26]	
BNT162b2 - Walsh	2	24	0	18	1.3%	3.80 [0.19, 74.60]	
mRNA-1273 - Ali	63	2003	12	1238	2.3%	2.62 [1.42, 4.84]	
mRNA-1273 - Chu	1	200	0	199	1.2%	2.99 [0.12, 72.84]	
mRNA-1273 - El Sahly	112	15166	44	15151	2.4%	2.54 [1.80, 3.60]	
Total events	714	21002	81	20315	15.4%	0.04 [2.21, 19.90]	
Heterogeneity: Tau ² = 1.59; Chi ² = Test for overall effect: Z = 3.37 (P =	78.18, df = = 0.0008)	= 6 (P < 9	0.00001); I ² = 92	%		
1.1.6 mRNA (dose 2)							
BNT162b2 - Frenck	317	1668	11	1690	2.4%	29.20 [16.07, 53.06]	
BNT162b2 - Haranaka	39	119	0	41	1.4%	27.65 [1.74, 439.97]	
BNT162b2 - Walsh	3	24	0	18	1.3%	5.32 [0.29, 96.93]	
cyncov – kremsner mRNA–1273 – Ali	462	1964 2478	12	1220	2.3% 2.4%	09.77 [37.27, 216.20] 12.39 [6.99, 21 97]	=
mRNA-1273 - Chu	26	199	1	193	1.8%	25.22 [3.46, 184.00]	
mRNA-1273 - El Sahly	2276	14691	43	14578	2.4%	52.52 [38.88, 70.96]	
Total events	3425	21143	77	19048	10.9%	51.17 [15.91, 61.05]	
Heterogeneity: Tau ² = 0.47; Chi ² =	26.28, df	= 6 (P =	0.0002);	$I^2 = 77\%$			
rest for overall effect: Z = 10.03 (P	< 0.00001	.,					
1.1.7 Protein Subunit (dose 1)	10	3205	,	540	1 70/	2 17 10 28 16 53	
NVX-CoV2373 – Dunkle	66	18072	33	349 8904	2.4%	0.99 [0.65, 15.52]	·
NVX-CoV2373 - Formica	12	510	6	248	2.2%	0.97 [0.37, 2.56]	
NVX-CoV2373 - Heath	28	1364	19	1350	2.4%	1.46 [0.82, 2.60]	+
NVX-COV2373 - Keech NVX-CoV2373 - Shinde	0	26 484	0	23 484	2.2%	Not estimable 1.29 0 48 3 421	
S-Trimer (SCB-2019) - Richmond	0	16	ó	30	2.270	Not estimable	
Subtotal (95% CI)		23767		11588	11.0%	1.14 [0.85, 1.54]	+
i otal events Heterogeneity: Tau ² = 0.00; Chi ² =	128 1.71, df =	4 (P = 0.	66 .79); I ² =	0%			
Test for overall effect: Z = 0.86 (P =	= 0.39)						
1.1.8 Protein Subunit (dose 2)							
MVC-COV1901 - Hsieh	10	3295	1	549 8270	1.7%	1.67 [0.21, 12.99]	
NVX-CoV2373 - Dunkle	9/3	1/139 240	23	8278 239	∠.4% 2.0%	20.45 [13.52, 30.87] 5.28 [1 18 23 57]	
NVX-CoV2373 - Heath	59	1348	9	1335	2.3%	6.49 [3.23, 13.04]	
NVX-CoV2373 – Keech	0	26	0	21		Not estimable	
NVX-CoV2373 - Shinde	17	471	7	470	2.3%	2.42 [1.01, 5.79]	
Subtotal (95% CI)	U	16 22544	0	30 10922	10.7%	Not estimable 5.61 [1.94, 16.23]	
Total events	1070		42				
Heterogeneity: Tau ² = 1.14; Chi ² = Test for overall effect: 7 = 3 18 (P -	29.56, df = = 0.001)	= 4 (P < 9	0.00001); I ² = 86	%		
Total (95% CI)		126002		96775	100.0%	4 21 12 56 6 041	
Total (95% CI) Total events	6181	126903	517	96375	100.0%	4.21 [2.56, 6.94]	-
Heterogeneity: Tau ² = 2.65; Chi ² =	1009.54, d	if = 52 (i	P < 0.00	001); I ² =	= 95%		0.01 0.1 10
Heterogeneity: $Tau^2 = 2.65$; $Chi^2 =$ Test for overall effect: $Z = 5.65$ (P · Test for subgroup differences: Chi^2	1009.54, d < 0.00001) = 112.54,	ut = 52 (F	e < 0.00 e < 0.00	001); l² = 001), l² =	= 95% = 93.8%		0.01 0.1 1 10 Control more reactogenic Vaccine more reactogenic

10 😧 N. SUTTON ET AL.

Study or Subgroup	Vaco Events	ine Total	Cont Events	rol Total	Weight	Risk Ratio M-H Random 95% CI	Risk Ratio M-H Bandom 95% Cl
2.1.1 Adenovirus Vector (dose 1)	Events	Total	Lvents	Total	weight	m n, kandom, 55% er	
Ad26.COV2.S - Sadoff	150	323	30	163	2.2%	2.52 [1.79, 3.56]	
Ad5-nCov – Zhu (Phase II)	44	129	21	126	1.9%	2.05 [1.29, 3.24]	
Ad5-nCov - Zhu (Phase IIB)	3	120	0	60	0.1%	3.53 [0.19, 67.23]	
ChAdOx1 nCoV-19 - Asano ChAdOx1 nCoV-19 - Falsey	54 898	2037	244	1013	2.7%	1.83 [1.62, 2.06]	-
ChAdOx1 nCoV-19 - Folegatti	340	487	227	477	2.7%	1.47 [1.31, 1.64]	-
ChAdOx1 nCoV-19 - Mandhi ChAdOx1 nCoV-19 - Mahdi (HIV)	28	990 81	181	78	2.6%	1.50 [0.90, 2.48]	
ChAdOx1 nCoV-19 - Ramasamy	72	128	37	98	2.4%	1.49 [1.11, 2.00]	
Total events	2526	6068	1201	4001	20.5%	1.00 [1.50, 1.09]	•
Heterogeneity: Tau ² = 0.02; Chi ² =	23.91, df	= 9 (P =	0.004); I	² = 62%			
Test for overall effect: $Z = 8.75$ (P <	0.00001)					
2.1.2 Adenovirus Vector (dose 2)	2	110	0	60	0.1%	2 56 (0 12 52 55)	
ChAdOx1 nCoV-19 - Asano	19	192	3	64	0.7%	2.11 [0.65, 6.90]	
ChAdOx1 nCoV-19 - Falsey	531	1962	179	968	2.7%	1.46 [1.26, 1.70]	-
ChAdOx1 nCoV-19 - Mandhi ChAdOx1 nCoV-19 - Mahdi (HIV)	138	81	114	982	2.5%	1.23 [0.59, 2.53]	
ChAdOx1 nCoV-19 - Ramasamy	55	128	39	98	2.3%	1.08 [0.79, 1.48]	+
Total events	779	5417	346	22.50	5.776	1.40 [1.23, 1.37]	•
Heterogeneity: Tau ² = 0.00; Chi ² =	3.85, df =	= 5 (P = 0	0.57); I ² =	• 0%			
Test for overall effect. $Z = 5.82$ (F <	0.00001	,					
2.1.3 Inactivated (dose 1) BRV152 - Ella (Phase I)	3	100	0	75	0.1%	5 27 [0 28 100 46]	
BBV152 - Ella (Phase III)	52	12879	41	12874	2.1%	1.27 [0.84, 1.91]	
BIBP – Xia (Adolescents)	0	84	0	28	2.1%	Not estimable	
CoronaVac – Fadlyana	70	405	12	135	1.6%	1.94 [1.09, 3.47]	
CoronaVac - Wu	4	124	0	74	0.2%	5.40 [0.29, 98.90]	
CoronaVac - Zhang (D0-14) CoronaVac - Zhang (D0-28)	10	144	2	83	0.5%	2.88 [0.65, 12.84]	
IMBCAMS Inactivated Vaccine - Pu	0	24	0	24	7 3%	Not estimable	
Total events	201	111/1	92	13341	1.576	1.5 ([0.57, 1.66]	•
Heterogeneity: Tau ² = 0.04; Chi ² = Test for overall effect: 7 = 1.75 (P =	8.00, df =	= 6 (P = 0	.24); I ² =	= 25%			
	. 0.08)						
2.1.4 Inactivated (dose 2) BBV152 – Fila (Phase I)	0	100	0	75		Not estimable	
BBV152 - Ella (Phase III)	41	12879	20	12874	1.8%	2.05 [1.20, 3.50]	
BIBP – Xia (Adolescents)	0	83	0	26	1 49/	Not estimable	
CoronaVac – Fadlyana	55	397	9	133	1.4%	2.05 [1.04, 4.03]	
CoronaVac - Wu	0	124	1	72	0.1%	0.19 [0.01, 4.72]	·
CoronaVac - Zhang (D0-14) CoronaVac - Zhang (D0-28)	3	144	0	84	0.1%	4.19 [0.22, 80.13]	· · · · · · · · · · · · · · · · · · ·
IMBCAMS Inactivated Vaccine – Pu Subtotal (95% CI)	0	24 14131	0	24 13452	5.3%	Not estimable 1.27 [0.68, 2.34]	
Total events	126		44	10100	51570	1127 [0100] 115 1]	
Heterogeneity: Tau ² = 0.25; Chi ² = Test for overall effect: 7 = 0.75 (P =	10.62, df	= 5 (P =	0.06); I ²	= 53%			
	. 0.45)						
2.1.5 MKNA (dose 1) BNT162b2 – Frenck	1001	1668	682	1690	2.7%	1.49 [1.39, 1.59]	-
BNT162b2 - Haranaka	48	119	4	41	1.0%	4.13 [1.59, 10.76]	
BNT162b2 – Walsh CVnCoV – Kremsner	1339	24	5 657	18 1978	1.0%	1.20 [0.47, 3.06]	· ·
mRNA-1273 - Ali	1188	2482	453	1238	2.7%	1.31 [1.20, 1.42]	.
mRNA-1273 - Chu mRNA-1273 - El Sahly	50 5636	200 15166	35 4133	199 15151	2.1%	1.42 [0.97, 2.09] 1.36 [1.32, 1.41]	-
Subtotal (95% CI)	0070	21662	5050	20315	15.1%	1.54 [1.31, 1.82]	•
lotal events Heterogeneity: Tau ² = 0.03; Chi ² =	9270 109.81, d	lf = 6 (P -	5969 < 0.0000	1); I ² = 9	95%		
Test for overall effect: Z = 5.13 (P <	0.00001)					
2.1.6 mRNA (dose 2)							
BNT162b2 - Frenck	1100	1668	411	1690	2.7%	2.71 [2.48, 2.97]	*
BNT162b2 - Walsh	14	24	6	18	1.3%	1.75 [0.84, 3.65]	,
CVnCoV - Kremsner	1283	1964	474	1908	2.7%	2.63 [2.42, 2.86]	-
mRNA-1273 - All mRNA-1273 - Chu	1679	2478	353 41	1220	2.7%	2.34 [2.14, 2.57] 3.03 [2.26, 4.05]	
mRNA-1273 - El Sahly	9607	14691	3418	14578	2.8%	2.79 [2.70, 2.88]	, i i i i i i i i i i i i i i i i i i i
Total events	13883	21143	4704	19040	13.0%	2.03 [2.44, 2.07]	•
Heterogeneity: Tau ² = 0.01; Chi ² =	20.07, df	= 6 (P =	0.003); I	² = 70%			
2.5 = 2.77 (P	. 0.0000	-/					
2.1.7 Protein Subunit (dose 1) MVC-COV1901 - Hsieh	847	3205	119	540	7.64	1.19 [1.00.1.41]	
NVX-CoV2373 - Dunkle	4632	18072	1993	8904	2.8%	1.15 [1.09, 1.20]	*
NVX-CoV2373 - Formica	121	510	52	251	2.4%	1.15 [0.86, 1.53]	Ŧ
NVX-CoV2373 - Keech	203	26	244	23	0.8%	1.77 [0.61, 5.11]	
NVX-CoV2373 - Shinde	75	484	59	484	2.3%	1.27 [0.93, 1.75]	<u>+</u>
Subtotal (95% CI)	U	23767	0	11591	13.6%	1.14 [1.10, 1.19]	•
Total events Heterogeneity: Tau ² = 0.00: Chi ² =	5941 2 03 df =	5 (P = 0	2470 84): 1 ² =	0%			
Test for overall effect: Z = 6.34 (P <	0.00001)					
2.1.8 Protein Subunit (dose 2)							
MVC-COV1901 - Hsieh	788	3295	91	549	2.6%	1.44 [1.18, 1.76]	-
NVX-CoV2373 – Dunkle NVX-CoV2373 – Formica	8486 89	17139 250	1811	8278 241	2.8% 2.2%	2.26 [2.17, 2.36] 2.60 [1.82, 3 72]	· · ·
NVX-CoV2373 - Heath	491	1348	194	1335	2.7%	2.51 [2.16, 2.91]	-
NVX–CoV2373 – Keech NVX–CoV2373 – Shinde	12 68	26 471	3 53	21 470	0.8% 2.3%	3.23 [1.05, 9.97] 1.28 [0.92, 1.79]	
S-Trimer (SCB-2019) - Richmond	2	16	2	30	0.3%	1.88 [0.29, 12.09]	
Total events	9936	22345	2187	10924	13.0%	2.00 [1.05, 2.45]	
Heterogeneity: $Tau^2 = 0.04$; $Chi^2 =$	33.20, df	= 6 (P <	0.00001); $I^2 = 82$?%		
rest for overall effect: Z = 6.60 (P <	. 0.00001	,					
Total (95% CI) Total events	42662	126907	17012	96382	100.0%	1.69 [1.50, 1.90]	•
Heterogeneity: Tau ² = 0.13; Chi ² =	1991.65,	df = 55 (P < 0.00	001); I ²	= 97%		
Test for overall effect: Z = 8.76 (P < Test for subgroup differences: Chi ²	0.00001 = 352.83) ,df = 7 (P < 0.00	001). I ² :	= 98.0%		Control more reactogenic Vaccine more reactogenic

