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Background: Antibiotic use drives antibiotic resistance.
Objectives: To systematically review the literature and estimate associations between prior exposure to
antibiotics across World Health Organization's (WHO) AWaRe categories (Access, Watch, Reserve) and
isolation of critical and high-priority multidrug resistant organisms (MDROs) on the WHO priority
pathogen list.
Data Sources: Embase, Ovid Medline, Scopus, Cochrane Database of Systematic Reviews, Cochrane
Central Register of Controlled Trials, and ClinicalTrials.gov (from inception to 20/08/2020).
Study eligibility criteria: Case-control, cohort, or experimental studies that assessed the risk of infection/
colonization with MDROs.
Participants: Inpatients or outpatients of any age and sex.
Interventions: Prior exposure to antibiotics that could be categorized into the AWaRe framework.
Data analysis: Tailored design-specific checklists applied to each included study. For each antibiotic/class,
crude odds ratios (ORs) were pooled through random-effects meta-analyses, both overall and by MDRO.
Heterogeneity was examined.
Results: We identified 349 eligible studies. All were observational, prone to bias due to design and lack of
adjustment for confounding, and not primarily designed to compare associations across AWaRe cate-
gories. We found statistically significant associations between prior exposure to almost all antibiotics/
classes across AWaRe categories and colonization/infection with any MDRO. We observed higher ORs for
Watch and Reserve antibiotics than with Access antibiotics. First generation cephalosporins (Access) had
the least association with any MDRO colonization/infection (58 studies; OR ¼ 1.2 [95% CI: 1.0e1.4]),
whereas strongest associations were estimated for linezolid (Reserve) (22 studies; OR ¼ 2.6 [95% CI: 2.1
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Introduction

Increasing rates of antibiotic resistance are a serious threat to
humanity [1]. Reduction of total and inappropriate broad-spectrum
antibiotic use in humans is a critical step to decreasing overall rates
of resistance [2]. In an effort to optimize antibiotic use, the World
Health Organization (WHO) created a new classification in 2017 in
which antibacterial medicines were stratified into three group-
sdAccess, Watch, and Reserve (AWaRe) based on their spectrum,
anticipated risk of resistance development, risk of toxicity, and
clinical utility [3]. The classification has been revised in 2019 and
2021 [4,5].

The AWaRe classificationwas developed using expert consensus
of the literature but has not been empirically evaluated for validity
[6]. Although other systematic reviews have analysed the associa-
tion between antibiotic exposure and risk for specific multidrug-
resistant organisms (MDROs) [7e10], our meta-analysis is the
first designed to examine overall risks associated with each AWaRe
antibiotic group while taking into account select MDROs of high
clinical and public health interest. We collated the evidence on the
association between prior exposure to antibiotics belonging to each
AWaRe category and documented subsequent detection of coloni-
zation/infection with antibiotic-resistant bacteria. We hypothe-
sized that the use of Access-group antibiotics is less likely to be
associated with subsequent patient MDRO colonization/infection
than the use of Watch- or Reserve-group antibiotics.
Methods

The protocol for this systematic review and meta-analysis was
registered in the International Prospective Register of Systematic
Reviews (PROSPERO; identifier: CRD42020206508) and is reported
according to the Preferred Reporting Items for Systematic reviews
and Meta-analysis (PRISMA) guidelines [11].
Search strategy, selection criteria, and screening process

We performed a systematic review of studies concerning MDROs
that pose the greatest threat to human health and are considered as
“critical” or “high” priority in the 2017 WHO priority pathogen list
[12]: carbapenem-resistant Acinetobacter baumannii (CRAB),
carbapenem-resistant Enterobacterales (CRE), carbapenem-resistant
Pseudomonas aeruginosa (CRPA), extended-spectrumbeta-lactamase
(ESBL)eproducing Enterobacterales (EB), methicillin-resistant
Staphylococcus aureus (MRSA), and vancomycin-resistant Entero-
coccus spp. (VRE). A medical librarian searched the literature for re-
cords including critical Gram-negative MDROs, high priority Gram-
positive MDROs, and antibiotics belonging to each of the WHO
AWaRe categories both as individual drugs and as classes. We
searchedEmbase.com,OvidMedline, Scopus, TheCochraneDatabase
of Systematic Reviews, CochraneCentral Registerof Controlled Trials,
ure toWorld Health Organiza
ical Microbiology and Infecti
and ClinicalTrials.gov from inception to August 20, 2020. Fully
reproducible search strategies are provided in the appendix.

Eligible studies were any case-control, cohort, or experimental
study that compared the risk of resistance in patients treated with
different antibiotics and contrasted the risk profiles of antibiotics
for antibiotic-resistant bacteria. Studies had to: include at least ten
participants of any age, sex, or race from the same healthcare set-
tings or geographical location; report the number of individuals
who were exposed or unexposed to a given antibiotic/class for any
clinical reason and, within each exposure category, the proportion
of patients who were subsequently identified with colonization/
infection with a given MDRO. Articles in Chinese, Japanese, or
Korean were excluded as we had limited confidence in fully
assessing the content based on machine translation.

We accepted definitions of infection and/or colonization as re-
ported by study authors at face value; antibiotics were defined as
any agents categorized as oral or parenteral antibacterial within the
Anatomical Therapeutic Chemical classification system (2020
version) [13]. Studies restricted to travellers and those solely
focused on patients with relapsingMDRO infections were excluded,
as well as case reports, review articles, qualitative studies, ecolog-
ical studies, economic analyses, mathematical modelling studies,
commentaries, and conference abstracts. All records were screened
independently by two investigators, first by title and abstract and
then by full text.

