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Dynamic modulation of inequality aversion in
human interpersonal negotiations
Daniel A. J. Murphy1,2, Jiaxin Xie3, Catherine J. Harmer3, Michael Browning3,4 & Erdem Pulcu 3,4✉

Negotiating with others about how finite resources should be distributed is an important

aspect of human social life. However, little is known about mechanisms underlying human

social-interactive decision-making in gradually evolving environments. Here, we report results

from an iterative Ultimatum Game (UG), in which the proposer’s facial emotions and offer

amounts were sampled probabilistically based on the participant’s decisions. Our model-free

results confirm the prediction that both the proposer’s facial emotions and the offer amount

should influence acceptance rates. Model-based analyses extend these findings, indicating

that participants’ decisions in the UG are guided by aversion to inequality. We highlight that

the proposer’s facial affective reactions to participant decisions dynamically modulate how

human decision-makers perceive self–other inequality, relaxing its otherwise negative influ-

ence on decision values. This cognitive model underlies how offers initially rejected can

gradually become more acceptable under increasing affective load (predictive accuracy

~86%). Furthermore, modelling human choice behaviour isolated the role of the central

arousal systems, assessed by measuring pupil size. We demonstrate that pupil-linked central

arousal systems selectively encode a key component of subjective decision values: the

magnitude of self–other inequality. Taken together, our results demonstrate that, under

affective influence, aversion to inequality is a malleable cognitive process.
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Negotiating with other people for one’s own share of finite
resources is an important part of human social-economic
life. Recent historic events (e.g. “trade wars” between the

United States and China, Brexit negotiations between the Eur-
opean Union and the United Kingdom) further highlight this
importance, wherein the outcome of negotiations between only a
handful of people will directly affect the lives of many others.
However, there is limited work on computational and physiolo-
gical mechanisms of such iterative social interactive decision
processes relative to other domains, for example reinforcement
learning.

The Ultimatum Game (UG) is a common behavioural eco-
nomic measure which is used as an experimental probe of social
interactive decision-making processes between two parties. In a
recent study, we showed novel evidence to suggest that in iterative
games proposers use a risky decision-making model to navigate
around violating responders’ fairness thresholds1. Proposers were
shown to maximise their gains by choosing between Ultimatums
based on their expected returns, while taking the probability of
rejection into account. Rejecting an unequal proposal in the UG
can be framed as a form of altruistic punishment2–4. Since both
the proposer and the responder receive nothing when an offer is
rejected in the UG, a responder’s rejection sacrifices the amount
of money offered at the expense of conveying an implicit message
to the proposer that the amount offered had been unfair. Con-
sequently, the responder’s rejections in the UG violate the
assumptions of the Rational Actor Model, which posits that any
monetary gain is better than no gain5 and all offers should be
accepted.

Models of inequality aversion have been particularly influential in
explaining “irrational” choices observed in UG field experiments6,7.
A number of subsequent neuroimaging studies8–11 showed neural
correlates of human inequality aversion in regions associated with
reward processing. On the other hand, studies using economic and
evolutionary simulation models conceptualised responder behaviour
in the UG in terms of reciprocity12, dynamic learning13,14, reputa-
tion building15 and altruistic punishment2. Nevertheless, reporting
summary statistics of average acceptance probabilities at different
offer amounts is the most common approach. Consequently, how
trial-by-trial computation of decision values underlying human
responder behaviour take place in an iterative UG with an ecolo-
gically valid affective component has not been shown before.

During goal-driven social interactions, others’ facial emotions
provide us a window into how they perceive our requests, helping
us to decipher their otherwise hidden valuation processes.
Although humans detect subtle changes in others’ facial emo-
tions, the existing literature also suggests that people are prone to
affective biases in facial emotion recognition16–18, which may
influence their decision strategies. Although a few decision-
making studies have investigated the effect of proposers’ facial
emotions on human responder behaviour in the UG, how such
affective information is integrated into subjective decision values
in iterative games remains unknown. For example, a previous
study showed that responders are consistently more likely to
accept offers coming from attractive faces of the opposite sex
irrespective of the offer amount19, while a large-scale online study
suggested that offers coming from proposers with smiling faces
are more likely to be accepted relative to those coming from
angry20 or neutral faces21. However, a key limitation of these
previous studies is the experimental approach: pairing affective
faces randomly with different monetary offer amounts in repe-
ated one-shot games. By this methodology, on each trial, parti-
cipants are asked to respond to a stimulus which is intended to be
completely independent of what they were presented with in the
preceding trial(s). Considering that in daily social interactions
people’s facial emotions do not jump randomly from one affective

state to another, the previous experimental approaches would
only have limited ecological validity in terms of capturing real-
world human social interactive decision-making processes. In
order to improve on this key limitation, we designed a novel
sampling algorithm for an iterative UG task in which proposers’
facial emotions and offer amounts were generated from two
sliding windows with transition probabilities based on participant
responses in the preceding trials (Fig. 1 and Supplementary
Methods for transition probability tables). We had previously
argued that this approach would break the trial-wise indepen-
dence of experimental stimuli, allowing participants to experience
a gradually changing social interactive decision-making envir-
onment based on their responses in the previous trials22. These
modifications to the UG allowed us to probe participant choice
behaviour using a large range of stimuli, involving both dis-
advantageous and advantageous/hyperfair offers23. We were also
able to introduce a finer gradient on proposer’s facial emotions
relative to previous studies which made categorical distinctions,
for example using happy versus angry faces. This protocol allows
us to model two key influences on participant choice behaviour
during social interactive decision-making: the magnitude of
rewards and the proposer’s affective state. Our a priori hypothesis
regarding participant choice behaviour was that the proposers’
facial emotions and the offer amounts should influence decisions
to accept or reject offers. Although we anticipated that these two
task components should interact, we did not have an a priori
expectation about the direction of this interaction. In the fol-
lowing sections, using mathematical modelling of participant
choice behaviour, we will describe computational mechanisms
underlying how a proposer’s facial expressions influence human
responder behaviour by selectively modulating perceived
self–other inequality in the UG.

In this study, we also collected a physiological measure, pupil
size, which we think might give an insight about biological
mechanisms that underlie social decision-making behaviour.
Recent UG studies using simpler designs (e.g. focussing only on
offer amount) and other physiological modalities such as EEG
recordings demonstrated the utility of these measures in pre-
dicting participant choice behaviour24. Changes in pupil size in
the absence of any experimental manipulation of external lighting
conditions is known to reflect the activity of the central arousal
systems25. Previous studies highlight a role for pupil-linked
central arousal systems in human reinforcement learning (RL)
and value-based decision-making, particularly when performed in
dynamically changing environments26–28. Recent neurophysiol-
ogy studies demonstrated that changes in pupil size reflect the
firing rate of central norepinephrine neurons in the locus
coeruleus29,30 (LC). These studies provide a quantitative support
for a number of converging theoretical31 and experimental
accounts of human behaviour26–28,32, all implicating a role for the
central norepinephrine (NE) system in guiding behavioural
adaptations in dynamic environments, which can be assessed by
measuring pupil size. Furthermore, previous work focusing on
repeated one-shot games, suggested that unfairness arising from
the discrepancy between self–other reward amounts in the UG
engages autonomic arousal systems in humans (for example,
cardiac response or skin conductance), also predicting partici-
pants’ accept versus reject decisions33,34. Nevertheless, the role of
pupil-linked central arousal systems during social interactive
decision-making remains mostly unknown apart from one study
conducted in a limited number of children (N= 15) which sug-
gested that pupil dilation in response to viewing faces indexes
familiarity with the face35. Considering that our UG task was
specifically tailored to allow participants to experience an evol-
ving interpersonal negotiation environment, we asked healthy
volunteers (N= 44) to perform the novel experimental task while
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undergoing pupillometry and explored the role of pupil-linked
central arousal systems in social interactive decision-making. We
expected that decision-making in an iterative UG should engage
pupil-linked central arousal systems and encode components of
the subjective decision value associated with unfairness which
underlies participant choice behaviour.