Study or Subgroup	Vaco Events	ine Total	Cont	rol	Weight	Risk Ratio M-H Random 95% Cl	Risk Ratio M-H Random 95% Cl
3.1.1 Adenovirus Vector (dose 1)	122		27	162	2.2%	2 40 (1 72 2 50)	
Ad5-nCov - Halperin	699	1582	481	1572	2.2%	1.44 [1.32, 1.58]	+
Ad5-nCov - Zhu (Phase II) Ad5-nCov - Zhu (Phase IIB)	36 3	129 120	17 0	126 60	1.8% 0.2%	2.07 [1.23, 3.49] 3.53 [0.19, 67,23]	
ChAdOx1 nCoV-19 - Asano	48	192	2	64	0.6%	8.00 [2.00, 31.99]	
ChAdOx1 nCoV-19 - Folegatti	331	487	195	477	2.7%	1.66 [1.47, 1.88]	- -
ChAdOx1 nCoV-19 - Mahdhi ChAdOx1 nCoV-19 - Mahdi (HIV)	362 37	990 81	250 24	1010 78	2.7% 2.1%	1.48 [1.29, 1.69] 1.48 [0.99, 2.23]	-
ChAdOx1 nCoV-19 - Ramasamy	67	128	22	98 4661	2.1%	2.33 [1.56, 3.49]	
Total events	2579	0005	1309		20.0/0	104 [1.47, 1.05]	•
Heterogeneity: Tau ² = 0.01; Chi ² = Test for overall effect: Z = 8.75 (P <	21.95, df < 0.00001	:= 9 (P = .)	0.009); I	⁻ = 59%			
3.1.2 Adenovirus Vector (dose 2)							
Ad5-nCov - Zhu (Phase IIB)	1	118	0	60	0.1%	1.54 [0.06, 37.19]	
ChAdOx1 nCoV–19 – Asano ChAdOx1 nCoV–19 – Falsey	17 564	192 1962	5 186	64 968	1.0% 2.7%	1.13 [0.44, 2.95] 1.50 [1.29, 1.73]	
ChAdOx1 nCoV-19 - Mahdhi	191	936	161	982	2.6%	1.24 [1.03, 1.50]	<u> </u>
ChAdOx1 nCoV-19 - Ramasamy	35	128	25	98	2.0%	1.07 [0.69, 1.67]	+-
Total events	837	3417	393	2250	10.3%	1.38 [1.24, 1.54]	•
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 =$ Test for overall effect: $7 = 5.84$ (P	4.50, df =	= 5 (P = 0).48); I ² =	• 0%			
2.1.2 Inactivated (docs 1)	. 0.00001	.,					
BBV152 - Ella (Phase I)	5	100	5	75	0.7%	0.75 [0.23, 2.50]	
BBV152 – Ella (Phase III) BIBP – Xia (Adolescents)	128	12879 84	111	12874 28	2.5%	1.15 [0.90, 1.48]	
CoronaVac - Bueno	107	270	50	164	2.4%	1.30 [0.99, 1.71]	
CoronaVac – Wu CoronaVac – Zhang (D0–14)	0	124	0	74 84	0.2%	0.58 [0.04, 9.20]	
CoronaVac – Zhang (D0–28) Subtotal (95% CI)	3	144 13745	0	83 13382	0.2% 6.1%	4.06 [0.21, 77.55] 1.21 [1.00, 1.45]	
Total events	245	= (p	167				ľ
Test for overall effect: Z = 2.01 (P =	1.94, df = = 0.04)	= 5 (P = 0).86); I* =	: 0%			
3.1.4 Inactivated (dose 2)							
BBV152 - Ella (Phase I)	0	100	0	75	2.4%	Not estimable	
BBV152 – Ella (Phase III) BIBP – Xia (Adolescents)	0	83	0	26	2.4%	Not estimable	
CoronaVac - Bueno CoronaVac - Wu	46 0	239 124	15 0	80 72	1.8%	1.03 [0.61, 1.74] Not estimable	
CoronaVac - Zhang (D0-14)	1	144	0	84	0.1%	1.76 [0.07, 42.69]	
Subtotal (95% CI)	2	13710	0	84 13295	0.1% 4.5%	1.18 [0.91, 1.55]	•
Total events Heterogeneity: Tau ² = 0.00: Chi ² =	135 0.76. df	= 3 (P = 0	85).86): l ² =	0%			
Test for overall effect: Z = 1.23 (P =	= 0.22)						
3.1.5 mRNA (dose 1)							
BNT162b2 – Frenck BNT162b2 – Haranaka	912 39	1668 119	603 6	1690 41	2.8% 1.3%	1.53 [1.42, 1.66] 2.24 [1.02, 4.90]	
BNT162b2 - Walsh	1260	24	623	18	0.8%	1.13 [0.37, 3.41]	
mRNA-1273 - Ali	1106	2482	477	1238	2.8%	1.16 [1.06, 1.26]	-
mRNA-1273 - Chu mRNA-1273 - El Sahly	43 4950	200 15166	36 4026	199 15151	2.1% 2.8%	1.19 [0.80, 1.77] 1.23 [1.19, 1.27]	Ţ.
Subtotal (95% CI) Total events	8325	21662	5775	20315	15.4%	1.44 [1.16, 1.77]	◆
Heterogeneity: $Tau^2 = 0.06$; $Chi^2 = Test for evenue of facts 7 = 3.28$ (B	168.60, 0	df = 6 (P	< 0.0000	1); I ² = 9	96%		
Test for overall effect: Z = 3.38 (P =	= 0.0007)						
3.1.6 mRNA (dose 2) BNT162b2 – Frenck	1063	1668	406	1690	2.8%	2.65 [2.42, 2.91]	-
BNT162b2 - Haranaka	52	119	5	41	1.2%	3.58 [1.54, 8.35]	
CVnCoV – Kremsner	1268	1964	413	1908	2.8%	2.98 [2.72, 3.27]	
mRNA-1273 - Ali mRNA-1273 - Chu	1739 104	2478 199	370 33	1220 193	2.8% 2.3%	2.31 [2.12, 2.53] 3.06 [2.18, 4.28]	
mRNA-1273 - El Sahly	8637	14691	3427	14578	2.8%	2.50 [2.42, 2.58]	
Total events	12874	21145	4656	15040	13.1/0	2.05 [2.42, 2.05]	
Heterogeneity: Tau ² = 0.01; Chi ² = Test for overall effect: Z = 22.90 (P	20.10, df	f = 6 (P = 01)	0.003); I	² = 70%			
3.1.7 Protein Subunit (dose 1)							
MVC-COV1901 - Hsieh	496	3295	75	549	2.6%	1.10 [0.88, 1.38]	+-
NVX-CoV2373 - Formica	4505	510	2028 48	8904 251	2.8% 2.4%	0.99 [0.73, 1.36]	-f
NVX-CoV2373 - Heath NVX-CoV2373 - Keech	314 6	1364 26	274 7	1350 23	2.7%	1.13 [0.98, 1.31] 0.76 [0.30 1.93]	
NVX-CoV2373 - Shinde	118	484	114	484	2.6%	1.04 [0.83, 1.30]	+
Subtotal (95% CI) – Richmond	3	23767	1	30 11591	0.3% 14.3%	1.09 [1.05, 1.14]	+
Total events Heterogeneity: Tau ² = 0.00; Chi ² =	5539 3.60, df =	= 6 (P = 0	2547).73); I ² =	0%			
Test for overall effect: Z = 4.22 (P <	< 0.0001)						
3.1.8 Protein Subunit (dose 2)	435	2205	<i>c</i> 1	E 40	2 504	1 10 /0 00 1 50	\perp
NVX-CoV2373 - Dunkle	455	17139	1625	8278	2.5%	2.26 [2.16, 2.37]	•
NVX-CoV2373 – Formica NVX-CoV2373 – Heath	74 487	250 1348	31 208	241 1335	2.2% 2.7%	2.30 [1.57, 3.37] 2.32 [2.01, 2.68]	
NVX-CoV2373 - Keech	12	26	6	21	1.3%	1.62 [0.73, 3.57]	<u>+</u>
S-Trimer (SCB-2019) - Richmond	97	4/1	89 3	470	2.5% 0.4%	1.09 [0.84, 1.41] 1.25 [0.23, 6.73]	
Subtotal (95% CI) Total events	8725	22545	2023	10924	14.3%	1.73 [1.33, 2.23]	◆
Heterogeneity: $Tau^2 = 0.08$; $Chi^2 = Tatt for everyll offerty 7 = 4.16$ (2)	54.49, df	= 6 (P <	0.00001); I ² = 89	9%		
Lest for overall effect: $Z = 4.16$ (P -	< 0.0001)						
Total (95% CI) Total events	39259	126058	16955	96066	100.0%	1.59 [1.41, 1.80]	•
Heterogeneity: $Tau^2 = 0.13$; $Chi^2 = Test for overall effect: 7 = 7.57 (B)$	1987.71,	df = 53	(P < 0.00	001); I ²	= 97%		0.01 0.1 1 10 100
Test for subgroup differences: Chi ²	= 364.89), df = 7 (P < 0.00	001), I ²	= 98.1%		Control more reactogenic Vaccine more reactogenic