Multiple pairs of reviewers among G.S., S.S., S.K., N.B., I.G., E.T.,
M.A.C., S.Y., and S.G. independently assessed titles and abstracts for
inclusion, followed by full text screening and data extraction from
selected studies.
Data extraction

We used a standardized Microsoft Excel (Redmond, WA, USA)
form that was tested on ten randomly selected articles. One
investigator extracted data, and a second investigator checked the
primary extraction for correctness and completeness. Disagree-
ments were resolved by arbitration including a third investigator.
We extracted information on the study setting, characteristics of
the study population at recruitment, type, and timing of prior
antibiotic exposure, methods of exposure and outcome ascertain-
ment, and the number of individuals who were exposed/unex-
posed to specific antibiotics/antibiotic classes by outcome status.
For studies that reported onmultipleMDROs, we extracted data for
each pathogen separately. Since a small number of studies included
more than one control group, we only utilized the one that was
deemed to be better representative of the exposure distribution in
the source population. Most notably, if patients infected with a
susceptible pathogen (e.g. methicillin-susceptible S. aureus where
the case group consisted of MRSA-infected patients) and unin-
fected hospitalized patients were included in the study as distinct
control groups, we selected the latter [8,14]. In studies that utilized
healthy population-based controls in addition to a group of
tion's AWaRe antibiotics and isolation of multidrug resistant bacteria:
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hospitalized individuals (either uninfected or infected with a sus-
ceptible pathogen),we disregarded healthy controls tomitigate the
potential for selection bias.

During data extraction, all antibiotics or antibiotic classes re-
ported were categorized using the 2019 WHO AWaRe framework
(Table S1) [4]. As our primary aim was to determine how associa-
tions between prior antibiotic exposure and outcomes varied by
AWaRe category, antibiotic classes that include agents belonging to
two or more AWaRe categories and that were reported as a single
group (e.g. cephalosporins with no further break down) were not
considered. However, we extracted data on aminoglycosides even if
reported as a single class because the most utilized agents in this
class (i.e. amikacin, gentamicin) belong to the Access group; a
similar approach was adopted for tetracyclines.

Risk of bias assessment

Building on the Cochrane's Risk Of Bias In Non-randomized
Studies of Interventions tool and the Scottish Intercollegiate
Guideline Network checklist [15,16], we developed tailored check-
lists to assess the risk of bias in included studies, addressing key
bias sources that we deemed particularly relevant to the evaluation
of the association of interest. Our checklists, one for case-control
studies and the other for observational and experimental cohort
studies, included four domains (participant selection, exposure
assessment, outcome assessment, confounding) consisting of
various subdomains. Two independent investigators judged each
subdomain to be at low, high, or unclear risk of bias. The full
checklists are provided in the appendix (Tables S2, S3).

Analysis

We conducted distinct meta-analyses of studies reporting on
each MDRO-antibiotic combination of interest. Although we origi-
nally planned to compare outcomes among individuals exposed to
“Access” versus “Watch” antibiotics within the same study, this
analysis could not be performed because participants exposed to
multiple antibiotics would have to be counted multiple times thus
leading to a biased sample. Moreover, none of the included studies
performed head-to-head comparisons of associations of Access
versus Watch/Reserve-group antibiotics and the outcome. Prior
antibiotic exposure was treated as a dichotomous variable; dura-
tion of treatment and dosages could not be examined. Our primary
outcome was the odds of colonization/infection with any MDRO of
interest among those exposed to a given antibiotic or antibiotic
class across AWaRe groups relative to the odds among the unex-
posed. Our secondary outcomes were the odds of colonization/
infection with specific MDROs (as defined above) among the
exposed relative to the unexposed.

Based on findings from previous reviews [7e10], we reasoned a
priori that adjustment for key demographic and clinical factors (e.g.
age, sex, date of hospital admission, hospital ward/unit of recruit-
ment) would have been seldomly and inconsistently used/reported.
Therefore, determining whether the distribution of underlying
medical conditions and other factors that could affect both the
likelihood of receiving antibiotic treatment and the risk of
acquiring a given MDRO differed according to the exposure and/or
outcome status was prevented. For each included study we there-
fore preferred to consistently use the unadjusted odds ratios (ORs)
of colonization and/or infection with any MDRO, if reported.
Otherwise, when possible, we calculated the crude OR. Where data
for two or more antibiotics belonging to the same class were re-
ported separately, we produced class-specific pooled estimates by
applying the Mantel-Haenszel method within the study, an
approach that also allowed handling sparse data [17]. Owing to the
Please cite this article as: Sulis G et al., Exposure toWorld Health Organiza
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observational nature of the included studies and the anticipated
levels of between-study heterogeneity, we ultimately pooled class-
specific log-transformed ORs from individual studies using random
effects meta-analyses weighted by the DerSimonian-Laird method.
Heterogeneity was assessed through visual inspection of forest
plots and via the Higgins test [18]. As we expected substantial
variability between specific pathogens, we also conducted sub-
group analyses for each MDRO of interest.