Results
Participant demographics. Forty-four participants recruited
from the general public completed the UG experiment with
pupillometry (further details of the experiment are available in
the ‘Methods’ section). The demographic details of this cohort are
summarised in Table 1.

Human participants prefer fair monetary splits. Participants
initially rated 100 different Ultimatum offers presented in ran-
domised order, on a 1-9 Likert scale indicating how much they

would like the proposed offer (all offers between £0.50 and £9.50
expressed in pence). These ratings allowed us to develop liking-
based decision models for our main social interactive experiment.
Participants’ liking ratings monotonically increased from 50p (a
highly unequal offer) to 500p (a 50/50 split), where they peaked.
The liking ratings were lower for offers advantageous for the
participant (>500p) relative to the 50/50 split, indicating an
aversion to inequality (Supplementary Fig. 1).

Nonlinear aspects of human facial emotion recognition. After
rating the Ultimatum offers, participants rated a range of their
proposer’s facial emotions also shown in Fig. 1, again on a 1–9
Likert scale from negative to positive. Overall, in this facial
emotion rating task (FERT), participants’ Likert ratings correlated
highly significantly with the emotional valence of the proposers’
facial expressions (average correlation coefficient r= 0.869,
p < 0.001). However, participants were significantly better at
detecting proposer’s facial emotions when they were displaying
positive compared to negative emotions (average r values .821
versus .539, respectively; t(86)=−4.55, p < 0.001). This bimod-
ality indicated the possibility of a nonlinearity in human facial
emotion recognition that is more prominent for negative emo-
tions (Fig. 2a). In order to capture this nonlinearity, which we
thought should influence the way decision values are computed in
the UG, we further analysed these ratings by exploiting the
properties of a two-parameter exponential-logarithmic function
(see ‘Methods’, Eq. (1)). Non-linearity in affective ratings was
something that we anticipated from the planning stages of this
experiment, and we intentionally used a 9-point Likert scale to
assess this to enable use of this exponential-logarithmic function.
However, it is important to highlight that we made no prediction

Fig. 1 Experimental timeline of the novel Ultimatum Game task. On each trial, the participant is presented with an affective face of the proposer/
confederate (i.e. the red arrow) followed by an offer. In response to participant’s acceptance or rejection, the proposer’s facial emotion may stay the same
or change to a neighbouring affective state based on predefined transition probabilities associated with each response type (e.g. the proposer is more likely
to be happier if the offer is accepted). Similarly, based on other predefined transition probabilities, the offer on trial (t+ 1) may stay the same or may be
revised to a neighbouring offer amount based on participant response (e.g. the offer of 200 shown in the example above for trial (t) may increase to 250 on
trial (t+ 1), after the participant rejected the first offer). The predefined transition probabilities for facial emotions and offer amounts for the novel UG task
are available in Supplementary Materials.

Table 1 Demographic details of participants.

Measure Mean (SD)

Age 33.7 (11.30)
Gender 68.18% Female
QIDS-16 8.11 (7.60)
Trait-STAI 42.77 (13.52)
State-STAI 33.43 (12.21)

QIDS-16; Quick Inventory of Depressive Symptoms, 16 item self-report version. Trait/State-
STAI; Speilberger State-Trait Anxiety Inventory. Note that scores of 6 or above on the QIDS-16
indicate the presence of mild depressive symptoms. The Trait/State-STAI has no standard cut-
off scores.
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about the exact trajectory of this nonlinearity due to lack of
previous work. This novel analysis approach confirmed that
participants perceived their proposer’s affective states nonlinearly,
albeit with some individual variability (Fig. 2a). We further
explored whether the parameter estimates from this model could
be influenced by participants’ own mood states (i.e. factors such
symptoms of depression and anxiety, as measured by validated
clinical questionnaires). This analysis did not suggest the con-
tinuous or categorical variables that we considered in the
regression model significantly influenced estimates of the model
parameters (Fig. 2b). Factors such as opponent type (i.e. whether
the proposer was a confederate or a computerised opponent) or
opponent sex did not influence the parameter estimates either,
indicating that the nonlinearity captured in participants ratings
was not a direct result of the way proposers might have expressed
their emotions while their pictures were taken initially.

Proposer’s facial emotions influence choice behaviour in the
UG. We first concatenated all behavioural data from each partici-
pant and binned average acceptance probabilities for all combina-
tions of all proposers’ facial emotions and offer amounts (Fig. 3a)
and analysed this data with an ordinary least squares (OLS)
regression model. This analysis suggested a main effect of facial
emotion (based on t-tests on OLS coefficient estimates,
t(43)= 8.43) and a main effect of offer amount (t(43)= 8.85). The
effect sizes for these main effects were d= 1.262 and 1.325,
respectively. These findings also confirm that the task successfully
probed both of these components. We also identified a significant
facial emotion × offer amount interaction (t(43)= 3.70) influencing

participants’ probability of accepting an offer (all p < 0.001, Fig. 3b).
This indicates that people were more likely to accept unfair offers if
the proposer’s facial emotion was more positive, agreeing with
previous results from one-shot games20. However, it is important to
point out that these simple behavioural effects give a bird’s eye view
but cannot account for the iterative/dynamic nature of our social
interactive decision-making task. For completeness, we report the
average number of trials participants spent in each state-space
during the UG experiment (facial emotion × offer amount) in
Supplementary Fig. 2.

In iterative games history of recent events continues to influ-
ence participant choice behaviour. One of the main features of
our experimental design was that participants responded to offers
generated based on their responses in preceding trials. We used
this approach in an attempt to increase ecological validity com-
pared to the trial-wise independence of stimuli commonly
employed in previous studies. To demonstrate this effect, we
investigated how stimuli shown in preceding trials (i.e. n-1th to n-
3th), as well as participants’ previous decisions, influenced their
choice behaviour on the current trial (the nth trial) using a
logistic regression model. We think this analysis approach,
focussing on the effects of only the previous trials on the current
choice, would complement the model-free behavioural results
focussing on acceptance probability reported in the preceding
section. There were four regressors in this model: proposer’s facial
emotion, the offer amount, a facial emotion × offer amount
interaction term, and the participant’s choice. This analysis sug-
gested all regressors from the n-1th trial significantly influenced

Fig. 2 Results of the facial emotion rating task. a Participants perceived their opponent’s facial emotions nonlinearly. The x-axis shows the proposer’s
faces assembled from negative to neutral to positive (as in Fig. 1), and the y-axis represents participants perceived emotions according to the best-fitting
nonlinear weighting model. The thick black line designates the population mean. b The model parameters [δ, γ, see Eq. (1)] were not influenced by factors
such as symptoms of depression and anxiety, or participant and proposer sex. Composite depression and anxiety scores were established for each
participant by linearly transforming (i.e. summing up scores from each domain within subjects) the z-scores of depression, and state and trait anxiety
measures to avoid collinearity in the model, as these measures were highly correlated with each other in this cohort of non-clinical volunteers (all
r(42) > 0.69, all p < 0.001). Opponent type designates whether participants were told they would be playing against a human confederate or a
computerised proposer. SVO: Social Value Orientation, which is a continuous measure defining one’s degree of prosociality. All regressors were normalised
before model fitting to allow a direct comparison. Error bars denote 95% CI. Variance inflation factor (1/(1−R2)) computed for this model ranged between 1
and 1.06, where values greater than 5 would raise concerns for multicollinearity between regressors. The same set of regressors were used for the analysis
reported in Fig. 5.
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participant choice behaviour on the nth trial (all |t(43)| > 2.84,
p < 0.01), with the offer amount on the previous trial being the
most significant influence (t(43)= 9.56, p < 0.001; Fig. 4). The
influence of these variables on participant choice behaviour
decayed with preceding trials. These results are also in line with

the general notion that human choice behaviour in social inter-
active decision-making games can be defined in terms of n-1 (i.e.
memory-1) conditional-probabilistic strategies36.