Add2.GCV2.5 – Sadoff Add2.GCV2.5 – Sadoff Add5-GCV2.5 – Sadoff Add5-GCV2.7 – U(Phase II) Ad5-GCV – Zhu (Phase II) Ad5-GCV – Zhu (Phase III) Ad5-GCV – Zhu (Phase III) ChAd0X I nC0V-19 – Rales ChAd0X I nC0V-19 – Rahdhi ChAd0X I nC0V-19 – Rahdhi (HV) ChAd0X I nC0V-19 – Mahdhi ChAd0X I nC0V-19 – Mahdhi ChAd0X I nC0V-19 – Mahdhi ChAd0X I nC0V-19 – Mahdhi ChAd0X I nC0V-19 – Rales ChAd0X I nC0V-19 – Rales ChAd0X I nC0V-19 – Rales ChAd0X I nC0V-19 – Mahdhi ChAd0X	159 939 72 28 100 1059 328 345 28 53 3111 118.15, d 0.00001; 24 41 699 245 41	323 1584 129 120 192 2037 487 990 81 128 6071 f = 9 (P <	11 303 11 3 4 112 180 121 8 21 774 < 0.0000	163 1573 126 60 64 1013 477 1010 78 98 4662 1); I ² = 9	1.7% 2.6% 1.7% 0.8% 1.0% 2.6% 2.6% 2.5% 1.4% 2.0% 18.9% 2%	7.29 [4.08, 13.05] 3.08 [2.76, 3.43] 6.39 [3.56, 11.48] 4.67 [1.48, 14.73] 8.33 [3.20, 21.73] 4.70 [3.93, 5.63] 1.78 [1.57, 2.03] 2.91 [2.41, 3.51] 3.37 [1.64, 6.94] 1.93 [1.26, 2.97] 3.59 [2.65, 4.88]	
AdS-nCov - Lu (Phase II) AdS-nCov - Zhu (Phase II) AdS-nCov - Zhu (Phase III) ChAdOX1 nCoV-19 - Asano ChAdOX nCoV-19 - Falsey ChAdOX nCoV-19 - Mahdhi ChAdOX nCoV-19 - Mahdhi ChAdOX nCoV-19 - Mahdhi ChAdOX nCoV-19 - Mahdhi ChAdOX nCoV-19 - Ramasamy Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.18; Chi ² = [rest for overall effect: Z = 8.22 (P - AL.2 Adenovirus Vector (dose 2) AdS-nCov - Zhu (Phase IIIB) ChAdOX nCoV-19 - Mahdhi ChAdOX nCoV	939 72 28 100 1059 328 345 28 53 3111 118.15, d 0.00001 24 41 699 245 14	1584 129 120 192 2037 487 990 81 128 6071 f = 9 (P <	303 11 3 4 112 180 121 8 21 774 < 0.0000	1573 126 60 64 1013 477 1010 78 98 4662 1); I ² = 9	2.6% 1.7% 0.8% 1.0% 2.6% 2.6% 2.5% 1.4% 2.0% 18.9%	3.08 [2.76, 3.43] 6.39 [3.56, 11.48] 4.67 [1.48, 14.73] 8.33 [3.20, 21.73] 4.70 [3.93, 5.63] 1.78 [1.57, 2.03] 2.91 [2.41, 3.51] 3.37 [1.64, 6.94] 1.93 [1.26, 2.97] 3.59 [2.65, 4.88]	
AdS-nCov - Zhu (Phase II) AdS-nCov - Zhu (Phase III) Ch4dSh nCov/-19 - Kasno Ch4dSh nCoV/-19 - Falsey Ch4dSh nCoV-19 - Folegatti Ch4dSh nCoV-19 - Mahdhi Ch4dSh nCoV-19 - Mahdhi Ch4dSh nCoV-19 - Mahdhi Ch4dSh nCoV-19 - Ramasamy Subtotal (95% C) Total events Heterogeneity: Tau ² = 0.18; Ch ² = : Fast for overall effect: Z = 8.22 (P < 4.1.2 Adenovirus Vector (dose 2) 4.1.2 Adenovirus Vector (dose 2) Ch4dSh nCoV-19 - Kasno Ch4dSh nCoV-19 - Kasno Ch4dSh nCoV-19 - Mahdhi Ch4dSh NCOV-19 - Mahdhi Ch4DS	72 28 100 1059 328 345 28 53 3111 118.15, d 0.00001; 24 41 699 245 14	129 120 192 2037 487 990 81 128 6071 f = 9 (P <	11 3 4 112 180 121 8 21 774 < 0.0000	126 60 64 1013 477 1010 78 98 4662 1); I ² = 9	1.7% 0.8% 1.0% 2.6% 2.6% 2.5% 1.4% 2.0% 18.9%	6.39 [3.56, 11.48] 4.67 [1.48, 14.73] 8.33 [3.20, 21.73] 4.70 [3.93, 5.63] 1.78 [1.57, 2.03] 2.91 [2.41, 3.51] 3.37 [1.64, 6.94] 1.93 [1.26, 2.97] 3.59 [2.65, 4.88]	
Ruberton V and (mass line) ChdOx1 mCoV-19 - Asano ChdOx1 mCoV-19 - Folsagatti ChdOx1 mCoV-19 - Mahdhi ChdOx1 mCoV-19 - Mahdhi ChdOx1 mCoV-19 - Mahdhi (HIV) ChdOx1 mCoV-19 - Mahdhi (HIV) ChdOx1 mCoV-19 - Ramasamy Subtatl (95% C) Total events Heterogeneity: Tau ² = 0.18; Chi ² = : Test for overall effect: 2 = 8.22 (P < 4.1.2 Adenovirus Vector (dose 2) 4.5 -mCoV - 2hu (Phase III8) ChdOx1 mCoV-19 - Mahdhi ChdOx1 mCoV-19 - M	28 100 1059 328 345 28 53 3111 118.15, d 0.00001 24 41 699 245 41	120 2037 487 990 81 128 6071 f = 9 (P <	4 112 180 121 8 21 774 < 0.0000	64 1013 477 1010 78 98 4662 1); I ² = 9	0.8% 1.0% 2.6% 2.5% 1.4% 2.0% 18.9% 2%	4.07 [1.46, 14-73] 8.33 [3.20, 21.73] 4.70 [3.93, 5.63] 1.78 [1.57, 2.03] 2.91 [2.41, 3.51] 3.37 [1.64, 6.94] 1.93 [1.26, 2.97] 3.59 [2.65, 4.88]	
ChAdOX1 nCoV-19 - Falsey ChAdOX1 nCoV-19 - Folegatti ChAdOX1 nCoV-19 - Mahdhi ChAdOX1 nCoV-19 - Mahdhi ChAdOX1 nCoV-19 - Mamsamy Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.18; Chi ² = 18; Chorowins Vector (dose 2) AdS-nCov - Zhu (Phase IIB) ChAdOX1 nCoV-19 - Mahdhi ChAdOX1 nCoV-19 nCOV-19 nCOV-19 - Mahdhi ChAdOX1 nCOV-19	1059 328 345 28 53 3111 118.15, d 0.00001 24 41 699 245 41	2037 487 990 81 128 6071 f = 9 (P < 118 192	112 180 121 8 21 774 0.0000	1013 477 1010 78 98 4662 1); I ² = 9	2.6% 2.6% 2.5% 1.4% 2.0% 18.9% 2%	4.70 [3.93, 5.63] 1.78 [1.57, 2.03] 2.91 [2.41, 3.51] 3.37 [1.64, 6.94] 1.93 [1.26, 2.97] 3.59 [2.65, 4.88]	
Ch4dox1 nCoV-19 - Folegatti Ch4dox1 nCoV-19 - Mahdhi Ch4dox1 nCoV-19 - Mahdi (HV) Ch4dox1 nCoV-19 - Ramasamy Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.18; Chi ² = 1 Test for overall effect: Z = 8.22 ($P < 4$ 4.12. Adenovirus Vector (dose 2) 4.14.2 Adenovirus Vector (dose 2) 4.15. Adox1 nCoV-19 - Asano Ch4dox1 nCoV-19 - Asano Ch4dox1 nCoV-19 - Mahdhi Ch4dox1 nCoV-19 - Ma	328 345 28 53 3111 118.15, d 0.00001 24 41 699 245 245	487 990 81 128 6071 f = 9 (P < 118 192	180 121 8 21 774 0.0000	477 1010 78 98 4662 1); I ² = 9	2.6% 2.5% 1.4% 2.0% 18.9%	1.78 [1.57, 2.03] 2.91 [2.41, 3.51] 3.37 [1.64, 6.94] 1.93 [1.26, 2.97] 3.59 [2.65, 4.88]	
LINGUM 11 (LUV-19 - Mahduli LINGUM 11 (CUV-19 - Mahduli ChadQx 11 (CUV-19 - Mahduli (HIV) ChadQx 11 (CUV-19 - Ramasamy Subtrat (195% CJ) Total events Heterogeneity; Tau ² = 0.18; Chi ² = : Fest for overall effect: 2 = 8.22 (P < 4.1.2 Adenovirus Vector (dose 2) dd5-nCov - 2hu (Phase III8) ChadQx 11 (CUV-19 - Kasno ChadQx 11 (CUV-19 - Kasno ChadQx 11 (CUV-19 - Mahdhi ChadQx 11 (CUV-19 (CUV-19 - M	28 53 3111 118.15, d 0.00001 24 41 699 245 14	990 81 128 6071 f = 9 (P < 118 192	121 8 21 774 0.0000	1010 78 98 4662 1); I ² = 9	2.5% 1.4% 2.0% 18.9%	2.91 [2.41, 5.51] 3.37 [1.64, 6.94] 1.93 [1.26, 2.97] 3.59 [2.65, 4.88]	
ChAdOX 1 nCoV-19 - Ramasamy Subtotal (95% CI) Total events Test for overall effect: Z = 0.18; Chi ² = . Test for overall effect: Z = 0.22; (P < 4.1.2 Adenovirus Vector (dose 2) dd5-nCov - Zhu (Phase III8) ChAdOX 1 nCoV-19 - Kalsey ChAdOX 1 nCoV-19 - Falsey ChAdOX 1 nCoV-19 - Mahdhi ChAdOX 1 nCoV-19 - Mahdhi ChAdOX 1 nCoV-19 - Mahdhi ChAdOX 1 nCoV-19 - Mahdhi ChAdOX 1 nCoV-19 - Mamasamy Subtotal (95% CI) Total events tetroponepity Tan ² = 0.32; Chi ² = .	53 3111 118.15, d 0.00001 24 41 699 245 14	128 6071 f = 9 (P < 118 192	21 774 < 0.0000	98 4662 1); I ² = 9	2.0% 18.9%	1.93 [1.26, 2.97] 3.59 [2.65, 4.88]	
Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.18; Chi ² = Test for overall effect: Z = 8.22 (P < AL2 Adenovirus Vector (dose 2) Ad5-nCov - Zhu (Phase IIB) Ch40Ch 1nCoV-19 - Asano Ch40Ch 1nCoV-19 - Mahdhi Ch40Ch 1nCoV-19 - Mamasamy Subtotal (95% CI) Total events Hetrogoneity Tau ² = 0.32; Chi ² = -	3111 118.15, d 0.00001 24 41 699 245 14	6071 f = 9 (P < 118 192	774 < 0.0000	4662 1); l ² = 9	18.9%	3.59 [2.65, 4.88]	•
lotal events letterogeneity: Tau ² = 0.18; Chi ² = Test for overall effect: $2 = 8.22$ (P < 4.1.2 Adenovirus Vector (dose 2) Ch405 n CoV-19 - Asano Ch405 n CoV-19 - Kalsey Ch405 n CoV-19 - Mahdhi Ch405 n CoV-19	3111 118.15, d 0.00001 24 41 699 245	f = 9 (P < 118 192	774 < 0.0000	1); I ² = 9	12%		
Test for overall effect: $Z = 8.22$ (P < 4.1.2 Adenovirus Vector (dose 2) 4d5-nCov – Zhu (Phase III8) ChadOx1 nCoV-19 – Asano ChadOx1 nCoV-19 – Balsey ChadOx1 nCoV-19 – Mahdhi ChadOx1 nCoV-19 – Mahdhi (H/V) ChadOx1 nCoV-19 – Amansamy Jubtati (95% C) Total events tetroponeity Tan ² = 0.32; Ch ² – .	24 41 699 245	118 192	. 0.0000	1,1 - 1	270		
4.1.2 Adenovirus Vector (dose 2) Ad5-nCov – Zhu (Phase IIIB) ChAdOX1 nCoV-19 – Asano ChAdOX1 nCoV-19 – Falsey ChAdOX1 nCoV-19 – Rahdhi ChAdOX1 nCoV-19 – Rahdhi (H/V) ChAdOX1 nCoV-19 – Ramasamy Subtatal (95% C) Total events Herroponeity Tan ² = 0.32° Ch ² – .	24 41 699 245	118 192	-				
AdS-nCov - Zhu (Phase IIB) ChAdOx1 nCoV-19 - Asano ChAdOx1 nCoV-19 - Falsey ChAdOx1 nCoV-19 - Mahdhi ChAdOx1 nCoV-19 - Mahdhi (HIV) ChAdOx1 nCoV-19 - Ramasamy Subtotal (95% C) Total events deterogeneity Tau ² = 0.33. Chi ²	24 41 699 245	118 192					
LNADUX1 $hCOV-19 - ASAnO ChAdOX1 nCOV-19 - AlseyChAdOX1 nCOV-19 - Mahdhi ChAdOX1 nCOV-19 - Mahdhi (HV)ChAdOX1 nCOV-19 - RamasamySubtotal (95% CI)Total eventsdeterogeneity: Tau2 = 0.33; Ch2 - ;$	41 699 245 14	192	2	60	1.1%	2.44 [0.98, 6.08]	
ChadOX1 nCoV-19 - Mahdhi ChAdOX1 nCoV-19 - Mahdhi ChAdOX1 nCoV-19 - Mahdhi (HIV) ChAdOX1 nCoV-19 - Ramasamy Subtotal (95% CI) Fotal events deterogeneity: Tau ² = 0.33; Chi ² - ;	245	1062	2	64	0.6%	6.83 [1.70, 27.46]	
ChAdOx1 nCoV-19 - Mahdi (HIV) ChAdOx1 nCoV-19 - Ramasamy Subtotal (95% CI) Total events detergogeneity: Tau ² = 0.33: Chi ² - ·	14	936	75	982	2.4%	3.43 [2.69, 4.37]	-
ChAdOx1 nCoV-19 - Ramasamy Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.33: Chi ²	14	81	5	78	1.0%	2.70 [1.02, 7.13]	· · · · ·
Fotal events Heterogeneity: $Tau^2 = 0.33$ · Chi^2	39	128	33	98	2.1%	0.90 [0.62, 1.33]	
Heterogeneity: Tau ² = 0.33: Chi ² -	1062	3417	212	2250	3.170	2.02 [1.55, 4.45]	-
Test for overall effect: $7 = 3.52$ (P =	46.37, df	= 5 (P <	0.00001); I ² = 89	1%		
4.1.2 Inactivated (doce 1)	0.0004)						
+.1.5 mactivated (dose 1) BBV152 – Ella (Phase I)	5	100	2	75	0.5%	1,88 (0.37 9 401	
3BV152 - Ella (Phase III)	392	12879	358	12874	2.6%	1.09 [0.95, 1.26]	<u>↓</u>
3IBP – Xia (Adolescents)	8	84	0	28	0.2%	5.80 [0.35, 97.39]	
CoronaVac – Bueno	117	270	39	164	2.3%	1.82 [1.34, 2.47]	
Loronavac – radiyana CoronaVac – Wu	130	405	32 2	135	2.2%	2.39 [0.52, 10.94]	
CoronaVac – Zhang (D0–14)	15	144	7	84	1.2%	1.25 [0.53, 2.94]	_
CoronaVac - Zhang (D0-28)	12	144	6	83	1.0%	1.15 [0.45, 2.96]	
MBCAMS Inactivated Vaccine - Pu Subtotal (95% CI)	2	24 14174	1	24 13541	0.2% 10.7%	2.00 [0.19, 20.61] 1.38 [1.11, 1.72]	
Total events	695	1.114	447	19941	10.770	1.50 [1.11, 1./2]	-
Heterogeneity: $Tau^2 = 0.03$; $Chi^2 = 1$	12.01, df	= 8 (P =	0.15); I ²	= 33%			
4.1.4 In particular effect: 2 = 2.05 (P = 2)	0.004)						
+.1.4 inactivated (dose 2) RRV152 - Ella (Phase I)	1	100	0	75	∩ 1∾	2 26 10 00 54 651	
38V152 - Ella (Phase III)	233	12879	208	75 12874	2.5%	2.20 [0.09, 54.65] 1.12 [0.93, 1.35]	
BIBP – Xia (Adolescents)	4	83	0	26	0.2%	2.89 [0.16, 52.02]	
CoronaVac – Bueno	73	239	16	80	1.9%	1.53 [0.95, 2.46]	_ <u>+</u>
Joronavac – Fadiyana CoronaVac – Wu	121	397 124	40	133	2.3%	1.01 [0.75, 1.37]	
CoronaVac – Zhang (D0–14)	17	144	2	84	0.6%	4.96 [1.17, 20.93]	· · · · · · · · · · · · · · · · · · ·
CoronaVac – Zhang (D0–28)	4	141	3	84	0.5%	0.79 [0.18, 3.46]	
MBCAMS Inactivated Vaccine – Pu	0	24	1	24	0.1%	0.33 [0.01, 7.80]	
Total events	461	14151	271	13452	0.070	1.15 [0.50, 1.40]	•
Heterogeneity: Tau ² = 0.01; Chi ² = 9	9.34, df =	8 (P = 0	.31); I ² =	14%			
lest for overall effect: Z = 1.61 (P =	0.11)						
4.1.5 mRNA (dose 1)						4	
swiito2D2 – Frenck BNT162b2 – Haranaka	1419	110	350	1690	2.7%	4.11 [3.73, 4.52]	
3NT162b2 - Walsh	20	24	0	18	0.2%	31.16 [2.01, 483.18]	
CVnCoV – Kremsner	1502	2003	279	1978	2.6%	5.32 [4.75, 5.94]	-
nKNA-1273 - Ali mRNA-1273 - Chu	2310	2482	431	1238	2.7%	2.67 [2.48, 2.89]	·
mRNA-1273 - El Sahlv	12688	15166	2665	15151	2.1%	4.76 [4.59, 4.93]	
subtotal (95% CI)		21662		20315	13.3%	4.75 [3.62, 6.24]	•
Fotal events Heterogeneity: Tau ² = 0.09: Chi ² = 1	18208 208.90. d	f = 6 (P ⊀	3747 0.0000	1): $I^2 = 9$	17%		
Test for overall effect: $Z = 11.20$ (P	< 0.0000	1)	. 0.0000	1,, 1 = 5	170		
4.1.6 mRNA (dose 2)							
3NT162b2 - Frenck	1312	1668	270	1690	2.6%	4.92 [4.40, 5.51]	-
אנו אונ 102D2 – Haranaka RNT162b2 – Walsb	94	119	0	41 19	0.2%	4.50 [1.56 12.07]	
CVnCoV - Kremsner	1322	1964	220	1908	2.6%	5.84 [5.14, 6.64]	
mRNA-1273 - Ali	2290	2478	370	1220	2.7%	3.05 [2.80, 3.32]	-
mRNA-1273 - Chu	169	199	15	193	1.9%	10.93 [6.70, 17.83]	
Subtotal (95% CI)	12964	14691 21143	2486	14578 19648	2.7% 13.6%	5.17 [4.99, 5.37] 5.22 [4.04. 6.74]	
Total events	18169		3364				•
Heterogeneity: $Tau^2 = 0.08$; $Chi^2 = 12$ Test for overall effect: $7 = 12.62$ (P	148.03, d	f = 6 (P <	< 0.0000	1); I ² = 9	16%		
4.1.7 Brotein Coloreit (1	- 0.0000	-,					
1.1.7 Protein Subunit (dose 1)	2011	3205	89	540	2 54	3 81 13 14 4 631	_
NVX-CoV2373 - Dunkle	6211	18072	06 986	549 8904	2.5%	3.10 [2.92, 3.30]	
VVX-CoV2373 - Formica	139	508	10	252	1.6%	6.90 [3.70, 12.87]	
VVX-CoV2373 - Heath	394	1364	130	1350	2.5%	3.00 [2.50, 3.60]	-
NVX-COV2373 - Keech NVX-CoV2373 - Shinda	10	26	3	23 484	0.8% 2.4%	2.95 [0.92, 9.42]	
and the second second	5	16	1	30	0.3%	9.38 [1.20, 73.52]	· · · · · ·
5–Trimer (SCB–2019) – Richmond		23765		11592	12.9%	3.23 [2.78, 3.76]	•
S-Trimer (SCB-2019) - Richmond Subtotal (95% CI)	0051	- 6 /0 -	1291	- 61%			
5-Trimer (SCB-2019) - Richmond Subtotal (95% CI) Fotal events Heterogeneity: Tau ² - 0.02: C ¹² - 1	0951 15 23 44	- v (r =	v.vz), I"	- 01%			
S- Irimer (SCB-2019) - Richmond Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = 0.02; Chi ² = 1 Fest for overall effect: Z = 15.13 (P	8951 15.23, df < 0.0000	1)					
>- Irmer (SCB-2019) - Richmond Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.02; Chi ² = 1 Fest for overall effect: Z = 15.13 (P - 1.1.8 Protein Subunit (dose 2)	6951 15.23, df < 0.0000	1)					-
S- Irmer (SCB-2019) – Richmond Subtoat (95% CI) Total events Heterogeneity: Tau ² = 0.02; Chi ² = : Test for overall effect: Z = 15.13 (P · 1.3 Protein Subunit (dose 2) WC-COV1901 – Hsieh	6951 15.23, df < 0.0000 1791	1) 3295	81	549	2.5%	3.68 [3.01. 4.52]	
S-Irmer (SCB-2019) - Richmond Subtoal (95% CI) Total events -deterogeneity: Tau ² = 0.02; Chi ² = : Fest for overall effect: Z = 15.13 (P - 4.1.8 Protein Subunit (dose 2) WVC-COV1391 - Hsieh WVC-COV1393 - Dunkle	6951 15.23, df < 0.0000 1791 10227	1) 3295 17139	81 1141	549 8278	2.5% 2.7%	3.68 [3.01, 4.52] 4.33 [4.10, 4.58]	*
>- Irmer (SCB-2019) - Richmond Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.02; Chi ² = : Test for overall effect: Z = 15.13 (P 4.1.8 Protein Subunit (dose 2) WC-COV1901 - Hsieh WV-COV2373 - Dunkle WV-COV2373 - Formica WV-COV2373 - Formica	0951 15.23, df < 0.0000 1791 10227 114	3295 17139 250	81 1141 9	549 8278 242	2.5% 2.7% 1.5%	3.68 [3.01, 4.52] 4.33 [4.10, 4.58] 12.26 [6.37, 23.61]	•
>- Irmer (SCB-2019) - Richmond Subtatal (95% CI) Total events Heterogeneity: Tau ² = 0.02; Chi ² = : Fest for overall effect: Z = 15.13 (P · 4.1.8 Protein Subunit (dose 2) WVC-C0Y190 - Hsieh WVC-C0Y2173 - Dunkle WVC-C0Y2173 - Formica WVC-C0Y2173 - Heath WVC-C0Y2173 - Heath	6951 15.23, df < 0.0000 1791 10227 114 624 15	1) 3295 17139 250 1348 26	81 1141 9 107 2	549 8278 242 1335 21	2.5% 2.7% 1.5% 2.5%	3.68 [3.01, 4.52] 4.33 [4.10, 4.58] 12.26 [6.37, 23.61] 5.78 [4.77, 6.99] 6.06 [1.56, 23.57]	
>- Irmer (SCB-2019) - Richmond Subtotal (95% CI) Total events Veterogeneity: Tau ² = 0.02; Chi ² = Fest for overall effect: Z = 15.13 (P · 4.1.8 Protein Subunit (dose 2) WVC-C0V21901 - Hsieh VVX-C0V2373 - Dunkle VVX-C0V2373 - Heath VVX-C0V2373 - Heath VVX-C0V2373 - Keech VVX-C0V2373 - Shinde	6351 15.23, df < 0.0000 1791 10227 114 624 15 172	1) 3295 17139 250 1348 26 471	81 1141 9 107 2 53	549 8278 242 1335 21 470	2.5% 2.7% 1.5% 2.5% 0.6% 2.4%	3.68 [3.01, 4.52] 4.33 [4.10, 4.58] 12.26 [6.37, 23.61] 5.78 [4.77, 6.99] 6.06 [1.56, 23.57] 3.24 [2.45, 4.29]	
- Irmer (SCB-2019) - Richmond Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.02; Chi ² = Fest for overall effect: Z = 15.13 (P 4.1.8 Protein Subunit (dose 2) WVC-C0V2373 - Dunkle WVX-C0V2373 - Dunkle WVX-C0V2373 - Heath WVX-C0V2373 - Keach WVX-C0V2373 - Keach WVX-C0V2373 - Shinde - Irmer (SCB-2019) - Richmond	8951 15.23, df < 0.0000 1791 10227 114 624 15 172 7	1) 3295 17139 250 1348 26 471 16	81 1141 9 107 2 53 0	549 8278 242 1335 21 470 30	2.5% 2.7% 1.5% 2.5% 0.6% 2.4% 0.2%	3.68 [3.01, 4.52] 4.33 [4.10, 4.58] 12.26 [6.37, 23.61] 5.78 [4.77, 6.99] 6.06 [1.56, 23.57] 3.24 [2.45, 4.29] 27.35 [1.66, 450.23]	
> Irmer (SCB-2019) – Richmond Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.02; Chi ² = Fest for overall effect: Z = 15.13 (P 4.1.8 Protein Subunit (dose 2) WVC-C0Y1901 – Hsieh WVC-C0Y2173 – Dunkle WVC-C0Y2173 – Formica WVX-C0Y2373 – Formica WVX-C0Y2373 – Formica WVX-C0Y2373 – Shinde - Jrimer (SCB-2019) – Richmond inbtotal (95% CI)	6951 15.23, df < 0.0000 1791 10227 114 624 15 172 7	1) 3295 17139 250 1348 26 471 16 22545	81 1141 9 107 2 53 0	549 8278 242 1335 21 470 30 10925	2.5% 2.7% 1.5% 2.5% 0.6% 2.4% 0.2% 12.4%	3.68 [3.01, 4.52] 4.33 [4.10, 4.58] 12.26 [6.37, 23.61] 5.78 [4.77, 6.99] 6.06 [1.56, 23.57] 3.24 [2.45, 4.29] 27.35 [1.66, 450.23] 4.67 [3.76, 5.80]	
S-Irmer (SCB-2019) - Richmond Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.02; Chi ² = Test for overall effect: Z = 15.13 (P · 4.1.8 Protein Subunit (dose 2) WVC-C0V1301 - Hsieh WVC-C0V2373 - Dunkle WVC-C0V2373 - Dunkle WVC-C0V2373 - Heath WVC-C0V2373 - Heath WVC-C0V2373 - Keech WVC-C0V2373 - Keech WVC-C0V2373 - Shinde j-Trimer (SCB-2019) - Richmond jubtotal (95% CI) Total events	0351 15.23, df < 0.0000 1791 10227 114 624 15 172 7 12950 26,84 df	1) 3295 17139 250 1348 26 471 16 22545 = 6 (P = 1)	81 1141 9 107 2 53 0 1393 0.0002)-	549 8278 242 1335 21 470 30 10925	2.5% 2.7% 1.5% 2.5% 0.6% 2.4% 0.2% 12.4%	3.68 [3.01, 4.52] 4.33 [4.10, 4.58] 12.26 [6.37, 23.61] 5.78 [4.77, 6.99] 6.06 [1.56, 23.57] 3.24 [2.45, 4.29] 27.35 [1.66, 450.23] 4.67 [3.76, 5.80]	
S- Irmer (SCB-2019) - Richmond Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.02; Chi ² = Test for overall effect: Z = 15.13 (P 4.1.8 Protein Subunit (dose 2) WVC-C0V2373 - Heath VVX-C0V2373 - Heath VVX-C0V2373 - Heath VVX-C0V2373 - Keech VVX-C0V2373 - Shinde S-Trimer (SCB-2019) - Richmond subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.05; Chi ² = ; Test for overall effect: Z = 13.91 (P	0351 15.23, df < 0.0000 1791 10227 114 624 15 172 7 12950 26.84, df < 0.0000	1) 3295 17139 250 1348 26 471 16 22545 = 6 (P = L)	81 1141 9 107 2 53 0 1393 0.0002);	549 8278 242 1335 21 470 30 10925 $I^2 = 78\%$	2.5% 2.7% 1.5% 2.5% 0.6% 2.4% 0.2% 12.4%	3.68 [3.01, 4.52] 4.33 [4.10, 4.58] 12.26 [6.37, 23.61] 5.78 [4.77, 6.99] 6.06 [1.56, 23.57] 3.24 [2.45, 4.29] 27.35 [1.66, 450.23] 4.67 [3.76, 5.80]	
> - Irmer (SCB-2019) – Richmond Subtrati (95% CI) Total events Heterogeneity: Tau ² = 0.02; Chi ² = Test for overall effect: Z = 15.13 (P 4.1.8 Protein Subunit (dose 2) WVC-COV1901 – Hsieh WVC-COV2173 – Dunkle WVC-COV2173 – Formica WVX-COV2373 – Formica WVX-COV2373 – Formica WVX-COV2373 – Shinde 5. Trimer (SCB-2019) – Richmond Subtrati (95% CI) fotal events Heterogeneity: Tau ² = 0.05; Chi ² = Fest for overall effect: Z = 13.91 (P : Fotal (95% CI)	0351 15.23, df < 0.0000 1791 10227 114 624 15 172 7 12950 26.84, df < 0.0000	1) 3295 17139 250 1348 26 471 16 22545 = 6 (P = 1) 126908	81 1141 9 107 2 53 0 1393 0.0002);	549 8278 242 1335 21 470 30 10925 I ² = 78%	2.5% 2.7% 1.5% 2.5% 0.6% 2.4% 0.2% 12.4%	3.68 (3.01, 4.52) 4.33 (4.10, 4.58) 12.26 (6.37, 23.61) 5.78 (4.77, 6.99) 6.06 (1.56, 23.57) 3.24 (2.45, 4.29) 27.35 (1.66, 450.23) 4.67 (3.76, 5.80) 3.30 (2.92, 3.72)	
> - Irmer (SCB-2019) - Richmond Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.02; Chi ² = 1 Test for overall effect: Z = 15.13 (P 4.1.8 Protein Subunit (dose 2) WVC-C0Y101 - Hsieh WVC-C0Y2137 - Dunkle WVC-C0Y2137 - Formica WVC-C0Y2137 - Formica WVC-C0Y2137 - Formica WVC-C0Y2137 - Shinde 5. Trimer (SCB-2019) - Richmond Subtotal (95% CI) Total events Total events Total events	6351 15.23, df < 0.0000 1791 10227 114 624 15 172 7 12950 26.84, df < 0.0000 63607	1) 3295 17139 250 1348 26 471 16 22545 = 6 (P = 1) 126908	81 1141 9 107 2 53 0 1393 0.0002); 11499	549 8278 242 1335 21 470 30 10925 ² = 78% 96385	2.5% 2.7% 1.5% 2.5% 0.6% 2.4% 0.2% 12.4%	3.68 (3.01, 4.52) 4.33 (4.10, 4.58) 12.26 (5.37, 23.61) 5.78 (4.77, 6.99) 6.06 (1.56, 23.57) 3.24 (2.45, 4.29) 7.35 (1.66, 450.23) 4.67 (3.76, 5.80) 3.30 (2.92, 3.72)	