For sensitivity analysis, we ran similar models after restricting
to: 1) case-control studies; 2) studies including only adult partici-
pants; 3) studies conducted in either high-income or low- and
middle-income countries; 4) studies conducted solely in intensive
care unit(s) (ICUs); 5) studies focused on community-acquired in-
fections and/or colonisations (only for ESBL-EB and MRSA); 6)
studies focused on hospital-acquired infections and/or colonisa-
tions (only for CRAB, CRE, and ESBL-EB); 7) studies with different
case types (e.g. only patients with clinically significant infections
due to CRAB, CRE, or ESBL-EB; only patients colonized with VRE).

These analyses were carried out when at least five studies were
available for a specific pathogen and antibiotic/class. Finally, we
conducted analyses by omitting one study at a time to detect
studies that were particularly influential and had amajor impact on
the pooled estimate. All analyses were conducted in Stata (version
17.0; StataCorp, College Station, TX, USA).

Given the fact that many studies selectively reported exposure
to certain antibiotics but not others, we did not undertake a formal
assessment of publication bias through funnel plots or statistical
tests for asymmetry.

Results

Of the 179 869 unique records identified through our search,
2030 were selected for full-text review; 349 studies met the eligi-
bility criteria, including 8 reporting on 2 different MDROs (Fig. 1).
The list of studies excluded because of the publication language is
shown in the appendix (Table S4), along with the references and
main characteristics of each included study (Tables S5, S6). Most
eligible studies dealt with ESBL-EB (n ¼ 133), followed by CRE
(n ¼ 79), VRE (n ¼ 59), CRAB (n ¼ 34), MRSA (n ¼ 32), and CRPA
(n ¼ 20) (Table 1). The vast majority were case-control studies (231,
64.7%), conducted in either high-income (218, 61.1%) or upper-
middle-income countries (89, 24.9%), predominantly in inpatient
care settings (307, 86.0%, of which 65 in ICU only), and involved only
adult participants (242, 67.8%). Approximately two thirds of the
studies (248, 69.5%) either did not specify whether the colonization/
infectionwas hospital- or community-acquired or included a mix of
patients belonging to both categories without providing dis-
aggregated data. Among studies focusing on critical priority path-
ogens (ESBL-EB, CRE, CRAB, CRPA), over 50% defined cases as
individuals diagnosed with clinically significant infection caused by
the MDRO of interest, whereas 15.2% to 41.2% of the studies
(depending on the pathogen) included a mix of colonized and
infected cases. Colonized individuals (often identified through sys-
tematic screening) were used as cases in about half of the studies on
high-priority pathogens (MRSA, VRE). With respect to the timing of
antibiotic exposure relative to outcome onset/detection, we
observed substantial heterogeneity across studies. Most notably,
this information was not reported or unclear in approximately one
third of the studies (100, 28.0%) and even more frequently among
studies focused on CRAB, MRSA, and VRE. Among the remaining
studies, antibiotic exposure assessment wasmost often restricted to
the 30 days (68, 19.0%) or the 3 months (69, 19.3%) preceding the
detection of MDRO colonization/infection. However, data were
insufficient to determine the actual timing of antibiotic treatment
for individual patients within the chosen exposure window.
tion's AWaRe antibiotics and isolation of multidrug resistant bacteria:
n, https://doi.org/10.1016/j.cmi.2022.03.014



Fig. 1. Study selection process.
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A graphical summary of studies' risk of bias evaluation is pre-
sented in Fig. 2, whereas study-specific assessments are provided in
the appendix (Tables S7, S8). Participants' selection criteria and
sampling methods were deemed to be at low risk of bias in most
studies. Given the uncertainty about which controls are ideal to
address our research question [14,19], we assigned an unclear risk of
bias to all case-control studies concerning the chosen typeof controls.
Thedefinitionandascertainmentmethodof theexposure statuswere
often deemed to be at high or unclear risk of bias due to the timing of
antibiotic treatment relative to the outcome onset/detection (either
too close or too far away from one another) and because a large
proportion of patients in many studies were likely exposed to more
than one antibiotic concomitantly or sequentially. The risk of
misclassification of the outcome status was judged at low risk of bias
because diagnostic tests are well-standardized and accurate; none-
theless, there might be potential bias in the identification of carriers
unless systematic screening was performed. However, confounding
was a major concern for all studies, leading to high risk of bias.

Pooled estimates suggest that almost all antibiotics/classes
belonging to each AWaRe category were significantly associated
with an increased risk of colonization/infection with any MDRO.
However, ORs were more frequently higher for Watch and Reserve
Please cite this article as: Sulis G et al., Exposure toWorld Health Organiza
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antibiotics (Fig. 3). First-generation cephalosporins (1GC) had the
weakest association with any MDRO (58 studies; OR ¼ 1.2 [95% CI:
1.0e1.4]), whereas stronger associations were estimated for line-
zolid (Reserve) (22 studies; OR ¼ 2.6 [95% CI: 2.1e3.1]), followed by
carbapenems (Watch) (237 studies; OR¼ 2.3 [95% CI: 2.1e2.5]), and
tigecycline (Reserve) (15 studies; OR ¼ 2.3 [95% CI: 1.8e3.1]).

Prior use of several Watch-group antibiotics was significantly
associated with infection/colonization with CRAB, CRE, and CRPA
(Table 2, Figures S1eS22); however, across AWaRe categories, use
of carbapenems was most strongly associated with selection of
CRAB (34 studies; OR¼ 2.2 [95% CI: 1.8e2.6]), CRE (74 studies; OR¼
2.5 [95% CI: 2.2e2.7]), and CRPA (19 studies; OR ¼ 3.2 [95% CI:
2.5e4.2]).