Proposer’s emotions dynamically modulate perceived
self–other inequality. We considered a number of computational
models to describe participant choice behaviour in the iterative
UG task (see ‘Methods’ for model descriptions). Computational
modelling allows us to decompose the underlying mechanisms of
the main effects that we demonstrated in the preceding sections
through a dynamic analysis approach better suited to the iterative
nature of the experimental task.

The best-fitting model (Model 10), which was able to correctly
predict participant choices in 85.8% of the trials (i.e. average percent
of trials in which individual participant’s and model’s choices are in
agreement), assumed that nonlinearity in the way the proposer’s
facial emotions are perceived (as shown in Fig. 2a). In the best-fitting
model, perceived emotions modulate participants’ perception of
inequality7 in the UG, and relaxes/neutralises the negative valuation
associated with it (Supplementary Materials, Eqs. 1 and 9). Our
proposed mechanism for this influence was represented by a
parabolic relationship, meaning that increasingly negative or positive
emotions displayed by the proposer would have a similar effect on
perceived inequality during social interactive decision-making. In
descriptive terms, this would mean that if the proposer insists on an
offer amount which is rejected iteratively by the participant and
responds to the participant’s rejections by displaying increasingly
negative emotions, at some point the proposer might overcome the
participant’s negative valuation associated with perceived self–other
inequality. This means that under affective load, previously rejected
offers gradually become more acceptable to the responder (i.e.
acceptance probability would increase). However, it is also
important to highlight that the effect of facial emotions may not
be evident in all participants as it would also depend on the strength
of the inequality aversion (both of these processes have their own
nonlinear trajectories as shown in Fig. 2b (facial emotion

Fig. 3 Behavioural results from the Ultimatum Game. a Participants’ average acceptance probabilities across all possible combinations of proposer’s facial
emotion (y-axis) and offer amounts (x-axis) represented as a heat map. The data shown in the heat map is concatenated across all participants and all
conditions. Colour bar shows the probability of accepting an offer. Changes in the colour gradient in the heat map suggest that unfair offers coming from
positive faces were more likely to be accepted relative to offers associated with negative facial emotions, even if the negative-emotion offer amount is
advantageous to the participant. b A formal OLS regression analysis conducted on the acceptance probabilities indicated a significant main effect of facial
emotion, a main effect of offer amount and a significant facial emotion by offer amount interaction term influencing participants’ probability of accepting an
offer (***p < 0.001). Error bars denote ±1 SEM.

Fig. 4 Logistic regression analysis of participant choice behaviour.
Coefficient estimates from the logistic regression model fitted to participant
choices on the current (nth) trial indicate that all regressors from the n-1th
trial significantly influence participant choice behaviour (***p < 0.001,
**p < 0.01). The coefficient estimates for the influence of previous choices
were all negative, indicating that offers on the current trial are more likely to
be accepted if offers on previous trials were rejected. The influence of these
variables decayed down the trials. Error bars denote ±1 SEM. The average
variance inflation factor computed for these 12 regressors was 1.0997.
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recognition) and Supplementary Fig. 1 (liking ratings may be
interpreted as a proxy for inequality aversion)), such that even if the
acceptance probability increased under affective load this would not
necessarily mean a behavioural switch that would be applicable for
all conditions. The effect of previous rejections on decision to accept
the offer in the current trial can also be observed in negative logistic
regression coefficients reported in Fig. 4, complementing these
results.

The best-fitting model can also flexibly adapt to other
situations that might occur during the game. For example,
in situations where the proposer’s facial expressions are neutral,
the influence of perceived affective state is diminished (Eq. (9)),
while perceived inequality becomes relatively more important in
the decision-making process. In situations in which the proposer
displays increasingly positive emotions, although this condition
may be hypothetical and would not occur too frequently in the
current design, the model can reduce the overall influence of
perceived inequality on subjective decision-values, accounting for
compromise behaviours (e.g. “the offer is unfair, but if I accept it,
it would at least make the other side happy”). Bayesian model
selection metrics37 supported these assertions, showing that the
model in which facial emotions selectively act on the inequality
term (Model 10)—but not on either the self-reward amounts term
(Model 8) or modulating both the self-reward and the inequality
term independently (Model 9, Supplementary Fig. 3)—fits better
to explain participant choice behaviour. The parabolic (Model
10), rather than exponential (e.g. Model 6, Supplementary Fig. 3),
shape of this affective influence indicates that a proposer’s
increasing negative or positive facial emotions would act on the
inequality term in a similar manner, while neutral facial emotions
would have negligible influence on participant’s perception of
inequality. These results were validated in an independent cohort
(n= 25) which confirmed that reported effects or the best-fitting
model were not influenced by task instructions or completing
rating tasks prior to the main experiment (see the section on
Control experiment). Further analysis of trials mispredicted by
the best-fitting model did not show any significant main effect of
the proposer’s facial emotions or offer amounts (Supplementary
Fig. 4), indicating that the model does not fail systematically in
converting these input stimuli into subjective decision-values.
However, there was a significant facial emotion × offer amount
interaction in the mispredicted trials (t(43)=−3.2452, p < 0.01).
Negative regression coefficients on this interaction term indicate
that the model struggled to account for participant choice
behaviour at the extremes (e.g. unfair offers coupled with very
positive faces). Considering the close agreement between the raw
(Fig. 3) and the simulated data based on the best-fitting model
(Supplementary Fig. 6b, c) we did not further explore the decision
model space by assigning separate parameters for advantageous
versus disadvantageous types of inequality. This was an
intentional choice to limit the model space to avoid overfitting
to the current dataset, particularly considering the best-fitting
model had good predictive accuracy, stability and was able to
recapitulate human behaviour (Supplementary Fig. 5).

One possibility that we did not consider so far is that our
participants could engage with the task with a “risk of missing out” in
mind, such that repeated rejections could put pressure on participant
choice behaviour and accept subsequent offers, so that they would be
paid at least some additional payment on randomly selected trials
(note that there would not be any additional payment if participant
rejected the offers on all the randomly selected trials). According to
this framework, the participants’ expected payment at the end of the
game would be a function of their average acceptance rate multiplied
by the average offer they experienced during the game, as they could
not know which trials would be selected at the end of the experiment.
If participants engage with the task and were influenced by the

proposer’s facial emotions according to the parabolic model that we
proposed, there should be a negative correlation between the fitting of
this model and participant’s expected outcome described above, as
they would be swayed away from this expected outcome calculation
by the influence of proposer’s facial emotions according to the best-
fitting model. We conducted an exploratory analysis on this
relationship and observed that to be negative, which might serve as
complementary evidence in favour of our proposed model (main
experiment, r(43)=−0.21, p= 0.17; combined cohorts including the
control experiment r(68)=−0.29, p= 0.016; Bonferroni corrected
over 2 comparisons).