Study or Subgroup	Vaccine Events To	Control otal Events Total	Weight	Risk Ratio M-H, Random, 95% Cl	Risk Ratio M-H, Random, 95% Cl
5.1.1 Adenovirus Vector (dose 1) Ad26.COV2.5 - Sadoff Ad5-nCov - Halperin Ad5-nCov - Zhu (Phase II) Ad5-nCov - Zhu (Phase IIB) ChadOX1 nCoV-19 - Asano ChadOX1 nCoV-19 - Falsey ChadOX1 nCoV-19 - Falsey ChadOX1 nCoV-19 - Mahdhi ChadOX1 nCoV-19 - Mahdhi Hoterogeneity: Tau ² = 0.59; Chi ² =	8 3 153 15 1 1 7 1 1 5 8 20 15 4 260 9 19 1 1 60 523 54.44, df = 9 ($\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.3% 2.8% 1.4% 1.1% 1.2% 2.7% 2.6% 3.0% 2.7% 1.5% 21.5%	$\begin{array}{c} 1.01 \; [0.31, 3.30] \\ 8.01 \; [5.00, 12.83] \\ 0.49 \; [0.04, 5.32] \\ 7.56 \; [0.44, 130.22] \\ 0.33 \; [0.02, 5.25] \\ 2.88 \; [1.48, 5.62] \\ 1.47 \; [0.67, 3.24] \\ 1.55 \; [1.31, 1.84] \\ 1.55 \; [0.31, 1.84] \\ 1.52 \; [0.79, 2.93] \\ 0.26 \; [0.03, 2.42] \\ 1.77 \; [0.96, 3.27] \end{array}$	
Test for overall effect: Z = 1.83 (P = 5.1.2 Adenovirus Vector (dose 2)	= 0.07)				
$\label{eq:ads-ncw-zhu (Phase III)} Ad5-ncW - Zhu (Phase III) ChAd0x1 ncOV-19 - Asano ChAd0x1 ncOV-19 - Mahdhi ChAd0x1 ncOV-19 - Mahdhi (HIV) ChAd0x1 ncOV-19 - Ramasamy Subtotal (95% CI) Total events Heterogeneity: Tau2 = 0.02; Chi2 = Test for overall effect: Z = 4.23 (P - 4.23 (P$	4 1 1 1 35 19 152 9 17 2 1 34 211 5.39, df = 5 (P < 0.0001)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1% 1.0% 2.5% 2.9% 2.4% 1.7% 11.7%	4.61 [0.25, 84.30] 1.01 [0.04, 24.50] 3.45 [1.36, 8.79] 1.77 [1.39, 2.26] 4.09 [1.44, 11.62] 0.77 [0.11, 5.34] 2.03 [1.46, 2.81]	
5.1.3 Inactivated (dose 1) BBV152 – Ella (Phase III)	33 128	379 26 12874	2.8%	1.27 [0.76, 2.12]	
BIBP - Xia (Adolescents) CoronaVac - Bueno CoronaVac - Fadlyana CoronaVac - Wu CoronaVac - Zhang (D0-14) CoronaVac - Zhang (D0-28) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Chl ² = Test for overal leffect: Z = 1.48 (P =	0 10 2 25 4 0 1 1 1 140 69 2.04, df = 4 (P = 0.14)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.3% 2.5% 1.0% 1.0% 9.6%	Not estimable 2.02 [0.57, 7.25] 1.67 [0.65, 4.27] 0.20 [0.01, 4.85] 1.76 [0.07, 42.69] Not estimable 1.37 [0.90, 2.08]	· · · · · · · · · · · · · · · · · · ·
5.1.4 Inactivated (dose 2) BRV152 - Ella (Phase III)	21 129	379 25 12874	2.8%	0 84 10 47 1 501	
bw J b z - Eik (Vriase III) BIBP - Xia (Adolescents) CoronaVac - Bueno CoronaVac - Fadlyana CoronaVac - Pala CoronaVac - Zhang (D0-14) CoronaVac - Zhang (D0-14) CoronaVac - Zhang (D0-28) Subtotal (95% CI) Total events Heterogeneity: Tau2 = 0.00; Chi2 = Test for overall effect: Z = 0.30 (P =	$\begin{array}{c} 21 & 126 \\ 0 \\ 3 & 2 \\ 17 & 3 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 140 \\ 1.93, df = 2 (P \\ = 0.77) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.8% 2.3% 6.9%	0.54 [0.47, 1.50] Not estimable 0.50 [0.09, 2.95] 1.90 [0.57, 6.38] Not estimable Not estimable 0.93 [0.56, 1.53]	
5.1.5 mRNA (dose 1) BNT162b2 – Frenck BNT162b2 – Haranaka	100 16 16 1	568 17 1690 119 0 41	2.8%	5.96 [3.58, 9.92] 11.55 [0.71, 188.32]	
BNT162b2 - Walsh CVnCoV - Kremsner mRNA-1273 - Ali mRNA-1273 - Chu mRNA-1273 - El Sahly Subtotal (95% Cl) Total events	1 60 20 334 24 5 2 445 151 216 961	24 0 18 003 20 1978 482 8 1238 200 1 199 166 77 15151 123 123 123 123 123 123 123 12	1.0% 2.8% 2.7% 1.6% 2.9% 15.1%	2.28 [0.10, 52.92] 2.96 [1.79, 4.90] 20.82 [10.36, 41.85] 4.97 [0.59, 42.20] 5.77 [4.54, 7.35] 6.32 [3.69, 10.82]	
Test for overall effect: $Z = 6.72$ (P <	< 0.00001)	(r = 0.001), r = 73x			
5.1.5 MKNA (doše 2) BNT162b2 – Frenck BNT162b2 – Haranaka BNT162b2 – Walsh CVnCoV – Kremsner mRNA-1273 – Ali mRNA-1273 – Chu mRNA-1273 – Chu mRNA-1273 – El Sahly Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.21; Chi ² = Test for overall effect: Z = 9.71 (P -	89 16 12 1 0 40 19 484 24 15 1 1274 146 211 1914 14.32, df = 5 (< 0.00001)		2.8% 1.2% 2.6% 2.8% 1.2% 2.9% 13.5%	8.20 [4.40, 15.28] 8.75 [0.53, 144.58] Not estimable 5.55 [2.49, 12.36] 21.66 [11.96, 39.22] 30.07 [1.81, 499.07] 18.59 [14.58, 23.70] 12.77 [7.64, 21.34]	
5.1.7 Protein Subunit (dose 1) MVC-COV1901 – Hsieh	80 32	295 0 549	1.2%	26.87 [1.67, 432.59]	
NVX-CoV2373 - Dunkle NVX-CoV2373 - Formica NVX-CoV2373 - Heath NVX-CoV2373 - Keech NVX-CoV2373 - Shinde S-Trimer (SCB-2019) - Richmond Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Chi ² =	164 180 3 5 25 13 0 7 4 1 237 280 3.44, df = 5 (P	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.9% 1.1% 2.5% 2.0% 1.0% 10.7%	2.99 [1.99, 4.49] 3.48 [0.18, 67.10] 4.95 [1.90, 12.89] Not estimable 3.50 [0.73, 16.76] 5.47 [0.24, 127.09] 3.39 [2.37, 4.83]	, , ,
Test for overall effect: Z = 6.72 (P < 5.1.8 Protein Subunit (dose 2)	< 0.00001)				
MVC-COV1901 - Hsieh NVX-COV2373 - Dunkle NVX-COV2373 - Formica NVX-COV2373 - Heath NVX-COV2373 - Keech NVX-COV2373 - Skeech NVX-COV2373 - Shinde S-Trimer (SCB-2019) - Richmond Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.08; Chi ² = Test for overall effect: 2 = 10.44 (P	98 32 1138 171 12 2 100 13 2 6 4 2 225 1358 6.69, df = 6 (P < 0.00001)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.2% 2.9% 1.2% 2.1% 1.4% 1.1% 1.1%	32.87 [2.04, 528.49] 18.95 [13.12, 27.37] 24.20 [1.44, 406.54] 49.52 [12.24, 200.33] 1.62 [0.16, 16.61] 12.97 [0.73, 229.62] 9.12 [0.46, 179.18] 18.78 [10.82, 32.57]	
Total (95% CI)	1266	684 96186	100.0%	3.71 [2.52, 5.48]	•
Heterogeneity: $Tau^2 = 1.33$; $Chi^2 = Test$ for overall effect: $Z = 6.61$ (P Test for subgroup differences: Chi^2	698.56, df = 4 < 0.00001) = 123.80, df =	$ 9 (P < 0.00001); ^2 =$ = 7 (P < 0.00001), ²	93% = 94.3%		0.01 0.1 1 10 100 Control more reactogenic Vaccine more reactogenic