The use of any antibiotic/class, irrespective of AWaRe category,
was significantly associated with colonization/infection with ESBL-
EB (Table 2), with monobactams (Reserve) most strongly associated
(8 studies; OR¼ 2.9 [95% CI: 1.7e5.0]), followed by 3GC (Watch) (63
studies; OR ¼ 2.5 [95% CI: 2.2e2.9]) and 4GC (Watch) (17 studies;
OR ¼ 2.4 [95% CI: 1.6e3.8]).

Exposure to several antibiotics/classes belonging to Access and
Watch groups was significantly associated with MRSA and VRE
colonization/infection (Table 3, Figures S23eS40). Prior exposure to
tion's AWaRe antibiotics and isolation of multidrug resistant bacteria:
on, https://doi.org/10.1016/j.cmi.2022.03.014



Table 1
Summary characteristics of included studies

Characteristic All N (%) Critical priority pathogens High priority pathogens

CRAB N (%) CRE N (%) CRPA N (%) ESBL-EB N (%) MRSA N (%) VRE N (%)

All included studies 357 34 (100) 79 (100) 20 (100) 133 (100) 32 (100) 59 (100)
Study design
Case-control 231 (64.7) 19 (55.9) 66 (83.5) 12 (60.0) 76 (57.1) 21 (65.6) 37 (62.7)
Prospective cohort 62 (17.4) 7 (20.6) 3 (3.8) 3 (15.0) 26 (19.6) 7 (21.9) 16 (27.1)
Retrospective cohort 64 (17.9) 8 (22.5) 10 (12.7) 5 (25.0) 31 (23.3) 4 (12.6) 6 (10.2)

Study country income levela

High 218 (61.1) 16 (47.1) 40 (50.36) 9 (45.0) 86 (64.7) 23 (71.9) 44 (74.6)
Upper-middle 89 (24.9) 11 (32.4) 29 (36.7) 8 (40.0) 29 (21.8) 5 (15.6) 7 (11.9)
Lower-middle 47 (13.2) 7 (20.6) 10 (12.7) 3 (15.0) 16 (12.0) 3 (9.4) 8 (13.6)
Low 2 (0.1) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.8) 1 (3.1) 0 (0.0)
Multiple countries with different income level 1 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.8) 0 (0.0) 0 (0.0)

Clinical setting
ICU and non-ICU ward(s) 207 (58.0) 18 (52.9) 57 (72.2) 14 (70.0) 75 (56.4) 16 (50.0) 27 (45.7)
ICU only 65 (18.2) 14 (41.2) 13 (16.5) 5 (25.0) 12 (9.0) 5 (15.6) 16 (27.1)
Non-ICU ward(s) only 35 (9.8) 2 (5.9) 4 (5.1) 0 (0.0) 12 (9.0) 7 (21.9) 10 (17.0)
Mix of inpatient and outpatient services 22 (6.2) 0 (0.0) 3 (3.8) 1 (5.0) 16 (12.0) 0 (0.0) 2 (3.4)
Outpatient service(s) 18 (5.0) 0 (0.0) 0 (0.0) 0 (0.0) 12 (9.0) 4 (12.5) 2 (3.4)
Unclear 10 (2.8) 0 (0.0) 2 (2.5) 0 (0.0) 6 (4.5) 0 (0.0) 2 (3.4)

Context of probable MDRO acquisition
Hospital-acquired 76 (21.3) 14 (41.2) 25 (31.6) 5 (25.0) 14 (10.5) 10 (31.3) 8 (13.6)
Community-acquired 33 (9.2) 0 (0.0) 0 (0.0) 0 (0.0) 26 (19.6) 6 (18.7) 1 (1.7)
Not reported or mixed (healthcare- and community-acquired) 248 (69.5) 20 (58.8) 54 (68.3) 15 (75.0) 93 (69.9) 16 (50.0) 50 (84.7)

Outbreak context
Yes 20 (5.6) 3 (8.8) 2 (2.5) 0 (0.0) 1 (0.7) 1 (3.1) 13 (22.0)
No 337 (94.4) 31 (91.2) 77 (97.5) 20 (100) 132 (99.3) 31 (96.9) 46 (78.0)
Population age group
Adults 242 (67.8) 22 (64.7) 57 (72.2) 17 (85.0) 84 (63.2) 23 (71.9) 39 (66.1)
Children 38 (10.6) 5 (14.7) 4 (5.1) 1 (5.0) 18 (13.5) 3 (9.4) 7 (11.9)
Both adults and children 52 (14.6) 4 (11.8) 13 (16.5) 1 (5.0) 22 (16.5) 4 (12.5) 8 (13.6)
Not reported 25 (7.0) 3 (8.8) 5 (6.3) 1 (5.0) 9 (6.8) 2 (6.2) 5 (8.5)

Type of cases
Infected 191 (53.5) 18 (52.9) 50 (63.3) 15 (75.0) 88 (66.2) 11 (34.4) 9 (15.3)
Colonized 90 (25.2) 2 (5.9) 17 (21.5) 1 (5.0) 24 (18.0) 14 (43.8) 32 (54.2)
Infected or colonized 76 (21.3) 14 (41.2) 12 (15.2) 4 (20.0) 21 (15.8) 7 (21.9) 18 (30.5)