Similar to the OLS analysis that we reported for facial emotion
recognition parameters (Fig. 2b), we analysed which variables
influence the parameter estimates of the best-fitting choice model
in the UG. This analysis suggested a significant relationship
between participants’ social value orientation (SVO, as measured
by the SVO Slider Measure23) and parameter values of the
inequality term estimated individually from each participant’s
choice behaviour, meaning that people with higher SVO scores
(i.e. people with more altruistic tendencies) perceive self–other
inequality more negatively (t(43)=−2.166, p= 0.036, Fig. 5).
Here, it is critically important to highlight that the opponent-type
regressor which determines whether the participants played
against a human, or a computerised opponent did not have any
significant main effect on human behaviour or parameter
estimates. It is possible that recent advances in AI mimicking,
and even excelling, human behaviour in competitive games38–40

might have an indirect effect on these results (i.e. human
participants may find it easier to attribute human features to the
computerised opponents relative to studies conducted in earlier
decades). In the context of social reinforcement learning, a recent
study using abstract fractals to represent human versus non-
human targets in a two-option forced-choice paradigm suggested
that participants relied on trait generosity when learning about

Fig. 5 Prosocial individuals perceive self–other inequality more
negatively in the UG. Coefficient estimates from an OLS regression model
fitted to parameter estimates of the best-fitting computational choice
model (i.e. Model 10) suggested that people with higher social value
orientation will perceive self–other inequality more negatively (*p < 0.05).
A generate-recover simulation analysis (50 iterations) based on stochastic
choices generated by this model demonstrates the stability of the
estimated parameters (Supplementary Fig. 5). Error bars denote 95% CI.
Note that these regression coefficients do not need to be subjected to
further correction for multiple comparisons. All regressors were normalised
before model fitting to allow a direct comparison.
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humans, whereas relying on reward rate for non-humans (i.e. slot
machines)41. Intriguingly, in our previous work focusing on the
proposer behaviour in the UG1, we have demonstrated that
participants rely on SVO-related learning models (i.e. similar to
trait generosity related models mentioned earlier) for under-
standing the decision tendencies of computerised responders that
are represented by chess icons. It is also possible that iterative
social interactive games may be reducing participants’ under-
standing of such differences. Although a strong a priori
assumption would dictate that social interactive decision-
making should be fundamentally different than non-social forms
of value-based decision-making (including interactions with
computerised algorithms), as mentioned, these results are globally
in line with not only our previous work1, but also work from
other influential labs studying these decision problems with or
without real human agents42. Although effect sizes for the main
task components were robust (see in the preceding sections), it is
also possible that our sample size was not large enough to detect
some of these relationships (also applies to results reported in
Fig. 2b).

Pupillometry results. We analysed participants’ pupil response
during the decision stage of the UG task (i.e. the window from the
presentation of the offer until the end of outcome presentation)
with an OLS regression model to explore the extent to which
regressors generated under the best-fitting computational model
correlated with pupil size during the UG experiment (see
‘Methods’ for the details of the pupillary regression model, Eq.
(11)).

One possible caveat that we evaluated quantitatively before fitting
the pupillary regression model is the correlation between proposers’
perceived facial emotions and the offer amounts given to the
participant. Normally, in general linear models, one would try to
decorrelate these regressors as much as possible to evaluate their
unique pupillary or neural signatures. However, in the case of our
task, the computerised strategy was designed to display positive faces
with higher probability if the offers were accepted (as should
logically happen in interpersonal exchanges in real life). In the
extreme case of a proposer’s facial emotions and offers being
completely decorrelated, the computerised proposer may no longer
be perceived as a human proposer (e.g. proposer reacting to
participant’s decisions by showing unexpected and/or unrelated/
random emotions or offers). The histograms of correlation
coefficients between proposers’ perceived facial emotions and
decision-values generated under the best-fitting model for each
participant are shown in Supplementary Fig. 6a (correlation
coefficient r (mean ± SD)= 0.058 ± 0.26). This demonstrates that
our experimental manipulation was able to deal with collinearity
issues adequately, something which would otherwise compromise
the quality of the pupillary multiple linear regression analysis.

In a similar manner to our previous study1, we also asked our
participants a number of questions related to how they felt about
their proposers to make sure that the computerised strategy was
perceived as “human-enough” (full set of questions given in
Supplementary Fig. 6b legends). On average, participants were
able to identify more than one person from their social circles
who would make offers and display affective reactions in a similar
manner to the computerised proposer (response to Q3; mean
(±SD)= 3.82(±0.40); t(43)= 7.12, p < 0.001), reassuring that our
experimental manipulation was successful in terms of the
computerised proposer adequately mimicking human behaviour
while keeping the correlations between perceived faces and offer
amounts within an acceptable range.

To be able to extract a cleaner signal from our subjective
decision value regressors, we wanted to regress out as much of the

unaccounted variance from pupil size timecourse as possible. We
thought that regressors which quantitatively defined how the
decision-making environment changed (i.e. environmental vola-
tility and environmental noise43), as well as participants’ response
to those changes (i.e. surprise) would adequately reduce variance
unaccounted by our key regressors. These components were
estimated from the raw stimuli (i.e. the offer amount and facial
emotion valence on each trial) by a recursive Bayesian filter43 that
can estimate the generative statistics of the stimuli uniquely for
each participant, and helps with objectively quantifying how the
social interaction environments change (also see Supplementary
Methods for further details). Such changes also depend on
participant choice behaviour, meaning that each participant
experienced a unique sequence of stimuli. Regressors defining
environmental volatility, noise and surprise response did not lead
to any statistically significant pupil dilation (Supplementary
Fig. 7), suggesting that higher-order statistics of the social
interactive decision-making environment did not engage the
pupil-linked central arousal systems.

Pupil size encodes the magnitude of self–other inequality prior
to decision onset. Under the best-fitting model, subjective deci-
sion values were a function of 3 regressors with trial-wise varia-
bility, namely the self-rewards (Fig. 6a), perceived facial emotions
of the opponent which modulate how negative self–other
inequality is perceived (Fig. 6b) and the magnitude of the
self–other inequality (Fig. 6c). We were mainly interested in the
pupillary correlates of these regressors.

Subsequent analysis performed on the average pupillary
regression coefficients binned at each second after offer
presentation, by one-sample t-tests from baseline, indicated that
pupils dilate more in reaction to the magnitude of inequality
which peaks prior to decision onset (peak response between 0 and
1000 ms, t(42)= 2.893, p= 0.006, Fig. 6c) and decays continu-
ously after the decision onset.

Discussion
In the present work, we describe value computations underlying
human responder behaviour in an iterative UG task which also
involved participants observing the proposers’ affective reactions.
Our results suggest that human participants exhibit perceptual
biases in facial emotion recognition which are represented non-
linearly (Fig. 2a). We show that proposers’ facial emotions sig-
nificantly influence participant choice behaviour in social
interactive decision-making (Fig. 3a, b). The influence of the
proposer’s facial emotions on participant choice behaviour is
confirmed by different methods of analysing the behavioural data
(i.e. both logistic regression and computational model-based).
Computational modelling results demonstrate that human
responders use an inequality-aversion-based model which is
dynamically modulated by the proposer’s facial emotions. We
show that parameter estimates for the inequality term from the
best-fitting computational decision-making model were sig-
nificantly negatively correlated with participants’ social value
orientation (SVO). This captures the intuition that people with
higher prosocial tendencies perceive self–other inequality more
negatively and are less likely to accept unfair offers (Fig. 5).
Computational modelling of participant choices further revealed
that opponent’s affective reactions dynamically modulate parti-
cipants’ perception of inequality, relaxing its negative influence in
a parabolic shape (i.e. Model 10). Participants became more likely
to accept unfair offers, irrespective of whether they were advan-
tageous or disadvantageous, when their rejections were con-
fronted with iterative positive or negative affective response from
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the proposer (also partially illustrated in the model-free faces ×
offer amount interaction effect, Fig. 3).

This model can flexibly account for human behaviour in a
number of social interactive decision-making scenarios, for
example compromise behaviours to emerge in interpersonal
negotiations under affective load, demonstrating that human
inequality aversion is a malleable construct. Exploring the cor-
relates of the regressors generated by the best-fitting computa-
tional model suggested that the inequality component of
subjective decision values that guide participant choice behaviour
engage the pupil-linked central arousal systems prior to decision
onset. To the best of our knowledge, these results constitute the
first line of evidence giving a detailed account of (i) how oppo-
nent’s affective responses influence value computations in social
interactive decision-making; and (ii) the role of the pupil-linked
central arousal systems in these value computations.