Forest plot 5. Risk ratio of redness compared to control, by vaccine type and dose.

14 😧 N. SUTTON ET AL.

Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
6.1.1 Adenovirus Vector (dose 1)	~		-		2.20/	1 35 (0 36 5 65)	
Ad26.COV2.S - Sadott	112	323	3	163	2.3%	1.35 [0.36, 5.00]	
Ad5-nCov - Zhu (Phase II)	5	129	ő	126	1.3%	10.75 [0.60, 192.34]	
Ad5-nCov - Zhu (Phase IIB)	3	120	1	60	1.6%	1.50 [0.16, 14,12]	
ChAdOx1 nCoV-19 - Asano	1	192	0	64	1.1%	1.01 [0.04, 24.50]	
ChAdOx1 nCoV-19 - Folegatti	21	487	14	477	2.7%	1.47 [0.76, 2.86]	+
ChAdOx1 nCoV-19 - Mahdhi	221	990	121	1010	2.8%	1.86 [1.52, 2.28]	-
ChAdOx1 nCoV-19 - Mahdi (HIV)	16	81	7	78	2.6%	2.20 [0.96, 5.06]	
Subtotal (95% CI)	2	4031	1	3648	1.5%	2 50 [1 29 4 84]	
Total events	389	1051	156	5010	10.0/0	2.50 [1.25, 1.04]	
Heterogeneity: $Tau^2 = 0.55$; $Chi^2 = Test$ for overall effect: $Z = 2.73$ (P =	33.81, df = 0.006)	= 8 (P <	0.0001);	l ² = 769	6		
6.1.2 Adenovirus Vector (dose 2)							
Ad5-nCov - Zhu (Phase IIB)	1	118	0	60	1.1%	1.54 [0.06, 37.19]	
ChadOx1 nCoV-19 - Asano	143	192	76	087	1.1%	1.01 [0.04, 24.50]	
ChAdOx1 nCoV-19 - Mahdi (HIV)	145	81	5	78	2.5%	2.70 [1.02, 7.13]	
ChAdOx1 nCoV-19 - Ramasamy	2	128	3	98	1.9%	0.51 [0.09, 3.00]	
Subtotal (95% CI)		1455		1282	9.5%	1.95 [1.52, 2.50]	•
Total events	161		84				
Heterogeneity: $Tau^{*} = 0.00$; $Chi^{*} =$ Test for overall effect: Z = 5.23 (P -	< 0.00001	= 4 (P = 0)	.59); 1" =	: 0%			
6.1.3 Inactivated (dose 1)							
BBV152 – Ella (Phase I)	0	100	1	75	1.1%	0.25 [0.01, 6.07]	
BBV152 – Ella (Phase III)	21	12879	32	12874	2.7%	0.66 [0.38, 1.14]	+
CoronaVac - Bueno	5	270	3	164	2.2%	1.01 [0.25, 4.18]	
CoronaVac – Fadiyana	9	405	1	135	1.7%	3.00 [0.38, 23.46]	·
CoronaVac - Wu	1	124	0	74 94	1.1%	1.80 [0.07, 43.62]	
CoronaVac - Zhang (D0-14) CoronaVac - Zhang (D0-28)	0	144	0	84 87	1.1%	1.70 [0.07, 42.69] Not estimable	
Subtotal (95% CI)	0	14066	0	13489	10.0%	0.77 [0.47, 1.24]	-
Total events	37		37				-
Heterogeneity: Tau ² = 0.00; Chi ² =	3.18, df =	= 5 (P = 0	.67); I ² =	: 0%			
Test for overall effect: $Z = 1.08$ (P =	= 0.28)						
6.1.4 Inactivated (doce 2)							
BRV152 - Ella (Phace I)	0	100	0	75		Not estimable	
BBV152 - Ella (Phase III)	14	12879	16	12874	2 7%	0.87 [0.43 1 70]	
CoronaVac - Bueno	5	239	1	80	1.7%	1.67 [0.20, 14.11]	
CoronaVac – Fadlyana	14	397	1	133	1.8%	4.69 [0.62, 35.33]	
CoronaVac - Wu	0	124	0	72		Not estimable	
CoronaVac - Zhang (D0-14)	1	144	0	84	1.1%	1.76 [0.07, 42.69]	
CoronaVac – Zhang (D0–28)	0	141	1	12402	1.1%	0.20 [0.01, 4.84]	
Total events	24	14024	10	15402	0.4%	1.05 [0.57, 1.95]	
Heterogeneity: $Tau^2 = 0.00$: $Chi^2 =$	3.79. df =	= 4 (P = 0	.44): 1 ² =	0%			
Test for overall effect: Z = 0.16 (P =	= 0.88)						
6.1.5 mRNA (dose 1)							
BNT162b2 - Frenck	122	1668	17	1690	2.8%	7.27 [4.40, 12.02]	· · · · ·
BNT162b2 – Haranaka	15	119	0	41	1.3%	10.85 [0.66, 177.38]	
BNT162b2 – Walsh	0	24	0	18		Not estimable	
CVnCoV - Kremsner	93	2003	13	1978	2.7%	7.06 [3.97, 12.58]	
mRNA-1273 - Ali	403	2482	12	1238	2.7%	16.75 [9.47, 29.62]	
mRNA-1273 - El Sably	035	15166	65	15151	2.8%	14 37 [11 19 18 46]	
Subtotal (95% CI)	555	21662	05	20315	14.1%	10.78 [7.40, 15.70]	•
Total events	1576		108				
Heterogeneity: $Tau^2 = 0.10$; $Chi^2 =$ Test for overall effect: Z = 12.39 (P	10.76, df < 0.0000	= 5 (P = 1)	0.06); l ²	= 54%			
6.1.6 mRNA (dose 2)							
BNT162b2 – Frenck	95	1668	11	1690	2.7%	8.75 [4.70, 16.28]	
BNT162b2 - Haranaka	10	119	0	41	1.3%	7.35 [0.44, 122.72]	
BNT162b2 – Walsh	0	24	0	18		Not estimable	
CVnCoV - Kremsner	82	1964	6	1908	2.6%	13.28 [5.81, 30.34]	
mRNA-1273 - All mRNA-1273 - Chu	509	2478	12	1220	2.7%	20.88 [11.83, 36.86]	
mRNA=1273 = Clu mRNA=1273 = Fl Sahly	1807	14691	60	14578	1.0% 2.8%	29.89 [23.13.38.61]	
Subtotal (95% CI)	1007	21143	00	19648	13.9%	17.06 [9.97, 29.18]	
Total events	2524	- 5 (0	90 0.007)//	2 - 60%			
Test for overall effect: $Z = 10.36$ (P	< 0.0000	- 5 (P = 1)	u.uu7); I	- 09%			
					_		
6.1.7 Protein Subunit (dose 1)					2 501		
6.1.7 Protein Subunit (dose 1) MVC-COV1901 - Hsieh	187	3295	4	549	2.5%	7.79 [2.91, 20.88]	
6.1.7 Protein Subunit (dose 1) MVC-COV1901 – Hsieh NVX-CoV2373 – Dunkle	187 154	3295 18072	4 24	549 8904	2.5%	7.79 [2.91, 20.88] 3.16 [2.06, 4.86]	
6.1.7 Protein Subunit (dose 1) MVC-COV1901 – Hsieh NVX-CoV2373 – Dunkle NVX-CoV2373 – Hearth NVX-CoV2373 – Hearth	187 154 5 12	3295 18072 508 1364	4 24 1	549 8904 252 1350	2.5% 2.8% 1.7% 2.5%	7.79 [2.91, 20.88] 3.16 [2.06, 4.86] 2.48 [0.29, 21.12] 1.98 [0.75, 5.26]	
6.1.7 Protein Subunit (dose 1) MVC-COV1901 - Hsieh NVX-CoV2373 - Dunkle NVX-CoV2373 - Formica NVX-CoV2373 - Heath NVX-CoV2373 - Keerch	187 154 5 12	3295 18072 508 1364 26	4 24 1 6 0	549 8904 252 1350 23	2.5% 2.8% 1.7% 2.5%	7.79 [2.91, 20.88] 3.16 [2.06, 4.86] 2.48 [0.29, 21.12] 1.98 [0.75, 5.26] Not estimable	
6.1.7 Protein Subunit (dose 1) MVC-COV1901 - Hsieh NVX-CoV2373 - Dunkle NVX-CoV2373 - Formica NVX-CoV2373 - Heath NVX-CoV2373 - Keech NVX-CoV2373 - Shinde	187 154 5 12 0 10	3295 18072 508 1364 26 484	4 24 1 6 0 2	549 8904 252 1350 23 484	2.5% 2.8% 1.7% 2.5% 2.1%	7.79 [2.91, 20.88] 3.16 [2.06, 4.86] 2.48 [0.29, 21.12] 1.98 [0.75, 5.26] Not estimable 5.00 [1.10, 22.70]	
6.1.7 Protein Subunit (dose 1) MVC-COV1901 - Hsieh NVX-CoV2373 - Dunkle NVX-CoV2373 - Formica NVX-CoV2373 - Heath NVX-CoV2373 - Keech NVX-CoV2373 - Shinde S-Trimer (SCB-2019) - Richmond	187 154 5 12 0 10 1	3295 18072 508 1364 26 484 16	4 24 1 6 0 2 0	549 8904 252 1350 23 484 30	2.5% 2.8% 1.7% 2.5% 2.1% 1.1%	7.79 [2.91, 20.88] 3.16 [2.06, 4.86] 2.48 [0.29, 21.12] 1.98 [0.75, 5.26] Not estimable 5.00 [1.10, 22.70] 5.47 [0.24, 127.09]	
6.1.7 Protein Subunit (dose 1) MVC-COV1901 – Hsieh NVX-CoV2373 – Dunkle NVX-CoV2373 – Formica NVX-CoV2373 – Heath NVX-CoV2373 – Keech NVX-CoV2373 – Shinde S-Trimer (SCB-2019) – Richmond Subtotal (95% CI)	187 154 5 12 0 10 1	3295 18072 508 1364 26 484 16 23765	4 24 1 6 0 2 0	549 8904 252 1350 23 484 30 11592	2.5% 2.8% 1.7% 2.5% 2.1% 1.1% 12.7%	7.79 [2.91, 20.88] 3.16 [2.06, 4.86] 2.48 [0.29, 21.12] 1.98 [0.75, 5.26] Not estimable 5.00 [1.10, 22.70] 5.47 [0.24, 127.09] 3.42 [2.41, 4.84]	
6.1.7 Protein Subunit (dose 1) WVC-COV1901 – Hsieh NVX-CoV2373 – Dunkle NVX-CoV2373 – Formica NVX-CoV2373 – Heath NVX-CoV2373 – Keech NVX-CoV2373 – Shinde S-Trimer (SCB-2019) – Richmond Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Chi ² =	187 154 5 12 0 10 1 1 369 4.68, df	3295 18072 508 1364 26 484 16 23765 = 5 (P = C	4 24 1 6 0 2 0 37 .46); I ² =	549 8904 252 1350 23 484 30 11592	2.5% 2.8% 1.7% 2.5% 2.1% 1.1% 12.7%	7.79 [2.91, 20.88] 3.16 [2.06, 4.86] 2.48 [0.29, 21.12] 1.98 [0.75, 5.26] Not estimable 5.00 [1.10, 22.70] 5.47 [0.24, 127.09] 3.42 [2.41, 4.84]	
6.1.7 Protein Subunit (dose 1) WC-COV1001 – Hsieh NVX-CoV2373 – Dunkle NVX-CoV2373 – Formica NVX-CoV2373 – Heath NVX-CoV2373 – Keach NVX-CoV2373 – Keach NVX-CoV2373 – Keach NVX-CoV2373 – Keach NVX-CoV2373 – Keach Subtotal (39% CI) Total events Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 6.92 (P -	187 154 5 12 0 10 1 1 369 4.68, df = < 0.00001	3295 18072 508 1364 26 484 16 23765 = 5 (P = C	4 24 1 6 0 2 0 37 .46); l ² =	549 8904 252 1350 23 484 30 11592	2.5% 2.8% 1.7% 2.5% 2.1% 1.1% 12.7%	7.79 [2.91, 20.88] 3.16 [2.06, 4.86] 2.48 [0.29, 21.12] 1.98 [0.75, 5.26] Not estimable 5.00 [1.10, 22.70] 5.47 [0.24, 127.09] 3.42 [2.41, 4.84]	
6.1.7 Protein Subunit (dose 1) MVC-COV1001 – Hsieh NVX-CoV2373 – Dunkle NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Shinde S-Trimer (SCB-2019) – Richmond Subtotal (95% CI) Total events Heterogenelty: Tau ² = 0.00: Chl ² = Test for overall effect: Z = 6.92 (P 6.1.8 Protein Subunit (dose 2)	187 154 5 12 0 10 1 1 369 4.68, df < 0.00001	3295 18072 508 1364 26 484 16 23765 = 5 (P = C	4 24 1 6 0 2 0 37 .46); I ² =	549 8904 252 1350 23 484 30 11592	2.5% 2.8% 1.7% 2.5% 2.1% 1.1% 12.7%	7.79 [2.91, 20.88] 3.16 [2.06, 4.86] 2.48 [0.29, 21.12] 1.98 [0.75, 5.26] Not estimable 5.00 [1.10, 22.70] 5.47 [0.24, 127.09] 3.42 [2.41, 4.84]	
6.1.7 Protein Subunit (dose 1) MVC-COV1901 – Hsieh NVX-CoV2373 – Dunkle NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Shinde S-Trimer (SCB-2019) – Richmond Subtotal (95% CI) Total events Heterogoneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 6.92 (P 6.1.8 Protein Subunit (dose 2) MVC-COV1901 – Hsieh	187 154 5 12 0 10 1 369 4.68, df : < 0.00001	3295 18072 508 1364 26 484 16 23765 = 5 (P = C)	4 24 1 6 0 2 0 37 .46); I ² =	549 8904 252 1350 23 484 30 11592	2.5% 2.8% 1.7% 2.5% 2.1% 1.1% 12.7%	7.79 [2.91, 20.88] 3.16 [2.06, 4.86] 2.48 [0.29, 21.12] 1.98 [0.75, 5.26] Not estimable 5.00 [1.10, 22.70] 3.42 [2.41, 4.84] 3.82 [5.46, 276.18]	
6.1.7 Protein Subunit (dose 1) WC-COV1001 – Hsieh NVX-CoV2373 – Dunkle NVX-CoV2373 – Formica NVX-CoV2373 – Heath NVX-CoV2373 – Shinde S-Trimer ISCB-2019) – Richmond Subtotal (93% CI) Total events Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 6.92 (P - 6.1.8 Protein Subunit (dose 2) MVC-CoV2373 – Dunkle NVX-CoV2373 – Ecomica	187 154 5 12 0 10 1 369 4.68, df < 0.00001 233 1056	3295 18072 508 1364 26 484 16 23765 = 5 (P = C)) 3295 17139	4 24 1 6 0 2 0 37 .46); I ² =	549 8904 252 1350 23 484 30 11592 • 0%	2.5% 2.8% 1.7% 2.5% 2.1% 1.1% 12.7%	7.79 [2.91, 20.88] 3.16 [2.06, 4.86] 2.48 [0.29, 21.12] 1.98 [0.75, 5.26] Not estimable 5.00 [1.10, 22.70] 3.42 [2.41, 4.84] 38.82 [5.46, 276.18] 20.60 [13.73, 30.31]	
6.1.7 Protein Subunit (dose 1) MVC-COV1001 – Hsieh NVX-CoV2373 – Dunkle NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Shinde S-Trimer (SCB-2019) – Richmond Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00: Chl ² = Test for overall effect: Z = 6.92 (P - 6.1.8 Protein Subunit (dose 2) MVC-COV1901 – Hsieh NVX-CoV2373 – Dunkle NVX-CoV2373 – Formica NVX-CoV2373 – Heath	187 154 5 12 0 10 1 369 4.68, df < 0.00001 233 1056 14 8	3295 18072 508 1364 26 484 16 23765 = 5 (P = C) 3295 17139 250 1348	4 24 1 6 0 2 0 37 .46); I ² =	549 8904 252 1350 23 484 30 11592 • 0% 549 8278 242 1335	2.5% 2.8% 2.5% 2.1% 1.1% 12.7%	7.79 [2.91, 20.88] 3.16 [2.06, 4.86] 2.48 [0.29, 21.12] 1.98 [0.75, 5.26] Not estimable 5.00 [110, 22.70] 3.42 [2.41, 4.84] 38.82 [5.46, 276.18] 20.40 [13.73, 30.31] 28.08 [1.68, 468.05] 22.04 [15.96 84]	