Type of controls/noncases
Uninfected 27 (7.6) 3 (8.8) 8 (10.1) 1 (5.0) 8 (6.0) 3 (9.4) 4 (6.9)
Not colonized with MDRO 88 (24.6) 2 (5.9) 17 (21.5) 1 (5.0) 25 (18.0) 13 (40.6) 30 (50.9)
Infected with DS pathogen 158 (44.3) 12 (35.3) 36 (45.6) 15 (75.0) 82 (61.7) 7 (21.9) 6 (10.2)
Infected or colonized with DS pathogen 34 (9.5) 9 (26.5) 5 (6.3) 2 (10.0) 10 (7.5) 1 (3.1) 7 (11.9)
Other 23 (6.4) 2 (5.9) 7 (8.9) 0 (0.0) 2 (1.5) 3 (9.4) 9 (15.3)
Not reported or unclear 27 (7.6) 6 (17.6) 6 (7.6) 1 (5.0) 6 (4.5) 5 (15.6) 3 (5.1)

Timing of antibiotic exposureb

Prior 14 days 31 (8.7) 7 (20.6) 5 (6.3) 5 (25.0) 8 (6.0) 3 (9.4) 3 (7.6)
Prior 30 days 68 (19.0) 9 (26.5) 16 (20.3) 3 (15.0) 32 (24.1) 2 (6.3) 6 (10.2)
Prior 2 months 13 (3.6) 0 (0.0) 0 (0.0) 0 (0.0) 9 (6.8) 1 (3.1) 3 (7.6)
Prior 3 months 69 (19.3) 0 (0.0) 19 (24.1) 5 (25.0) 34 (25.6) 2 (6.3) 9 (15.3))
Prior 6 months 23 (6.4) 1 (2.9) 8 (10.1) 0 (0.0) 9 (6.8) 3 (9.4) 2 (3.4)
Prior 12 months 13 (3.6) 0 (0.0) 0 (0.0) 0 (0.0) 10 (7.5) 2 (6.3) 1 (1.7)
During hospital stay (no further details) 30 (8.4) 3 (8.8) 9 (11.4) 5 (25.0) 8 (6.0) 3 (9.4) 2 (3.4)
Other 10 (2.8) 0 (0.0) 3 (3.8) 0 (0.0) 1 (0.1) 4 (12.5) 2 (3.4)
Not reported or unclear 100 (28.0) 14 (41.2) 19 (24.1) 2 (10.0) 22 (16.5) 12 (37.5) 31 (52.5)

The distribution of studies across categories of key characteristics is reported. Eight of the 349 unique studies that met the inclusion criteria reported on two different
pathogens, thus bringing the total number of studies contributing to the analysis to 357.
CRAB, Carbapenem-resistant Acinetobacter baumannii; CRE, carbapenem-resistant Enterobacterales; CRPA, carbapenem-resistant Pseudomonas aeruginosa; DS, drug-
susceptible; ESBL-EB, extended-spectrum beta-lactamase-producing Enterobacterales; ICU, intensive care unit; MDRO, multidrug-resistant organism; MRSA, methicillin-
resistant Staphylococcus aureus; VRE, vancomycin-resistant Enterococcus spp.

a Country income levels were categorized in accordance with the World Bank classification; the year of study start was considered for the purpose of this assessment.
b Relative to outcome onset. If antibiotic exposure was assessed atmultiple points in time (e.g. in the prior 3months and during hospital stay), only themost inclusive and/or

furthest away from the time of outcome occurrence was considered.
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quinolones was most strongly associated with MRSA across all
AWaRe categories (28 studies; OR¼ 2.2 [95% CI: 1.8e2.7]), followed
by 3GC (11 studies; OR ¼ 2.1 [95% CI: 1.8e2.5]). Prior exposure to
glycopeptides had the strongest association with VRE (57 studies;
OR ¼ 2.7 [95% CI: 2.2e3.2]), followed by carbapenems (32 studies;
OR ¼ 2.6 [95% CI: 2.1e3.3]).

Most estimates from our primary analyses were reasonably
robust to several MDRO-specific sensitivity analyses, and associa-
tions were similar across a range of subgroup analyses (Tables
Please cite this article as: Sulis G et al., Exposure toWorld Health Organiza
a systematic review and meta-analysis, Clinical Microbiology and Infectio
S9eS14 and Figs. S41eS49), with few exceptions. Among 23
studies reporting on Access-group penicillins and ESBL-EB (OR ¼
1.6; 95% CI: 1.3e2.1), those involving children likely pulled the es-
timate away from the null: when we restricted to studies of adult
patients only, the magnitude of the association decreased to 1.3
(95% CI: 1.1e1.5). A similar association was estimated for Access-
group penicillins across 12 studies on VRE (OR ¼ 1.5 [95% CI:
1.1e2.2]), but this varied widely across subgroup analyses (Table S9,
Table S10, Table S14, Fig. S47).
tion's AWaRe antibiotics and isolation of multidrug resistant bacteria:
n, https://doi.org/10.1016/j.cmi.2022.03.014