Among behavioural economic games, the UG is one of the most
commonly used zero-sum game. This is because for any accepted
offer, gains are mutually exclusive between the proposer and the
responder (i.e. if the proposer gets more of the amount to be split,
the responder gets less). The linear payoff structure and sequential
decision-making nature of the UG makes it a good candidate for
computational modelling compared to other nonzero-sum games
like the Prisoner’s Dilemma (PD). The UG is known to have a
strong non-monotonicity, which indicates that people’s acceptance
probability does not increase monotonically with increasing self-
reward magnitudes44. This forms the basis of nonlinear aversion to
inequality commonly observed in human decision-makers (Eq. (6),
ω parameter). We demonstrated that our participants also behaved
in this manner, as indicated by results from the analysis of choice
behaviour (Fig. 3a) and liking ratings (Supplementary Fig. 1). We
further demonstrate both in our model-free (Fig. 3) and model-
based analyses that the affective content of the proposers’ facial
expressions modulates these decision processes. One of the most
important contributions of our current work is the suggestion that
the nature of this affective influence is better accounted by a
parabolic model relative to other models that we considered.

The present results complement the findings of a recent work
in which we described a computational model accounting for

human proposer behaviour in the UG1. In these two studies,
focussing on value computations underlying proposer1 and
responder behaviour separately have allowed us to restrict the
vast model space and identify suitable models accounting for
human social interactive decision-making. Future studies should
go one step further than these preliminary reference points that
we identified in the UG decision model space, and independently
validate and replicate risky decision-making models accounting
for proposer behaviour versus inequality aversion models
accounting for responder behaviour in a two-person interactive
experimental design. Although, in our own evaluation, the cur-
rent experimental approach tackles many of the limitations of
previous UG studies, it is still far away from a naturalistic two-
person exchange. One limitation of our study which may be
important to highlight is that our experimental design did not
allow the offers to stay stable for reasonably long sequences to be
able to dissociate the effect of the change to facial expressions on
the inequality term further (i.e. average maximum sequence
length in which the offers stayed the same per participant was 3.5
trials ([min, max]: [2, 11]). As a result, our model proposes that
human inequality aversion is malleable through a parabolic
influence, but this proposal emerges as a winning model from the
whole stimuli space rather than specifically confirming this
hypothesis in a task design in which the offers remained constant
and only the facial emotions are manipulated. Consequently, we
think future studies should test the suitability of our proposed
model in iterative UG tasks perhaps with different rules (e.g.
subsequent offers generated based on previous decisions but
coupled with randomly generated facial emotions) or ideally
involving a genuine two-person interaction that would also
address one of the key limitations of the current work, namely
disguising an ad hoc probabilistic sampling algorithm within an
experimental design which involves human confederates.

The extent of the decision model space has been one of the key
factors limiting the number studies reporting computational
models of choice behaviour in social interactive games45–47, as the
difficulty associated with modelling recursive theory of mind
(ToM) processes is making social interactive decision-making a
topic “too hot to handle”. A recent neurophysiology study in

Fig. 6 Pupillary signal of subjective decision-values computed under the best-fitting model. a Coefficient estimates from the pupillary OLS regression
model correlating with self-reward values (i.e. the orange line and shading) (b) perceived emotions of the opponent which dynamically modulate the
inequality term (c) the magnitude of self–other inequality. These panels illustrate the components of the subjective decision values. Computed under the
best-fitting model as shown above the figure in a black frame (also in Eq. (9)). Pupil response to inequality peaks prior to decision onset (the window
marked with dashed lines designating the decision reaction time (RT)) and indicates that pupil dilates more to offers associated with greater inequality
(**p < 0.01, *p < 0.05). Error shading denotes ±1 SEM across all panels. All regressors were normalised ahead of model fitting to allow direct comparisons.
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monkeys has shown that it is possible to bypass some of these
difficulties by modelling the proposer’s future decisions in a
binary format (i.e. cooperate versus defect in PD) to illustrate
underlying neural correlates of ToM processes48. However, these
novel approaches require neural data with very high temporal
precision, something that has not yet been implemented in
human participants. As a result, and despite the fact that humans
are social animals, our understanding of social interactive
decision-making processes in healthy and patient groups are
lagging far behind other well-defined cognitive processes such as
reinforcement learning (RL)27,28,49,50. In fact, RL models have
been exploited to describe choice behaviour in one-shot UG
where participants played against different opponents in indivi-
dual trials, however, this approach necessitated the participants
learn the norms of a population of proposers to allow models to
make use of prediction errors arising from violations of the
population norms51. Nevertheless, we demonstrate that an
iterative choice model converting reward and affective informa-
tion into decision values can account for wide majority of itera-
tive human social interactive decision-making (model predictive
accuracy ~86%) even without recursive ToM modelling. One
might argue that our modelling approach for the current study
ignored trial-by-trial learning processes which might be taking
place during social decision-making. It is possible that incor-
porating these additional cognitive processes could further
improve the predictive accuracy of our proposed model. In our
previous work focusing only on offers but not offer/facial emotion
combinations in the UG, we had used various Bayesian observer,
SVO and RL models to account for learning processes with which
proposers’ understand the responders’ binary accept versus reject
decisions across 180 trials. However, learning how proposers
would change their behaviour across an offer by facial emotion
grid space in the face of rejection from the participant is much
more complex than learning binary accept versus reject decisions.
Considering that the current experiment also involves proposers’
affective reactions (in total 9 faces), one would ideally need
around 1500 trials to be able to adequately model learning pro-
cesses. In our case, this approach was not feasible to implement.
This limitation is also illustrated by the distribution of trials as
shown in Supplementary Fig. 2, each state-space does not have
enough number of trials to model distinct learning curves. These
limitations have also been communicated by other key compu-
tational modelling work concerning social interactive decision-
making46,47.

One of the key rating tasks which informed our modelling of
participant choice behaviour in the UG evaluated participants’
perceptions of proposers’ facial emotions. We modelled partici-
pants’ ratings on a Likert scale by exploiting the properties of a
two-parameter weighting function. Although our modelling
approach revealed individual variability in these perceptual bia-
ses, the parameters of this model did not correlate significantly
with symptoms of depression (QIDS range: 0–27) and anxiety in
this non-clinical cohort (Fig. 2). These results are not in line with
predictions based on some of the previous studies in depressed
groups which used the FERT16,17. Consequently, it may be
worthwhile to highlight some of the experimental differences
between the traditional FERT and the facial emotion rating task
that we used in the current study. In the traditional FERT, par-
ticipants are presented with affective faces for a very brief period,
approximately for 800 ms; and they are asked to label faces into
one of seven different emotional categories: sad, angry, happy,
surprise, fear, disgust and neutral. Brief stimulus presentation
duration does not allow too much time for participants to decode
the individual parts of the face while forming a judgement about
its affective content. The faces are presented in an oval frame
cutting out some of the facial features such as hair and ears

(approximate size 56.25 cm2). It is possible that these aspects of
the FERT create ambiguity and an information gap which probes
affective biases more strongly in clinical groups relative to non-
clinical volunteers. On the other hand, our rating task was self-
paced (i.e. ratings were made while viewing the faces, RT
(mean ± SD)= 2.90 ± 1.04 s). It is possible that accurately rating
affective faces on a scale may be more challenging than cate-
gorising them into predetermined labels (e.g. happy, sad, fear
etc.). Speculatively, ability to categorise other’s emotions quickly
and accurately may have survival value similar to rapid fight-or-
flight decisions. It is possible that evolution favoured agents who
are better at recognising other’s facial emotions, as in the case of
negative emotions, different affective states (e.g. sad vs angry)
often cue distinct action tendencies. In the rating task, the faces
were presented in a rectangular frame similar to a passport pic-
ture occupying a 102.7 cm2 area. These modifications allow par-
ticipants to gather more information about the affective content
of the faces, reducing ambiguity and increasing ecological validity
of the stimuli and the ratings (e.g. the fact that in real-life social
interactions people have reasonably long time to observe others’
facial emotions, see a recent perspective for a critical appraisal of
existing task designs in cognitive neuroscience52). Therefore, in
future studies, it would be very important to gather large-scale
data to validate the affective content of the facial expressions used
in the current study, which can help understanding how symp-
toms of depression and anxiety influence facial emotion recog-
nition in the wider population. While our current modelling
results suggest that facial emotion processing (i.e. evaluating
intensity and valence) and social interactive decision-making
processes are not systematically impaired by increasing symptoms
of depression and anxiety in a group of non-clinical volunteers, it
would be informative to implement the current experimental
design in clinical groups, such as patients with major depression,
in which facial emotion recognition and social decision-making
processes were shown to be affected in previous studies9,22,53,54.