6.1.7 Protein Subunit (dose 1) MVC-COV1001 – Hsieh NVX-CoV2373 – Dunkle NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Shinde S-Trimer (SCB-2019) – Richmond Subtotal (95% CI) Total events Heterogoneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 6.92 (P 6.1.8 Protein Subunit (dose 2) MVC-COV1901 – Hsieh NVX-CoV2373 – Dunkle NVX-CoV2373 – Heath NVX-CoV2373 – Keech	187 154 5 12 0 10 1 1 369 4.68, df < 0.00001 233 1056 14 89 1	3295 18072 508 1364 26 484 16 23765 = 5 (P = C) 3295 17139 250 1348 26	4 24 1 6 0 2 0 37 .46); l ² = 1 25 0 4 0	549 8904 252 1350 23 484 30 11592 549 8278 242 1335 21	2.5% 2.8% 2.5% 2.1% 1.1% 12.7%	7.79 [2.91, 20.88] 3.16 [2.06, 4.86] 2.48 [0.29, 21, 12] 1.98 [0.75, 5.26] Not estimable 5.00 [1.10, 22, 70] 3.42 [2.41, 4.84] 38.82 [5.46, 276, 18] 20.40 [13, 73, 30, 31] 22.04 [8, 162, 59, 83] 2.44 [0, 10, 57, 08]	
6.1.7 Protein Subunit (dose 1) WC-COV1001 – Hsieh NVX-CoV2373 - Dunkle NVX-CoV2373 – Formica NVX-CoV2373 – Formica NVX-CoV2373 – Shinde S-Trimer ISC8-2019) – Richmond Subtotal (39% CI) Total events Heterogeneity: Tau ² = 0.00; Chl ² = Test for overall effect: Z = 6.92 (P - 6.1.8 Protein Subunit (dose 2) MVC-COV1001 – Hsieh NVX-CoV2373 – Dunkle NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Shinde	187 154 5 12 0 10 1 1 369 4.68, df 1 < 0.00001 233 1056 14 89 1 10	3295 18072 508 1364 26 484 16 23765 = 5 (P = C)) 3295 17139 250 1348 26 471	4 24 1 6 0 2 0 37 .46); l ² = 1 25 0 4 0 2	549 8904 252 1350 23 484 30 11592 549 8278 242 1335 21 470	2.5% 2.8% 2.7% 2.5% 2.1% 1.1% 12.7%	7.79 [2.91, 20.88] 3.16 [2.06, 4.86] 2.48 [0.29, 21.12] 1.98 [0.75, 5.26] Not estimable 5.00 [1.10, 22.70] 3.42 [2.41, 4.84] 38.82 [5.46, 276.18] 20.40 [13.73, 30, 31] 20.04 [13.73, 30, 31] 22.04 [8.12, 59.83] 2.44 [0.10, 57.08] 2.49 [1.10, 22.65]	
6.1.7 Protein Subunit (dose 1) WC-COV1001 – Hsieh NVX-CoV2373 – Dunkle NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Shinde S-Trimer (SCB-2019) – Richmond Subtoal (95% CI) Total events Heterogeneity: Tau ² = 0.00: Chl ² = Test for overall effect: Z = 6.92 (P - 6.1.8 Protein Subunit (dose 2) MVX-CoV2373 – Dunkle NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Shinde S-Trimer (SCB-2019) – Richmond	187 154 5 12 0 10 1 1 369 4.68, df : < 0.00001 233 1056 14 89 1 10 0 1	3295 18072 508 1364 26 484 16 23765 5 (P = C)) 3295 17139 250 1348 26 471	4 24 1 6 0 2 0 37 .46); I ² = 1 25 0 4 0 2 0	549 8904 252 1350 23 484 30 11592 50% 549 8278 242 1335 21 470 30	2.5% 2.8% 2.5% 2.1% 1.1% 12.7% 12.7%	7.79 [2.91, 20.88] 3.16 [2.06, 4.86] 2.48 [0.29, 21.12] 1.98 [0.75, 5.26] Not estimable 5.00 [1.10, 22.70] 3.42 [2.41, 27.09] 3.42 [2.41, 4.84] 38.82 [5.46, 276.18] 20.40 [13.73, 30.31] 20.40 [13.73, 30.31] 22.04 [8.12, 59.83] 2.44 [0.10, 57.08] 4.99 [1.10, 22.65] 5.47 [0.24, 127.09]	
6.1.7 Protein Subunit (dose 1) WC-COV1001 – Hsieh NVX-CoV2373 – Dunkle NVX-CoV2373 – Formica NVX-CoV2373 – Formica NVX-CoV2373 – Shinde S-Trimer ISCB-2019 – Richmond Subtotal (39% CI) Total events Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 6.92 (P -6.1.8 Protein Subunit (dose 2) MVC-CoV1031 – Hsieh NVX-CoV2373 – Formica NVX-CoV2373 – Formica NVX-CoV2373 – Skinde S-Trimer (SCB-2019) – Richmond Subtotal (39% CI)	187 154 5 12 0 10 10 1 369 4.68, df < 0.00001 233 1056 14 89 9 1 10 1	3295 18072 508 1364 26 484 16 23765 = 5 (P = C) 3295 17139 250 1348 26 471 16 22545	4 24 1 6 0 2 0 37 .46); I ² = 1 255 0 4 0 2 0	549 8904 252 1350 23 484 30 11592 • 0% • 0% • 0% • 249 8278 242 1335 21 470 30 10925	2.5% 2.8% 2.5% 2.1% 1.1% 12.7% 1.1% 2.5% 1.3% 2.5% 1.1% 2.1% 1.1% 12.8%	7.79 [2.91, 20.88] 3.16 [2.06, 4.86] 2.48 [0.29, 21, 12] 1.98 [0.75, 5.26] Not estimable 5.00 [1.10, 22, 70] 3.42 [2.41, 4.84] 3.42 [2.41, 4.84] 3.42 [2.41, 4.84] 2.04 [0, 13, 73, 30, 31] 2.04 [8, 10, 57, 08] 4.99 [1, 10, 22, 65] 5.47 [0.24, 127, 09] 18.43 [12.47, 27.23]	
6.1.7 Protein Subunit (dose 1) WVC-COV1001 – Hsieh NVX-CoV2373 – Dunkle NVX-CoV2373 – Formica NVX-CoV2373 – Heath NVX-CoV2373 – Shinde S-Trimer (SCB-2019) – Richmond Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Chl ² = Test for overall effect: Z = 6.92 (P - 6.1.8 Protein Subunit (dose 2) MVC-COV2373 – Dunkle NVX-CoV2373 – Hsieh NVX-CoV2373 – Hsieh NVX-CoV2373 – Hath NVX-CoV2373 – Hath NVX-CoV2373 – Shinde S-Trimer (SCB-2019) – Richmond Subtotal (95% CI)	187 154 5 12 0 10 10 1 369 4.68, df < 0.00001 233 1056 14 89 1 100 1	3295 18072 508 1364 26 484 16 23765 = 5 (P = C) 3295 17139 250 1348 26 471 166 22545	$ \begin{array}{c} 4 \\ 24 \\ 1 \\ 6 \\ 0 \\ 2 \\ 0 \\ 37 \\ .46); I^2 = 1 \\ 1 \\ 25 \\ 0 \\ 4 \\ 0 \\ 2 \\ 0 \\ 32 \\ 40); I^2 = 1 \\ 1 \\ 1 \\ 2 \\ 0 \\ 1 \\ 1 \\ 2 \\ 0 \\ 32 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	549 8904 252 1350 23 484 30 11592 0% 549 8278 242 1335 21 470 30 10925	2.5% 2.8% 2.5% 2.1% 1.1% 12.7% 1.8% 2.8% 1.3% 2.5% 1.1% 2.1% 1.1% 12.8%	7.79 [2.91, 20.88] 3.16 [2.06, 4.86] 2.48 [0.29, 21.12] 1.98 [0.75, 5.26] Not estimable 5.00 [1.10, 22, 70] 3.42 [2.41, 4.84] 38.82 [5.46, 276.18] 20.40 [13.73, 30, 31] 28.08 [1.68, 468.05] 22.04 [8.12, 59.83] 2.44 [0.10, 57.08] 4.99 [1.10, 22.65] 5.47 [0.24, 127.09] 18.43 [12.47, 27.23]	
6.1.7 Protein Subunit (dose 1) WVC-C0V1001 – Hsieh NVX-CoV2373 – Dunkle NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Shinde S-Trimer (SCB-2019) – Richmond Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Chi ² = Fast for overall effect: Z = 6.92 (P - 6.1.8 Protein Subunit (dose 2) MVC-COV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Shinde Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.02; Ch ² Heterogeneity: Tau ² = 0.02; Ch ²	187 154 5 12 0 10 1 369 4.68, df - < 0.00001 233 1056 14 89 1 10 1 1404 6.21, df - < 0.0001	3295 18072 508 1364 26 484 16 23765 = 5 (P = C) 3295 17139 250 13148 26 471 16 22545 = 6 (P = C	4 24 16 0 2 0 37 .46); ² = 1 25 0 4 0 2 0 32 .40); ² =	549 8904 2522 1350 23 484 30 11592 30 8278 242 1335 21 470 30 10925	2.5% 2.8% 2.5% 2.1% 1.1% 12.7% 1.8% 2.8% 1.3% 2.5% 1.3% 2.1% 1.1% 12.8%	7.79 [2.91, 20.88] 3.16 [2.06, 4.86] 2.48 [0.29, 21.12] 1.98 [0.75, 5.26] Not estimable 5.00 [1.10, 22.70] 3.42 [2.41, 4.84] 38.82 [5.46, 276.18] 20.40 [13, 73, 30.31] 28.08 [1.68, 468.05] 22.04 [8, 12, 99, 83] 2.44 [0.10, 57.08] 4.99 [1.10, 22.65] 5.47 [10, 25.65] 5.47 [10, 24, 127.09] 18.43 [12.47, 27.23]	
6.1.7 Protein Subunit (dose 1) WC-COV1001 – Hsieh NVX-CoV2373 – Dunkle NVX-CoV2373 – Formica NVX-CoV2373 – Formica NVX-CoV2373 – Shinde S-Trimer (SCB-2019) – Richmond Subtotal (39% CI) Total events Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 6.92 (P - 6.1.8 Protein Subunit (dose 2) MVC-CoV1301 – Hsieh NVX-CoV2373 – Formica NVX-CoV2373 – Formica NVX-CoV2373 – Formica NVX-CoV2373 – Shinde S-Trimer (SCB-2019) – Richmond Subtotal (39% CI) Total events Heterogeneity: Tau ² = 0.02; Chi ² = Test for overall effect: Z = 14.63 (P	187 154 5 12 0 10 1 369 4.68, df < 0.00001 233 1056 14 89 1 10 1 1404 6.21, df < 0.0000	3295 18072 508 1364 26 484 16 23765 = 5 (P = C) 32955 17139 2500 1348 26 4711 16 22545 = 6 (P = C)	4 24 16 0 2 0 37 .46); l ² = 1 25 0 4 0 2 0 32 .40); l ² =	549 8904 2522 1350 23 484 30 11592 30 8278 242 1335 21 470 30 10925 3%	2.5% 2.8% 2.5% 2.1% 1.1% 12.7% 1.8% 2.8% 1.3% 1.8% 2.5% 1.1% 2.1% 1.1% 12.8%	7.79 [2.91, 20.88] 3.16 [2.06, 4.86] 2.48 [0.29, 21, 12] 1.98 [0.75, 5.26] Not estimable 5.00 [1.10, 22, 70] 3.42 [2.41, 4.84] 38.82 [5.46, 276.18] 20.40 [13, 73, 30, 31] 22.04 [8, 12, 59, 83] 2.44 [0, 10, 57, 08] 4.99 [1.10, 22, 65] 18.43 [12.47, 27.23]	
6.1.7 Protein Subunit (dose 1) WC-COV1001 – Hsieh NVX-CoV2373 – Dunkle NVX-CoV2373 – Formica NVX-CoV2373 – Keech NVX-CoV2373 – Shinde S-Trimer (SCB-2019) – Richmond Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Chl ² = Test for overall effect: Z = 6.92 (P - 6.1.8 Protein Subunit (dose 2) MVC-COV21901 – Hsieh NVX-CoV2373 – Dunkle NVX-CoV2373 – Hath NVX-CoV2373 – Hath NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Shinde S-Trimer (SCB-2019) – Richmond Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.02; Chl ² Test for overall effect: Z = 14.63 (P Total (95% CI)	187 154 5 122 0 10 1 369 4.68, df < 0.00001 233 1056 14 89 1 10 1 1 1404 6.21, df < < 0.0000	3295 18072 508 1364 26 484 16 23765 = 5 (P = C) 3295 17139 250 1348 26 471 16 22545 = 6 (P = C 1) 122691	4 24 16 0 2 0 .46); I ² = 1 25 0 4 0 2 0 4 0 2 0 4 0 2 0 4 0 2 0 4 0 2 0 4 0 2 0 4 0 2 0 2	549 8904 252 1350 23 484 30 11592 50% 549 8278 242 1335 21 470 30 10925 53% 94301	2.5% 2.8% 1.7% 2.5% 2.1% 1.1% 12.7% 1.8% 2.5% 1.3% 2.5% 1.3% 2.5% 1.3% 2.5% 1.3% 2.5% 1.3% 2.5% 1.3% 2.8% 1.3% 2.8% 1.7% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2	7.79 [2.91, 20.88] 3.16 [2.06, 4.86] 2.48 [0.29, 21, 12] 1.98 [0.75, 5.26] Not estimable 5.00 [1.10, 22, 70] 3.42 [2.41, 4.84] 38.82 [5.46, 276.18] 20.40 [13, 73, 30, 31] 2.44 [0.10, 57, 08] 4.99 [1.10, 22, 65] 5.47 [0.24, 127, 09] 18.43 [12.47, 27.23]	
6.1.7 Protein Subunit (dose 1) WC-COV1001 – Hsieh NVX-CoV2373 – Dunkle NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Shinde S-Trimer (SCB-2019) – Richmond Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00: Chl ² = Test for overall effect: Z = 6.92 (P - 6.1.8 Protein Subunit (dose 2) MVC-COV1901 – Hsieh NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Heath NVX-CoV2373 – Shinde S-Trimer (SCB-2019) – Richmond Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.02; Chl ² = Test for overall effect: Z = 14.63 (P Total events	187 154 5 12 0 10 1 369 4.68, df - < 0.00001 233 1056 233 1056 1 1056 1 1 4 4 6.21, df - < 0.0001 1	3295 18072 508 1364 26 484 16 23765 5 (P = C) 3295 17139 250 1348 26 471 16 22545 = 6 (P = C 1) 122691	$\begin{array}{c} 4\\ 4\\ 24\\ 1\\ 6\\ 0\\ 0\\ 0\\ 37\\ -\\ 0\\ 37\\ -\\ 0\\ 1\\ 2\\ 0\\ -\\ 1\\ 2\\ 0\\ -\\ 0\\ 32\\ -\\ 0\\ 32\\ -\\ 0\\ 0\\ -\\ 0\\ -\\ 0\\ -\\ 0\\ -\\ 0\\ -\\ 0\\ 0\\ -\\ 0\\ 0\\ -\\ 0\\ 0\\ -\\ 0\\ 0\\ -\\ 0\\ 0\\ -\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	549 8904 252 1350 23 484 30 111592 *0% 549 8278 242 1335 21 10925 33% 94301	2.5% 2.8% 1.7% 2.5% 2.1% 1.1% 12.7% 12.7% 1.1% 2.8% 1.3% 2.1% 1.1% 12.8%	7.79 [2.91, 20.88] 3.16 [2.06, 4.86] 2.48 [0.29, 21.12] 1.98 [0.75, 5.26] Not estimable 5.00 [1.10, 22.70] 3.42 [2.41, 27.09] 3.42 [2.41, 4.84] 38.82 [5.46, 276.18] 20.40 [13, 73, 30, 31] 28.08 [1.68, 468.05] 22.04 [8.12, 59, 83] 2.44 [0.10, 57.08] 4.49 [1.10, 22.65] 18.43 [12.47, 27.23]	