Fig. 2. Summary of risk of bias assessment for case-control studies (A) and cohort studies (B). The graphs show overall results combining studies on any critical or high priority
pathogen among carbapenem-resistant Acinetobacter baumannii, carbapenem-resistant Pseudomonas aeruginosa, carbapenem-resistant or extended spectrum beta-lactamase-
producing Enterobacterales, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococcus spp.
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After restricting to studies focused on community-acquired
ESBL-EB (Table S11), several Watch antibiotics were significantly
associated with the outcome, with higher ORs for 3GC (6 studies;
OR ¼ 3.1; 95% CI: 2.2e4.4) and quinolones (25 studies; OR ¼ 2.0;
95% CI: 1.8e2.3), whereas quinolones had the strongest association
(5 studies; OR ¼ 4.4; 95% CI: 2.3e8.2) with community-acquired
MRSA. Among studies of hospital-acquired infection/colonization,
carbapenems had the strongest association with CRAB (14 studies;
OR ¼ 2.0; 95% CI: 1.6e2.7) and CRE (24 studies; OR ¼ 2.4; 95% CI:
2.1e2.6), whereas 3GC had the strongest association with ESBL-EB
(9 studies; OR ¼ 2.9; 95% CI: 2.4e3.5) (Table S12). We did not find
any significant changes in estimates when restricting to studies
where the case group included only patients with clinically rele-
vant infections (Table S13).

Discussion

Our systematic review and meta-analysis found that prior use
of any antibiotic examined is associated with increased likelihood
of isolation of one or more MDROs. We estimated stronger as-
sociations for antibiotics belonging to Watch and Reserve groups
than for Access group antibiotics, although no head-to-head
Please cite this article as: Sulis G et al., Exposure toWorld Health Organiza
a systematic review and meta-analysis, Clinical Microbiology and Infecti
comparisons were undertaken. Our findings are consistent with
the hypothesis that important differences exist among antibiotics
in terms of likelihood of contributing to resistance.

We observed a higher likelihood of isolation of any MDRO after
exposure to a few Access-group antibiotics (metronidazole, linco-
samides, and penicillins) relative to some Watch agents (2GC,
macrolides). Although metronidazole exposure was significantly
associated with isolation of ESBL-EB and VRE, these estimates
might be inflated, as metronidazole is often given in combination
with beta-lactams, quinolones, or aminoglycosides [20,21]. Simi-
larly, we estimated a significant association between prior exposure
to lincosamides (predominantly clindamycin) and isolation of
ESBL-EB and VRE. Although lincosamides are often given as mon-
otherapy, they may be combined with other antibiotics to provide
anaerobic coverage [22].

We estimated that prior use of Access-group penicillins was
more strongly associated with colonization/infection with any
MDRO than 1GC, 2GC, and macrolides. However, on examining
individual MDROs, exposure to this antibiotic class was consistently
associated only with MRSA colonization/infection. Estimated as-
sociations between Access-group penicillins and isolation of either
ESBL-EB or VRE must be taken with great caution owing to the
tion's AWaRe antibiotics and isolation of multidrug resistant bacteria:
on, https://doi.org/10.1016/j.cmi.2022.03.014



Fig. 3. Associations between exposure to select antibiotic classes (by AWaRe category) and colonization and/or infection with a drug-resistant pathogen. Pooled odds ratios (ORs),
95% confidence intervals (CIs), and I-squared (I2) statistics were estimated through random-effects meta-analysis of studies that focused on a critical or high priority pathogen
among carbapenem-resistant Acinetobacter baumannii, carbapenem-resistant Pseudomonas aeruginosa, carbapenem-resistant or extended spectrum beta-lactamase-producing
Enterobacterales, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococcus spp. Lack of association corresponds to an odds ratio of 1. Pooled estimates
were only calculated and reported if at least five studies were available.
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impact of neonatal/pediatric studies where penicillins were likely
combined with aminoglycosides as recommended by the WHO,
particularly for sepsis treatment [23]. When we restricted the
analysis to studies of adults, overall ORs decreased substantially or
even became nonsignificant for VRE.

Although 2GC andmacrolides were less strongly associatedwith
isolation of any MDROs relative to some Access-group antibiotics/
antibiotic classes, we found substantial heterogeneity across
pathogens. These agents were more strongly associated with
colonization/infection with ESBL-EB and MRSA, and macrolides
(but not 2GC) were also significantly associated with VRE.

Our findings suggest that Access-group aminoglycosides may
pose a lower risk for any MDRO selection, with consistent results
across pathogens. However, when we examined prior exposure to
aminoglycosides without differentiation by AWaRe category, we
found significant associations across MDROs, suggesting caution in
the interpretation of estimates.

Access-group antibiotics (1GC, BL-BLIs, specific aminoglyco-
sides, TMP-SMX, and certain penicillins) are generally less likely to
be strongly associated with any MDRO as opposed to antibiotics
fromWatch and Reserve groups. Hence, these findings corroborate
the current classification of most antibiotics into existing AWaRe
categories, with the possible exception of metronidazole and
Please cite this article as: Sulis G et al., Exposure toWorld Health Organiza
a systematic review and meta-analysis, Clinical Microbiology and Infectio
lincosamides, and consideration could be given to their future
categorisation. Given the inconclusive findings with respect to
amikacin and gentamicin (both Access), there is no evidence to
support a recategorization of these agents within the AWaRe
framework.

Our findings suggest that a more restricted utilization of Watch-
group agents might be greatly beneficial. Carbapenem use was
found to be strongly associated with hospital-acquired CRAB and
CRE. Similar associations between 3GC use and both hospital- and
community-acquired ESBL-EB were noted. Quinolones, which are
widely used in clinical practice at all levels of care, were also
significantly associated with community-acquired colonization or
infection with MRSA and ESBL-EB. Finally, all antibiotics irre-
spective of AWaRe category were associated with MDRO selection,
indicating the need to enhance focus on symptomatic care for
minor infections with no routine antibiotic treatment. These ob-
servations are consistent with the new WHO Essential Medicines
List AWaRE Antibiotic book recommendations where nine of the
ten most common infections in outpatient settings can be either
treated with no or Access antibiotics [24].