A number of previous studies reporting computational
mechanisms which under learning and decision-making in
dynamically changing environments have interpreted phasic
changes in pupil size as an index for the firing of the central NE
neurons26–29. In the current work, we showed that pupil dilation
correlates significantly with a key component of subjective deci-
sion values that selective relates to the magnitude of self–other
inequality, prior to decision onset. Although the relationship
between the firing of NE neurons and pupil dilation is often
mentioned in the literature, it is important to acknowledge that
pupil dilation in response to various task components may also be
under the influence of cholinergic and serotonergic (5-HT)
activity in the brain (see a more detailed discussion in Faber55

and Muller et al.32). For example, there is a rich body of literature
showing the effects of 5-HT in social decision-making3,11,56 and
facial emotion recognition18,57–59, and previous work has shown
that pharmacological agents acting on the 5-HT system also
modulate pupil dilation60,61. One of the more recent social
decision-making studies investigating the effects of agents acting
on the 5-HT system across two repeated one-shot studies (both
N= 20), used a trial-by-trial analysis approach implemented in
generalised estimating equations to show that both MDMA and
psilocybin reduced rejection of unfair offers62. Teasing out the
influence of these neurotransmitters on pupil dilation during
social interactive decision-making ideally requires experimental
pharmacology methods and should be tested in future studies to
further understand mechanisms of causality. The current
experimental approach could also be useful in teasing apart
neural responses associated with information processing during
social interactive decision-making, considering existing literature
clearly demonstrates that facial emotion recognition and social
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decision-making activate fronto-striatal and limbic
regions4,8,47,56,63–65. The main strength of the current experi-
mental design is that it probes facial emotion processing and
social decision-making domains simultaneously with a relatively
fine gradient (by generating stimuli probabilistically from two
sliding windows, 9 different facial emotions × 19 different offer
amounts, in total 171 unique stimulus combinations, Fig. 2a),
therefore it can be used as an experimental probe for addressing
these mechanistic questions about information processing during
social decision-making. We predict that the correlates of the
subjective value regressors from the stochastic choice model
(Fig. 6) should be encoded by the fronto-striatal and limbic
regions.

Taken together, our key results demonstrate that, under
affective load, aversion to inequality in human participants is a
malleable cognitive process. Compared with previous work that
showed 50% of responders systematically adapt their choice
behaviour when statistics of expected offers are varied in different
UG task blocks, our model proposes a mechanism that accounts
for dynamic changes in aversion to inequality66. We show that
central arousal systems—reflected in pupil size—are involved in
value computations during social interactive decision-making,
and track the opponent’s affective responses. We show that these
perceived affective responses dynamically modulate the perceived
inequality of an offer, and therefore its probability of acceptance.
These findings may have important implications for under-
standing the cognitive processes that underlie suboptimal out-
comes (e.g. compromise behaviours and settling down for an
unfair split in interpersonal negotiations) in social interactive
decision-making.

Methods
Participants. Forty-four participants were recruited from the local community via
advertisements. Potential participants who had a history of neurological disorders
or who were currently on a psychotropic medication were excluded from the study.
In order to increase the overall generalisability of study results, eleven confederates
were recruited from the staff of University of Oxford Department of Psychiatry.
The methods were performed in accordance with relevant guidelines and regula-
tions and approved by Oxford Central University Research Ethics Committee
(CUREC). All participants and confederates provided a written informed consent
prior to taking part in the study. We have confirmed consent to publish the images
of the confederate, as shown in Fig. 1.

The confederates attended to two testing sessions. In their first visit, they were
instructed to display different emotions (i.e. 9 different from negative to neutral to
positive) while the pictures of their faces were taken. When their pictures were
taken, the confederates were instructed to start with a neutral facial expression and
then display increasing positive emotion in four increments and finally display
increasingly negative emotion, also in four increments. These pictures were later
used in the facial emotion rating task and the Ultimatum Game (UG, Fig. 1). In
order to increase the ecological validity of these facial emotion stimuli, we did not
instruct confederates to display specific emotions (e.g. disgust), but allowed
confederates freedom to express negative/positive emotions as they would in their
personal lives.

Procedures. Before the experimental tasks, participants completed the Spielberger
State-Trait Anxiety Inventory, Quick Inventory of Depressive Symptoms and Social
Value Orientation (SVO) Slider Measure23 in a pen and paper questionnaire for-
mat. After these, participants completed two rating tasks in which they were asked
to rate various (i.e. in total 100 unfair, fair and advantageous offers) Ultimatum
offers coming from an anonymous proposer on a 1-9 Likert scale (dislike vs liking).
All offers involved splitting £10 between the proposer and the participant, and the
offer amounts were presented in pence unit. After that participants rated their
proposers’ (i.e. the confederate’s) pictures displaying different facial emotions, on a
1-9 Likert scale (i.e. from negative to neutral to positive, 9 different emotions in 6
iterations, a total of 54 ratings). These rating tasks were administered to establish
participants’ baseline preferences independently, and the ratings were later used to
construct computational models accounting for decision-making processes in the
UG. The order of stimuli in both of these rating tasks were randomised for each
participant in order to prevent the induction of systematic biases in perception and
decision-making in the subsequent stages of the experiment. Participants of a
secondary control experiment (n= 25) completed these rating tasks after the main
experiment.

After the rating tasks, participants completed the UG while undergoing
pupillometry recording (n= 44). The task consisted of 6 blocks of 40 trials each.
Where available, each participant was paired with one of 11 different confederates.
The participants were told that they would be playing an interpersonal negotiation
game against another participant recruited from general public, and in the game
they would be interacting with the other person through internet connection to an
online server. To strengthen the confederate manipulation, the participants were
informed that their proposers attended on 2 occasions, and in their first visit they
also respond to the same questionnaires as the participant did, and their pictures
were taken while displaying different emotions, later to be used in the negotiation
game. For some participants (47.7%) it was not possible to arrange a confederate
due to feasibility issues (e.g. a mismatch between the participant, pupillometry
testing room and confederate availability). Those individuals were explicitly told
that they would be playing against a computerised strategy which was developed
based on the behaviour of a previous participant. We also used this manipulation
in our previous work to investigate value computations underlying human
proposer behaviour in the UG67. In fact, all participants played against the same
computerised strategy which was developed to sample offers and facial emotions
probabilistically from two independent sliding windows.

In descriptive terms, the proposer strategy was designed to test the participants’
acceptance threshold by sampling offers probabilistically around the threshold (e.g.
previously rejected offers can stay the same mimicking an insisting behaviour,
improve or even get lower), and displays negative facial emotions with relatively
higher probability when the offers are rejected or displays positive facial emotions
with relatively higher probability when the offers are accepted (details of the
computer strategy is available in Supplementary Materials). We used a sliding
window approach to make sure that both facial emotion stimuli and offer amount
changes in small increments determined by these transition probabilities, which
would allow us to present a gradually changing social interactive decision-making
environment to the participants. A full debriefing letter summarising the aims and
objectives of the study along with reasons for deception was provided at the end of
the study.