Forest plot 6. Risk ratio of swelling compared to control, by vaccine type and dose.

simplistic however, as it ignores the 'nocebo' effect. Nocebo responses are thought to be caused by misattribution of routine background symptoms, anxiety, and expectations of AEs. In their recent systematic review, Haas et al. [63] focused only on the frequencies of AEs reported in the placebo groups of COVID-19 vaccine trials by excluding studies using a non-inert placebo. They estimated that 76% of systemic AEs and 24% of local AEs after the first vaccination were attributed to nocebo responses and 52% of systemic AEs and 16% of local AEs after the second dose.

Another cause for heterogeneity was extremes of age. Other reviews have drawn similar conclusions, observing that the overall adverse event incidence is higher for vaccinees aged 16– 55 years than among older adults aged over 55 years [7,8].

The information provided in this review is important for health-care workers, policy makers and the general public when making decisions around receipt of COVID-19 vaccines. It may also allow better matching of specific vaccines with specific populations; for example, the preferred use of the least reactogenic vaccine platform in pregnant women. All of these considerations, however, are likely to be significantly offset by considerations around the efficacy of the respective vaccines, as an individual may prefer a more effective vaccine despite its greater reactogenicity. Clear differences in efficacy and effectiveness are now evident among the different vaccine types [4,5]. It does raise the possibility that heterologous vaccine schedules may allow matching of different vaccines with different reactogenicity and efficacy profiles in order to provide an overall schedule with lower reactogenicity and preserved efficacy. Such a hypothesis requires further study.

There are a few limitations to our study. We focused on the side effect profile of homologous primary dosing vaccine schedules and excluded studies evaluating booster doses or heterologous vaccine regimens, which are the focus of multiple on-going COVID-19 vaccine trials.

We were unable to fully evaluate several factors which may affect reactogenicity, for example age, ethnicity and prior COVID-19 infection, due to lack of granularity of the data. Some of the trials reported in this review are still on-going, therefore full safety results are not yet published or available for researchers to include in meta-analyses. Once larger datasets are available and additional trials on the pediatric population are published, meta regression would be useful to infer the effect of these variables.

Despite not limiting language in our search method, we only used English language databases and therefore will have missed publications in other languages, resulting in publication bias. In addition to this, there is an underrepresentation of trials from developing countries.

Lack of a standardized study design for the COVID-19 vaccine studies made comparing studies challenging. The three most common differences noted were: a variation in the number and type of symptoms participants were asked to report, the choice of control used, and whether data was reported by single dose or by combined dose.

We have demonstrated considerable variability in the number of local and systemic AEs that were solicited in the individual trials. Inviting participants to report a greater number of symptoms may result in the overall vaccine reactogenicity appearing to be more severe than studies that stipulate reporting of fewer symptoms. Reporting of a standard list of symptoms (as well as using standard definitions of events and of severity) would allow a more accurate and complete comparison of the reactogenicity profile of different vaccines. Such calls have been made previously by the Brighton Collaboration for vaccine studies in general [64].

The majority of trials reported reactogenicity data for each of the vaccine doses given. Some combined the data and reported it for the whole vaccine course. As the data was most commonly presented as occurrence of each symptom per participant for the whole vaccine course, this may underestimate the reactogenicity, as the same participant could have experienced the symptom twice, once with each vaccine dose. This is reflected in our results, as there was no statistically significant difference in the occurrence of reactogenicity symptoms between the control and vaccine group for the studies with results presented in this way.

5. Conclusions

Among COVID-19 vaccines currently available and/or in Phase III trials, the four vaccine types (platforms) appear to have a distinct reactogenicity profiles, which also varies between the first and second dose of each individual vaccine. Both doses of mRNA vaccines, the second dose of protein subunit and first dose of adenovirus vectored vaccines were the most reactogenic, while the inactivated vaccines were the least reactogenic. Awareness of the reactogenicity profiles of different vaccine types can allow different vaccines to be recommended for specific populations. The lack of standardization of COVID-19 vaccine trials and the way data is reported made comparisons challenging. Greater standardization of this will aid research in the future.

6. Expert opinion

Current COVID-19 vaccine trials have shifted their original focus on safety and efficacy of doses in unvaccinated participants to booster studies (third or fourth doses), which commonly include heterologous 'mix-match' schedules combining more than one vaccine platform, rather than the homologous primary dosing schedules which are the subject of this review. As a result, there may be significant differences in the reactogenicity of booster dosing schedules. In addition to this, previous COVID-19 immunity may impact the range and intensity of side effects experienced after vaccination. Furthermore, novel studies are being performed on population groups previously excluded from the earlier trials: children, pregnant women and immunocompromised patients, who may have a different reactogenicity profile compared to the general public.

Side effect data reporting on vaccine trials are still very heterogeneous, despite international efforts to unify definitions such as through the Brighton collaboration. More efforts should be made to standardize COVID-19 vaccine trial design: from the choice of control, follow-up duration, definitions of solicited and unsolicited adverse events to safety data reporting and choice of denominator to calculate adverse event rates (participants receiving a vaccine versus participants reporting adverse events). Ultimately, the choice of COVID-19 vaccine will need to consider multiple factors, including reactogenicity, frequency of rare and serious adverse events, efficacy against circulating COVID-19 variant strains, availability of doses and costs.

For obvious reasons, the development, testing, and implementation of COVID-19 vaccines have occurred at an unprecedented pace. This now means there are likely to be fewer opportunities to assess new COVID-19 vaccine candidates in the context of a placebo-controlled trial. Comparisons will need to be made against licensed COVID-19 vaccines, rather than against non-COVID vaccine control groups. This may complicate any ongoing analysis of the reactogenicity of COVID-19 vaccines and will require creative trial designs to ensure that the reactogenicity of new candidate vaccines can be accurately reported. In addition to this, safety monitoring will shift from RCTs to large community cohort longitudinal follow-up data or Phase IV pharmacovigilance studies to detect infrequent adverse events.

It is likely that studies of the reactogenicity of COVID-19 vaccines as booster doses, as part of heterologous schedules and in other important groups such as children will become more common over the next 5 years.

Acknowledgments

We thank Jonathan Lewis-Bridgeman and Atul Kumar-Beurg for their help with Excel and data management, and Caroline Albrecht for creating Figure 2.

Funding

This paper was not funded.

Declaration of interest

PT Heath coordinates research on behalf of St Georges, University of London which is funded by vaccine manufacturers, including those that manufacture COVID-19 vaccines (Pfizer, AZ, Novavax, Moderna, Valneva, Janssen). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Reviewer disclosures

Peer reviewers on this manuscript have no relevant financial or other relationships to disclose.