Our study has important limitations. Estimates are all crude as
no adjustments could be made for key individual-level con-
founders. In addition to antibiotic exposure, several factors are
tion's AWaRe antibiotics and isolation of multidrug resistant bacteria:
n, https://doi.org/10.1016/j.cmi.2022.03.014



Table 2
Associations between exposure to different antibiotic classes and colonization or infection with a Gram-negative critical priority pathogen

Antibiotic Colonization or infection with a critical priority pathogen

CRAB CRE CRPA ESBL-EB

N Or (95% CI) I2 N Or (95% CI) I2 N Or (95% CI) I2 N Or (95% CI) I2

Access-group
First generation cephalosporins 7 0.5 (0.3e1.0) 76.4 4 Not estimated NA 2 Not estimated NA 25 1.3 (1.1e1.5) 45.4
Aminoglycosides 6 1.1 (0.6e1.7) 40.8 3 Not estimated NA 4 Not estimated NA 7 2.0 (1.0e3.9) 73.3
BL-BLI [Access] 8 1.1 (0.8e1.5) 53.6 7 1.7 (1.1e2.7) 21.1 2 Not estimated NA 15 1.4 (1.0e1.9) 76.7
Lincosamides 2 Not estimated NA 5 2.4 (1.2e4.6) 17.7 1 Not estimated NA 9 1.8 (1.3e2.6) 44.3
Metronidazole 5 1.2 (1.1e1.4) 0.0 26 1.4 (1.1e1.7) 78.9 3 Not estimated NA 21 2.1 (1.8e2.5) 66.0
Penicillins [Access] 5 2.1 (0.8e5.7) 82.4 4 Not estimated NA 2 Not estimated NA 23 1.6 (1.3e2.1) 82.7
TMP-SMX 2 Not estimated NA 7 1.6 (1.0e2.7) 45.0 3 Not estimated NA 43 1.5 (1.4e1.8) 71.0
Watch-group
Second-generation cephalosporins 8 1.0 (0.6e1.6) 79.6 10 0.9 (0.7e1.2) 8.4 1 Not estimated NA 26 1.8 (1.4e2.3) 78.9
Third-generation cephalosporins 18 1.3 (1.1e1.5) 71.5 24 1.4 (1.0e2.0) 78.5 6 1.2 (0.8e1.6) 77.5 63 2.5 (2.2e2.9) 75.9
Fourth-generation cephalosporins 9 2.0 (1.1e3.5) 89.6 11 1.9 (1.0e3.4) 79.6 6 1.7 (1.5e2.0) 0.0 17 2.4 (1.6e3.8) 90.1
BL-BLI [Watch] 11 1.3 (1.1e1.5) 39.6 18 1.5 (1.3e1.8) 23.9 6 1.4 (1.1e1.8) 43.8 16 1.9 (1.4e2.5) 85.8
Carbapenems 34 2.2 (1.8e2.6) 89.6 74 2.5 (2.2e2.7) 73.7 19 3.2 (2.5e4.2) 91.8 65 1.8 (1.6e2.1) 73.5
Glycopeptides 19 1.5 (1.2e1.9) 84.7 44 1.9 (1.7e2.2) 74.9 7 1.7 (1.2e2.4) 78.0 37 1.9 (1.7e2.2) 75.8
Macrolides 2 Not estimated NA 12 1.6 (1.3e2.0) 59.9 0 NA NA 24 1.5 (1.3e1.8) 53.3
Quinolones 27 1.4 (1.2e1.6) 81.7 67 1.5 (1.4e1.7) 73.9 17 1.9 (1.6e2.3) 71.1 109 1.9 (1.7e2.0) 75.4
Reserve-group
Daptomycin 0 NA NA 5 1.8 (1.2e2.9) 75.1 0 NA NA 4 Not estimated NA
Linezolid 1 Not estimated NA 11 2.1 (1.8e2.4) 19.9 1 Not estimated NA 3 Not estimated NA
Monobactams 0 NA NA 4 Not estimated NA 0 NA NA 8 2.9 (1.7e5.0) 75.4
Polymyxins 4 Not estimated NA 14 2.4 (2.0e2.9) 60.1 2 Not estimated NA 4 Not estimated NA
Tigecycline 2 Not estimated NA 8 2.4 (1.8e3.3) 81.7 2 Not estimated NA 0 NA NA
Mix of Access and Watch (with Access-group agents largely predominant)
Aminoglycosides (not differentiated) 23 1.3 (1.1e1.4) 51.6 45 1.6 (1.4e1.9) 76.5 8 1.7 (1.3e2.2) 40.1 66 2.0 (1.8e2.2) 72.7
Tetracyclines (not differentiated) 1 Not estimated NA 5 1.3 (0.9e1.7) 0.0 0 NA NA 9 1.7 (0.9e3.0) 92.9

Studies reporting on carbapenem-resistant Acinetobacter baumannii (CRAB), carbapenem-resistant Enterobacterales (CRE), carbapenem-resistant Pseudomonas aeruginosa
(CRPA), or extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales (EB) were considered. Pooled odds ratios (ORs), 95% confidence intervals (CIs) and I-squared
(I2) were estimated through random-effects meta-analysis of case-control and cohort studies. Pooled estimates were only calculated and reported if at least five studies were
available.
ATC, Anatomic, Therapeutic, Chemical (classification system); BL-BLI, beta-lactamebeta-lactamase inhibitor; CI, confidence interval; CRAB, carbapenem-resistant Acineto-
bacter baumannii; CRE, carbapenem-resistantEnterobacterales; CRPA, carbapenem-resistant Pseudomonas aeruginosa; ESBL-EB, extended-spectrum beta-lactamase-producing
Enterobacterales; NA, not applicable; OR, odds ratio; TMP-SMX, trimethoprim-sulfamethoxazole.