At the beginning of the UG experiment, the participants were explicitly told
that their proposers would be selecting one offer out of a window of different offers
to make a proposal. Participants were told that this is to make sure that their
proposers could not consistently make unfair or fair (i.e. 50/50 split) offers in
which case the negotiation would get stuck in a limited range of offers. This
measure was taken to make sure that the decision-making process was confined to
responding to combinations of faces/offers in a gradually evolving task
environment, and the influence of higher-order cognitive processes (e.g. Theory of
Mind tracking46, learning about the proposer’s strategy) is limited. We think that
UG is a particularly suitable task for this purpose as it allows reducing model
complexity (e.g. eliminating recursive models), relative to other tasks such as the
Stag Hunt47, the Trust68 or the Inspection games45. This is because the some
economic decision-making models5 posits that any gain is better than no gain and
all offers should be accepted. Secondly, recursive ToM models with which
participants can try to influence the proposer behaviour would only work
effectively if the proposer’s subsequent offer is more than twice as good as the offer
rejected on the current trial, as otherwise the reward rate per trial cannot exceed
the reward rate per trial if all offers are accepted. However, we minimised this
possibility in our task design (~9% of trials, offer amount (mean ± SD): 132.6 ± 38),
as offers were drawn from a sliding window and did not increase in a multiplicative
manner. In the secondary/control experiment, we wanted to eliminate the effects of
task instructions or the effect of the time point in which the rating tasks were
completed (pre or post main experiment) and still observed comparable results to
the original study. This seems to suggest that our initial approach with detailed task
instructions might have been overcautious and rather unnecessary.

Just like in any traditional UG experiment, participants were told that their task
is to accept or reject these offers coming from the proposer. The participants were
told that the accepted offers will be distributed as proposed, but if they reject an
offer both sides would get nothing for that trial. The participants were told that
after their decision, the proposer would see 9 faces displaying different emotions
(i.e. the same 9 faces the participant rated previously) and would select one to
communicate how s/he feels in response to the participant’s response and in the
next trial the proposer would see another set of options, also giving him/her an
opportunity to revise his/her offer. The participants were told that each block
would start with a neutral face and a fair offer (i.e. 50/50 split) and can go any
direction from that point onwards based on their negotiation ability. Within each
trial the key epochs were: proposer’s facial emotion, the offer, decision input from
the participant, monetary outcome and proposer’s emotional reaction to the
participant’s decision (Fig. 1). To establish continuity in the game, the proposer’s
emotional reaction at the end of trial t-1 would be the first stimuli presented on
trial t.

The participants were instructed that at the end of the game a computer
algorithm would randomly select 20 trials and the outcome of those trials would be
paid to each side. These 20 trials used for compensation were selected irrespective
of participants’ decisions (i.e. regardless of whether participant had accepted or
rejected that trial’s offer). Participants were told that they may be inclined to accept
all offers so that those randomly selected 20 trials would always have a monetary
outcome for the participant, but in that case, we told them, that their proposer may
detect this tendency and try to make offers as low as possible. We then told
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participants to use the accept/reject responses strategically to negotiate better terms
for themselves. These study design decisions allowed us to address our primary
research questions in an unbiased manner: (i) the degree to which proposer’s
affective reactions influence participant choice behaviour; (ii) how this affective
information is incorporated in decision values in iterative games.

During pupillometry recording, participants’ heads were stabilised using a head-
and-chin rest placed 70 cm from the screen on which an eye-tracking system was
mounted (Eyelink 1000 Plus; SR Research). The eye-tracking device was configured
to record the coordinates of both of the eyes and pupil area at a rate of 500 Hz. The
pupillometry data collection lasted ~70 min per participant.

Modelling biases in facial emotion recognition. We modelled participant rating
responses to affective faces (on a 1-9 Likert scale from negative to positive) by
exploiting the properties of the 2-parameter probability weighting function69:

ε ¼ eð�δð�lnðφÞÞγÞ ð1Þ
where φ is the true emotional state of the proposer’s face as displayed and can take
values from 0.1 to 0.9. The parameters [δ; γ] determine the curvature of the
weighting function and where it crossed the ε ¼ φ diagonal line (Fig. 2a). We
implemented the probability weighting function like a nonlinear regression model
that minimises the difference between model estimates and participant’s ratings
(after performing a simple linear transformation by dividing the Likert ratings by
10, such that both the ratings and the estimates are bounded by 0 and 1).

Modelling liking ratings for Ultimatum offers. In line with previous literature63,
we modelled participants liking ratings (χ) for each Ultimatum Offer (again, based
on participant ratings on a 1-9 Likert scale) with a multiple linear regression model.

χ ¼ ϕ0 þ ϕ1RS þ ϕ2jRS � ROj ð2Þ
where RS is the self-reward and RO is the reward amount to the proposer, and
absolute value difference accounts for how much the participant cares for
inequality. Here, it is important to clarify that because all offers involve splitting
£10, RO is not entered into this regression model as an independent regressor as all
monetary information is conveyed by the self-reward amount and the
inequality term.

Modelling participant choice behaviour in the Ultimatum Game. The model-
free analyses of participant choice behaviour indicated that both offer amount and
the proposer’s facial emotions should influence how people generate decision-
values in the UG. Here, we formally describe all the models that we considered, to
identify the cognitive model which accounts for participant choice behaviour the
best. All models were fit to participant choices individually and 2nd level analyses
were performed on the parameter estimates from the best-fitting model which is
identified by a well-established Bayesian model selection approach37. In these
behavioural models, we used task components from the current trial instead of
modelling the complete task history as an approximation that is commonly per-
formed in tasks in which the information in the current trial is dependent on
outcomes in the preceding trials.

The first model that we considered assumes that participants construct the
decision-value (~v) of each offer utilising a Constant Elasticity of Substitution (CES)
function, commonly used to account for consumer behaviour70,71. According to
the CES function, the decision-value is computed as:

~v ¼ ðαRS
ρ þ ð1� αÞjRS � ROjρÞ1=ρ ð3Þ

whereρis a nonlinear power utility parameter determining the concavity of
preferences and α determines how much weight is assigned for the self-reward
magnitude or the absolute value difference between the self and the other’s reward
magnitude (i.e. the inequality term).

We considered another model in which the decision-value is generated by
comparing the inequality term relative to one’s fairness threshold:

~v ¼ λ� jRS � ROj ð4Þ
where λ is the fairness threshold parameter freely estimated between 50 and 950
(i.e. bounded by the minimum and maximum offer amount), defining the
participant’s subjective threshold in term of what they regard as acceptable.

The next model assumed that participants accept or reject offers based on their
liking ratings, as established by the independent rating task participants completed
prior to the social interactive decision-making task. This model allowed us to
validate previous accounts of value-based decision-making which demonstrated
that choice preference does not always align with participant liking ratings72.In this
model, participant’s liking of offers during the UG is estimated by feeding each
participant’s estimated coefficients from the linear regression model back to Eq.
(2). Here, the decision-value is equal to:

~v ¼ χ ð5Þ
We also considered another model with a similar structure in which the

decision-values are generated online during the social decision-making task,
instead of depending on participant’s previous liking ratings. This model addresses
the prediction that there will be a dissociation between how much people like offers

when these ratings do not have any financial consequence and how they value them
in a social interactive context with monetary consequences (i.e. the fact that
participants would be paid the outcome of 20 randomly selected trials, including
both accept and reject decisions). Here, the subjective decision-value for each
participant is computed by the following formula:

~v ¼ κRS � ωjRS � ROj ð6Þ
where κ and ω are free parameters modulating self-reward amount and the
inequality terms, respectively. For model simplicity we used a single inequality
aversion parameter, instead modelling advantageous and disadvantageous
inequality separately. All models assume that conditions with relatively higher
subjective value should be more likely to be accepted and participants’ acceptance
probability is generated by a sigmoid function:

qA ¼ 1=ð1þ e�β~vÞ ð7Þ
where β is the inverse temperature term which modulates the stochasticity of
participant choices.