Author contributions

PH, NS, SI, DS, EG, and YH conceptualized and designed the work. NS, ASFR, and EB carried out the database search and identified eligible studies. NS, ASFR, EB, DS, SI, and YH carried out risk of bias assessments and data extraction. DS summarized raw data from authors using R. Funnel plots were created by ASFR. Data analysis and interpretation was guided by YH. PH, NS, ASFR, EB, and EG drafted the manuscript. All authors contributed to, reviewed, and approved the final manuscript.

ORCID

Alberto San Francisco Ramos D http://orcid.org/0000-0001-9703-0924 Paul T. Heath D http://orcid.org/0000-0002-7540-7433

References

Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

- World Health Organisation. WHO coronavirus (COVID-19) dashboard [Internet]. [cited 2022 May 6th]. Available from: https:// covid19.who.int
- 2. The Vaccine Centre at the London School of Hygiene and Tropical Medicine. Vaccine landscape [internet]. COVID-19 vaccine tracker; 2022 [cited 2022 May 6th]. Available from: https://vac-lshtm.shi nyapps.io/ncov_vaccine_landscape
- Comprehensive tracker of all COVID-19 vaccines in development with links to manuscripts
- VIPER Group COVID19 Vaccine Tracker Team. COVID19 vaccine tracker [Internet]. [cited 2022 May 6th]. Available from: https:// covid19.trackvaccines.org
- Ling Y, Zhong J, and Luo J. Safety and effectiveness of SARS-CoV-2 vaccines: a systematic review and meta-analysis. J Med Virol. 2021 Dec;93(12):6486–6495.
- Earlier systematic review of safety and efficacy of COVID-19 vaccines
- Pormohammad A, Zarei M, Ghorbani S, et al. Efficacy and safety of COVID-19 vaccines: a systematic review and meta-analysis of randomized clinical trials. Vaccines (Basel) [Internet]. 2021 May 6;9(5). DOI:10.3390/vaccines9050467.
- Yuan P, Ai P, Liu Y, et al. Safety, tolerability, and immunogenicity of COVID-19 vaccines: a systematic review and meta-analysis. medRxiv [Internet]. 2020 Nov 4. DOI:10.1101/2020.11.03.20224998.
- Chen M, Yuan Y, Zhou Y, et al. Safety of SARS-CoV-2 vaccines: a systematic review and meta-analysis of randomized controlled trials. Infect Dis Poverty. 2021 Jul 5;10(1):94.
- 8. Wang J, Tong Y, and Li D, et al. The impact of age difference on the efficacy and safety of COVID-19 vaccines: a systematic review and meta-analysis. Front Immunol. 2021 Dec 6;12:758294.
- Systematic review of COVID-19 vaccines showing differences in safety profile according to age
- Glanville J, Kotas E, Featherstone R, et al. Which are the most sensitive search filters to identify randomized controlled trials in medline? J Med Libr Assoc. 2020 Oct 1;108(4):556–563.
- Harrison H, Griffin SJ, Kuhn I, et al. Software tools to support title and abstract screening for systematic reviews in healthcare: an evaluation. BMC Med Res Methodol. 2020 Jan 13;20(1):7.
- Shrotri M, Swinnen T, Kampmann B, et al. An interactive website tracking COVID-19 vaccine development. Lancet Glob Health. 2021 May;9(5):e590–2.
- Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019 Aug 28;366:14898.
- Rohatgi A. WebPlotDigitizer [Internet]. Available from: https://auto meris.io/WebPlotDigitizer
- 14. Higgins JPT, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003 Sep 6;327(7414):557–560.
- Sadoff J, Le Gars M, Shukarev G, et al. Interim results of a phase 1-2a trial of Ad26.COV2.S Covid-19 vaccine. N Engl J Med. 2021 May 13;384(19):1824–1835.
- Falsey AR, Sobieszczyk ME, and Hirsch I, et al. Phase 3 safety and efficacy of AZD1222 (ChAdOx1 nCoV-19) Covid-19 vaccine. N Engl J Med. 2021 Dec 16;385(25):2348–2360.
- Phase III trial of the Oxford-AstraZeneca viral-vectored vaccine
- 17. Keech C, Albert G, Cho I, et al. Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med. 2020 Dec 10;383(24):2320–2332.
- Richmond P, Hatchuel L, Dong M, et al. Safety and immunogenicity of S-Trimer (SCB-2019), a protein subunit vaccine candidate for COVID-19 in healthy adults: a phase 1, randomised, double-blind, placebo-controlled trial. Lancet. 2021 Feb 20;397(10275):682–694.
- Meng F-Y, Gao F, Jia S-Y, et al. Safety and immunogenicity of a recombinant COVID-19 vaccine (Sf9 cells) in healthy population aged 18 years or older: two single-center, randomised, double-blind, placebo-controlled, phase 1 and phase 2 trials. Signal Transduct Target Ther. 2021 Jul 15;6(1):271.

- Pu J, Yu Q, Yin Z, et al. The safety and immunogenicity of an inactivated SARS-CoV-2 vaccine in Chinese adults aged 18-59 years: a phase I randomized, double-blinded, controlled trial. Vaccine. 2021 May 12;39(20):2746–2754.
- 21. Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021 Feb 20;397(10275):671–681.
- Che Y, Liu X, Pu Y, et al. Randomized, double-blinded, placebo-controlled phase 2 trial of an inactivated severe acute respiratory syndrome coronavirus 2 vaccine in healthy adults. Clin Infect Dis. 2021 Dec 6;73(11):e3949–55.
- 23. Zakarya K, Kutumbetov L, Orynbayev M, et al. Safety and immunogenicity of a QazCovid-in[®] inactivated whole-virion vaccine against COVID-19 in healthy adults: a single-centre, randomised, single-blind, placebocontrolled phase 1 and an open-label phase 2 clinical trials with a 6 months follow-up in Kazakhstan. E Clin Med. 2021;39:101078.
- 24. Ryzhikov AB, Ea R, Bogryantseva MP, et al. A single blind, placebocontrolled randomized study of the safety, reactogenicity and immunogenicity of the "EpiVacCorona" vaccine for the prevention of COVID-19, in volunteers aged 18–60 years (phase I–II). Infektsiia Immun. 2021 Mar 24;11(2):283–296.
- Thomas SJ, Moreira ED Jr, and Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months. N Engl J Med. 2021 Nov 4;385(19):1761–1773.
- Phase III trial of the Pfizer-BioNTech mRNA vaccine
- Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020 Dec 31;383 (27):2603–2615.
- Sadoff J, Gray G, and Vandebosch A, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med. 2021 Jun 10;384(23):2187–2201.
- Phase III trial of the Janssen viral-vectored vaccine
- 28. Al Kaabi N, Zhang Y, Xia S, et al. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial. JAMA. 2021 Jul 6;326(1):35–45.
- 29. Zhu F, Jin P, and Zhu T, et al. Safety and immunogenicity of a recombinant adenovirus type-5-vectored coronavirus disease 2019 (COVID-19) vaccine with a homologous prime-boost regimen in healthy participants aged ≥6 years: a randomized, double-blind, placebo-controlled, phase 2b trial. Clin Infect Dis [Internet]. 2021 Sep 22:ciab845.
- Zhu F-C, Guan X-H, Li Y-H, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2020 Aug 15;396(10249):479–488.
- 31. Halperin SA, Ye L, MacKinnon-Cameron D, et al. Final efficacy analysis, interim safety analysis, and immunogenicity of a single dose of recombinant novel coronavirus vaccine (adenovirus type 5 vector) in adults 18 years and older: an international, multicentre, randomised, double-blinded, placebo-controlled phase 3 trial. Lancet. 2022 Jan 15;399(10321):237–248.
- 32. Folegatti PM, Ewer KJ, Aley PK, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020 Aug 15;396(10249):467–478.
- Madhi SA, Baillie V, Cutland CL, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant. N Engl J Med. 2021 May 20;384(20):1885–1898.
- 34. Madhi SA, Koen AL, Izu A, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in people living with and without HIV in South Africa: an interim analysis of a randomised, double-blind, placebo-controlled, phase 1B/2A trial. Lancet HIV. 2021 Sep;8(9):e568–80.
- 35. Ramasamy MN, Minassian AM, Ewer KJ, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a

single-blind, randomised, controlled, phase 2/3 trial. Lancet. 2021 Dec 19;396(10267):1979–1993.

- 36. Asano M, Okada H, Itoh Y, et al. Immunogenicity and safety of AZD1222 (ChAdOx1 nCoV-19) against SARS-CoV-2 in Japan: a double-blind, randomized controlled phase 1/2 trial. Int J Infect Dis. 2022 Jan;114:165–174.
- 37. Kremsner PG, Ahuad Guerrero RA, Arana-Arri E, et al. Efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate in ten countries in Europe and Latin America (HERALD): a randomised, observer-blinded, placebo-controlled, phase 2b/3 trial. Lancet Infect Dis. 2022 Mar;22(3):329–340.
- Frenck RW Jr, Klein NP, Kitchin N, et al. Safety, immunogenicity, and efficacy of the BNT162b2 Covid-19 vaccine in adolescents. N Engl J Med. 2021 Jul 15;385(3):239–250.
- Walsh EE, Frenck RW Jr, Falsey AR, et al. Safety and immunogenicity of Two RNA-Based Covid-19 vaccine candidates. N Engl J Med. 2020 Dec 17;383(25):2439–2450.
- 40. Haranaka M, Baber J, Ogama Y, et al. A randomized study to evaluate safety and immunogenicity of the BNT162b2 COVID-19 vaccine in healthy Japanese adults. Nat Commun. 2021 Dec 14;12 (1):7105.
- Ali K, Berman G, Zhou H, et al. Evaluation of mRNA-1273 SARS-CoV-2 vaccine in adolescents. N Engl J Med. 2021 Dec 9;385 (24):2241-2251.
- 42. Chu L, McPhee R, Huang W, et al. A preliminary report of a randomized controlled phase 2 trial of the safety and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine. Vaccine. 2021 May 12;39(20):2791–2799.
- El Sahly HM, Baden LR, and Essink B, et al. Efficacy of the mRNA-1273 SARS-CoV-2 vaccine at completion of blinded phase. N Engl J Med. 2021 Nov 4;385(19):1774–1785.
- Phase III trial of the Moderna mRNA vaccine
- 44. Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people younger than 18 years: a randomised, double-blind, controlled, phase 1/2 trial. Lancet Infect Dis. 2022 Feb;22(2):196–208.
- 45. Wu Z, Hu Y, Xu M, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2021 Jun;21(6):803–812.
- 46. Zhang Y, Zeng G, Pan H, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebocontrolled, phase 1/2 clinical trial. Lancet Infect Dis. 2021 Feb 1;21(2):181–192.
- 47. Fadlyana E, Rusmil K, Tarigan R, et al. A phase III, observer-blind, randomized, placebo-controlled study of the efficacy, safety, and immunogenicity of SARS-CoV-2 inactivated vaccine in healthy adults aged 18-59 years: an interim analysis in Indonesia. Vaccine. 2021 Oct 22;39(44):6520–6528.
- Bueno SM, Abarca K, and González PA, et al. Safety and Immunogenicity of an Inactivated SARS-CoV-2 vaccine in a subgroup of healthy adults in Chile. Clin Infect Dis [Internet]. 2021 Sep 19:ciab823.
- Ella R, Vadrevu KM, Jogdand H, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial. Lancet Infect Dis. 2021 May;21(5):637–646.
- 50. Ella R, Reddy S, Blackwelder W, et al. Efficacy, safety, and lot-to-lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): interim results of a randomised, double-blind, controlled, phase 3 trial. Lancet. 2021 Dec 11;398(10317):2173–2184.
- Heath PT, Galiza EP, Baxter DN, et al. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. N Engl J Med. 2021 Sep 23;385 (13):1172–1183.
- 52. Shinde V, Bhikha S, Hoosain Z, et al. Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351 variant. N Engl J Med. 2021 May 20;384(20):1899–1909.
- Formica N, Mallory R, Albert G, et al. Different dose regimens of a SARS-CoV-2 recombinant spike protein vaccine (NVX-CoV2373) in

younger and older adults: a phase 2 randomized placebo-controlled trial. PLoS Med. 2021 Oct;18(10):e1003769.

- Dunkle LM, Kotloff KL, and Gay CL, et al. Efficacy and safety of NVX-CoV2373 in adults in the United States and Mexico. N Engl J Med. 2022 Feb 10;386(6):531–543.
- Largest phase III trial of the Novavax protein subunit vaccine
- 55. Hsieh S-M, Liu M-C, Chen Y-H, et al. Safety and immunogenicity of CpG 1018 and aluminium hydroxide-adjuvanted SARS-CoV-2 S-2P protein vaccine MVC-COV1901: interim results of a large-scale, double-blind, randomised, placebo-controlled phase 2 trial in Taiwan. Lancet Respir Med. 2021 Dec;9(12):1396–1406.
- 56. Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. 2021 Jan;21(1):39–51.
- 57. Tanriover MD, Doğanay HL, and Akova M, et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet. 2021 Jul 17;398(10296):213–222.
- Phase III trial of the Sinovac inactived vaccine
- Guo W, Duan K, Zhang Y, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18 years or older: a randomized, double-blind, placebo-controlled, phase 1/2 trial. EClinicalMedicine. 2021 Aug;38:101010.

- 59. Yang S, Li Y, Dai L, et al. Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Infect Dis. 2021 Aug;21(8):1107–1119.
- 60. Zhang J, Hu Z, He J, et al. Safety and immunogenicity of a recombinant interferon-armed RBD dimer vaccine (V-01) for COVID-19 in healthy adults: a randomized, double-blind, placebo-controlled, Phase I trial. Emerg Microbes Infect. 2021 Dec;10(1):1589–1597.
- 61. Shu Y-J, He J-F, Pei R-J, et al. Immunogenicity and safety of a recombinant fusion protein vaccine (V-01) against coronavirus disease 2019 in healthy adults: a randomized, double-blind, placebo-controlled, phase II trial. Chin Med J. 2021 Jul 22;134(16):1967–1976.
- 62. Han B, Song Y, Li C, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy children and adolescents: a double-blind, randomised, controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2021 Dec;21(12):1645–1653.
- 63. Haas JW, Bender FL, Ballou S, et al. Frequency of adverse events in the placebo arms of COVID-19 vaccine trials: a systematic review and meta-analysis. JAMA Network Open. 2022 Jan 4;5 (1):e2143955.
- Bonhoeffer J, Kohl K, Chen R, et al. The Brighton Collaboration: addressing the need for standardized case definitions of adverse events following immunization (AEFI). Vaccine. 2002 Dec 13;21(3–4):298–302.