Table 3
Association between exposure to different antibiotic classes and colonization or infection with either methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-
resistant Enterococcus spp

Antibiotic Colonization or infection with a high priority pathogen

MRSA VRE

N Or (95% CI) I2 N Or (95% CI) I2

Access-group
First generation cephalosporins 10 1.2 (0.9 e1.5) 63.0 10 1.7 (0.6e4.5) 92.1
Aminoglycosides 5 1.4 (1.1e1.7) 0.0 10 1.5 (1.1e2.1) 33.4
BL-BLI [Access] 5 1.2 (0.8e1.7) 25.7 6 1.4 (0.8e2.2) 66.9
Lincosamides 7 1.6 (0.9e2.7) 77.8 12 1.8 (1.2e2.5) 42.9
Metronidazole 7 1.4 (1.0e1.9) 73.2 28 2.0 (1.5e2.7) 75.5
Penicillins [Access] 10 1.9 (1.6e2.2) 11.0 12 1.5 (1.1e2.2) 61.5
TMP-SMX 8 1.3 (0.8e2.0) 81.7 9 1.0 (0.8e1.3) 0.0
Watch-group
Second generation cephalosporins 5 1.9 (1.7e2.2) 0.0 7 1.1 (0.4e3.1) 88.2
Third generation cephalosporins 11 2.1 (1.8e2.5) 44.7 31 2.2 (1.8e2.8) 73.5
Fourth generation cephalosporins 6 1.9 (1.5e2.3) 0.0 9 1.9 (1.3e2.7) 50.9
BL-BLI [Watch] 4 Not estimated NA 16 2.4 (1.8e3.3) 56.4
Carbapenems 13 2.1 (1.5e2.8) 85.3 32 2.6 (2.1e3.3) 70.8
Glycopeptides 16 1.7 (1.4e2.2) 84.2 57 2.7 (2.2e3.2) 79.7
Macrolides 17 1.8 (1.2e2.6) 94.7 10 1.6 (1.1e2.4) 60.3
Quinolones 28 2.2 (1.8e2.7) 92.2 43 2.0 (1.7e2.4) 81.4
Reserve-group
Linezolid 0 NA NA 6 3.5 (2.0e6.1) 11.2
Monobactams 0 NA NA 5 1.2 (0.7e2.3) 0.0
Mix of Access and Watch (with Access-group agents largely predominant)
Aminoglycosides (not differentiated) 12 1.6 (1.2e2.0) 84.8 22 2.0 (1.6e2.5) 75.6

Pooled odds ratios (ORs), 95% confidence intervals (CIs), and I-squared (I2) statistics were estimated through random-effects meta-analysis of case-control and cohort studies.
Pooled estimates were only calculated and reported if at least five studies were available.
BL-BLI, Beta-lactamebeta-lactamase inhibitor; CI, confidence interval; Gen, gentamicin; MRSA, methicillin-resistant Staphylococcus aureus; NA, not applicable; OR, odds ratio;
TMP-SMX, trimethoprim-sulfamethoxazole; VRE, vancomycin-resistant Enterococcus spp.
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associated with MDRO colonization/infection such as colonization
pressure [25,26], adherence to infection prevention activities [27],
horizontal gene transfer of plasmids [28], or combinations of
these factors [29], none of which could be accounted for in our
analyses. A proportion of patients across studies was likely
exposed to more than one antibiotic during the observation
period, thus potentially affecting the estimates in either direction
[21]. The timing, duration, dose, and route of antibiotic exposure
relative to the detection of the outcome was prone to significant
variability. It is therefore difficult to comment on the nature of the
relationship between exposure and outcome, and confounding by
indication remains a concern despite the large effect sizes we
found. All included studies were observational and were not pri-
marily designed to compare risks of MDRO isolation across AWaRe
categories. A moderate to high heterogeneity between studies was
also observed. Nonetheless, most estimates were consistent
across sensitivity analyses. Lastly, publication bias is a concern:
we found several studies that only reported data on select anti-
biotics that were deemed to be of particular interest, such as
quinolones and 3GC.

Our findings provide a strong rationale for enhancing the use of
AWaRe as a tool to improve the quality of antibiotic prescribing
globally. This is particularly relevant as the consumption of Watch
antibiotics increased by 165% in low- and middle-income countries
between 2000 and 2015 [30]. Optimizing antibiotic use is key not
only to manage the selection and spread of antibiotic resistance but
also to reduce the risk of potential toxicities and improve clinical
outcomes [31,32]. Access antibiotics should be considered as first-
line treatment option whenever possible, in order to limit the uti-
lization of Watch and Reserve antibiotics to situations where they
are clearly indicated.
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