We first chose between these models which define participants’ likelihood of
accepting an offer solely based on the numerical components of the offer amount.
We implemented this reduction in model space based on our model-free analysis
which suggested that offer amount has a greater influence on acceptance
probabilities than the proposer’s facial emotions. Group-wise sum of Bayesian
Information Criterion (BIC) scores indicated that the model described by Eqs. (6)
and (7) was the best-fitting [inequality aversion] model to account for how offer
amounts were translated to decision-values.

We then used this best-fitting model from the first stage as a template to further
evaluate the degree to which facial emotions of the proposers dynamically influence
the way decision-values are computed in the social decision-making task on a trial-
by-trial basis. Based on previous literature, we considered a model in which the
effect of proposer’s facial emotion depends on the participants’ individual
variability in how malleable they are to external emotional influence73:

~v ¼ κðε�μÞRS � ðωðε�μÞjRS � ROjÞ ð8Þ
where parameters κ and ω are estimated between 0 and 10 and determine the
degree to which the modulations of self-reward and the inequality term are subject
to emotional influence. In this model, perceived emotions (Eq. (1)) act like an
exponential function to modulate this influence parameter [6] and μ is the value
where perceptual biases crossover the diagonal line (Fig. 2a, μ= 0.4). We
considered 3 variants of this model where proposer’s facial emotions influence the
self-reward amount (RS) or the inequality term (|RS – RO|), or both independently.

We also investigated whether the proposer’s facial emotions influence the
inequality term in a parabolic, rather than an exponential functional form:

~v ¼ ðκþ ðε� μÞ2ÞRS þ ðωþ ðε� μÞ2ÞjRS � ROj ð9Þ
For any given offer amount, this formulation relaxes the negative modulation of

inequality as the proposer’s facial emotions are gradually getting negative or
positive, while assuming that neutral faces would have limited influence on the
inequality term. As for the Eq. (8), we considered 3 variants of this model as well,
facial expressions modulating either the self-reward magnitudes, or the inequality
term or both.

Finally, we considered a competing model which assumes that the proposer’s
facial emotions influence the value of offers through a weighted integration.

~v ¼ w~v þ ð1� wÞðε� μÞ ð10Þ
Here, w is a free parameter estimated between 0 and 1, and determines the

degree to which the participant assigns credit to subjective value of the offers and/
or to the proposer’s facial emotions which are represented nonlinearly. The
additive integration means that other’s facial emotions should have an intrinsic
value, an assumption that is in line with existing literature74.

All model parameter estimation followed our existing protocols26,28,50, namely
by a Bayesian model fitting procedure, by calculating the full joint posterior
distribution of the parameters over the whole parameter space, and deriving exact
parameter values by integrating these probabilities with their corresponding
discrete parameter values. A Bayesian model selection method was implemented to
choose between these 11 models.

Pupillometry data preprocessing. Eye blinks were identified using the built-in
filter of the Eyelink system and were then removed from the data. A linear inter-
polation was implemented for all missing data points (including blinks). The
resulting trace was subjected to a low pass Butterworth filter (cut-off of 3.75 Hz) and
then z transformed across the session26,27. The pupil response was extracted from
each trial, using a time window based on the presentation of the offer amount. This
included a 7.5 s baseline period before the presentation of the outcome (including the
period at the beginning of a trial marked by a fixation cross and presentation of the
proposer faces alone, Fig. 1), and a 4.5 s period following offer presentation. Baseline
correction was performed by subtracting the mean pupil size during the 7.5 s baseline
period prior to the presentation of each offer, from each time point in the decision
and outcome period75. This baseline correction, which also included the first facial
expression shown within a trial (see Fig. 1), allowed us to extract the phasic pupillary
response and controls for potential fluctuations in luminosity within each trial.
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Individual trials were excluded from the pupillometry analysis if more than 50% of
the data from the outcome period had been interpolated (mean= 10.9% of trials)26.
The preprocessing resulted in a single sets of pupil time-series per participant con-
taining pupil dilation data for each of the included trials.

Regression analysis of pupillometry data. We implemented an OLS model in a
similar manner to a functional neuroimaging (fMRI) analysis, by fitting the
regression model to the pre-processed pupillary data at every 2-ms time point. The
pupil model had 11 regressors as defined by the following linear regression
equation:

pupilð2πrÞ ¼ ϕ0 þ ϕ1iþ ϕ2κR
i
S þ ϕ3ðωþ ðε� μÞ2Þi þ ϕ4jRS � ROji þ ϕ5surprise

i
offer

þϕ6surprise
i
faces þ ϕ7vol

i
offer þ ϕ8vol

i
faces þ ϕ9noise

i
offer þ ϕ10noise

i
faces

ð11Þ
Here we provide brief descriptions for each regressor in the model. The

regressor for the constant term (φ0) captures the variance in pupil size across all
trials in the task. The regressor (φ1) accounts for the effect of trial numbers, as a
proxy for accumulated fatigue (i: taking values from 1 to 240). We entered one
regressor (φ2) which represents the subjective value of self-rewards under the best-
fitting behavioural model. The regressor (φ3) encodes how the perceived facial
emotions modulate the subjective inequality parameter (Eq. (1)). The regressor (φ4)
encodes the magnitude of the self–other inequality. The rest of the regressors were
defined by a recursive Bayesian filter that we recently reported27 which can
optimally track the hidden structures (i.e. environmental volatility, vol in the above
formula, and noisy fluctuations in the environment) of dynamically changing
environments. The surprise regressor was congruent to the conditional –log
probability of an offer coming from a distribution with mean and standard
deviation (SD) estimated by the Bayesian filter. This would mean that stimuli
which violate the expectations of the observer should lead to a greater pupillary
surprise signal. This regressor was calculated for both the offers and the proposer’s
facial emotions. All regressors were demeaned prior to model fitting. Fitting a
multiple linear regression model to pupillary data is akin to analysis of fMRI
datasets and allows regressors to compete for variance in the data. Therefore,
resulting regression coefficients no longer need to be subjected to further correction
for multiple comparisons by the number of regressors in the model.

Statistics and reproducibility. We used appropriate linear and logistic regression
models as described in individual sections of this manuscript. Where applicable,
the main effects were tested by t-tests from baseline and follow-up tests were
corrected for multiple comparisons. We confirmed the reproducibility of the main
experiment by a control experiment conducted on an independent cohort (n= 25,
details below).

Control experiment. In order to rule out the possibility that the model-free effects
that we demonstrated in Fig. 2 and model-based results shown in Supplementary
Fig. 3 were an artefact of detailed task instructions and/or the order of rating tasks
(i.e. pre-versus post-experiment), we collected data from an independent sample of
participants (n= 25, Supplementary Table 1 for demographic information). Effect
sizes estimated from the main experiment indicated that a sample size larger than
20 is more than adequate to probe both components of the decision problem (i.e..
facial emotions and offer amount). Effect sizes for these main task components in
the control experiment were d= 2.626 for the facial emotions and 1.833 for the
offer amount. Based on the finding that different confederates did not have any
influence on behavioural results and there were no differences between human and
computerised opponents (Fig. 5), participants in the control experiment performed
the task explicitly knowing that they will be interacting with a computerised
strategy that is designed to mimic human proposer behaviour. This was also a
necessity for the control experiment as COVID-19 restrictions in the UK did not
allow introducing people who are unknown to each other solely for experimental
purposes. In this cohort, the participants were explicitly instructed to make deci-
sions freely as they liked and they completed both of the rating tasks after com-
pleting the main social interactive decision-making experiment. Both the model-
free (Supplementary Fig. 8) and model-based (Supplementary Fig. 9) results were
comparable with those reported from the main experiment.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the raw data from participants is deposited on the servers of the Open Science
Framework: https://osf.io/fjvrh/. Any other data related enquiry can be addressed to the
corresponding author.

Code availability
All the key analysis and model scripts are deposited on the servers of the Open Science
Framework: https://osf.io/fjvrh/. Any other code related enquiry, including the
experimental task can be addressed to the corresponding author.
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