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Current COVID-19 vaccines need to take at least one month to complete inoculation and
then become effective. Around 51% of the global population is still not fully vaccinated.
Instantaneous protection is an unmet need among those who are not fully vaccinated. In
addition, breakthrough infections caused by SARS-CoV-2 are widely reported. All these
highlight the unmet needing for short-term instantaneous prophylaxis (STIP) in the
communities where SARS-CoV-2 is circulating. Previously, we reported nanobodies
isolated from an alpaca immunized with the spike protein, exhibiting ultrahigh potency
against SARS-CoV-2 and its variants. Herein, we found that Nb22, among our previously
reported nanobodies, exhibited ultrapotent neutralization against Delta variant with an IC50

value of 0.41 ng/ml (5.13 pM). Furthermore, the crystal structural analysis revealed that the
binding of Nb22 to WH01 and Delta RBDs both effectively blocked the binding of RBD to
hACE2. Additionally, intranasal Nb22 exhibited protection against SARS-CoV-2 Delta
variant in the post-exposure prophylaxis (PEP) and pre-exposure prophylaxis (PrEP). Of
note, intranasal Nb22 also demonstrated high efficacy against SARS-CoV-2 Delta variant
in STIP for seven days administered by single dose and exhibited long-lasting retention in
the respiratory system for at least one month administered by four doses, providing a
org March 2022 | Volume 13 | Article 8654011
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strategy of instantaneous short-term prophylaxis against SARS-CoV-2. Thus, ultrahigh
potency, long-lasting retention in the respiratory system and stability at room-temperature
make the intranasal or inhaled Nb22 to be a potential therapeutic or STIP agent against
SARS-CoV-2.
Keywords: SARS-CoV-2, Delta variant, nanobody, Nb22, STIP, structure, instantaneous prophylaxis,
instantaneous protection
BRIEF SUMMARY

Nb22 exhibits ultrahigh potency against Delta variant in vitro
and is exploited by crystal structural analysis; furthermore,
animal study demonstrates high effectiveness in the treatment
and short-term instantaneous prophylaxis in hACE2 mice via
intranasal administration.

HIGHLIGHTS

1. Nb22 exhibits ultrapotent neutralization against Delta variant
with an IC50 value of 0.41 ng/ml (5.13 pM).
org 2
2. Structural analysis elucidates the ultrapotent neutralization of
Nb22 against Delta variant.

3. Nb22 demonstrates complete protection in the treatment of
Delta variant infection in hACE2 transgenic mice.

4. We complete the proof of concept of STIP against SARS-
CoV-2 using intranasal Nb22 with ultrahigh potency and
long-lasting retention in respiratory system.

INTRODUCTION

SARS-CoV-2 has given rise to the COVID-19 pandemic (1),
resulting in massive disruption of social and economic activities.
Global vaccination has provided protection against the
GRAPHICAL ABSTRACT |
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catastrophic outcome of the pandemic. However, a number of
individuals are either not fully vaccinated or cannot mount
adequate responses to the vaccine. Additionally, current
COVID-19 vaccines require multiple doses to achieve full
effectiveness and the immunity wanes within a matter of
months, which increases the risk of infection and demands the
use of agents for providing instantaneous protection at
vulnerable times. Several antibodies were approved for
emergency use within 7 days of high-risk exposure in the Post-
exposure prophylaxis (PEP) against SARS-CoV-2 infection (2,
3). However, there is no licensed agent in preventing infection
before exposure to SARS-CoV-2 (i.e., as pre-exposure
prophylaxis, PrEP). A few PrEP studies in an animal model
demonstrated that antibodies exhibited accelerated clearance of
SARS-CoV-2 when administered 1–3 days prior to infection (2,
4–6). The efficacy was not fully explored when antibodies were
administered more than three days prior to SARS-CoV-2
infection. To the best of our knowledge, there is no effective
intervention to prevent SARS-CoV-2 infection in advance of one
week or longer. Therefore, there is a research gap on short-term
instantaneous prophylaxis (STIP) that prevention can take
effective immediately following antibody infusion and last for
one week or longer. As such, STIP is an unmet need for the
prevention against SARS-CoV-2.

The Delta variant, also known as B.1.617.2, was first identified
in India in December 2020 and has become predominant in
many countries, characterized by the spike protein mutations
T19R, L452R, T478K, D614G, P681R, D950N and a double
deletion at 157–158 (7–11). It has been designated as a Variant
of Concern (VOC) and is believed to be 60% more transmissible
than the Alpha variant (12). The Delta variant poses a challenge
to the available COVID-19 vaccines, such as the protective
effectiveness of AstraZeneca and Pfizer vaccines against the
Delta variant was reduced to 60 and 88%, respectively (11, 12).
More recently, a newly emerged variant, Omicron, has spread
rapidly in parts of the world and has drawn attention for its
potential impact on the global public health; however, the Delta
variant remains significantly more severe than the Omicron
variant and exhibits higher infectivity relative to the prototype
variant. Recent research indicated that the Delta variant partially
but significantly resisted neutralization by mAbs, namely,
Bamlanivimab, SARS-CoV-2 convalescent sera, and vaccine-
elicited antibodies (13, 14). While B1-182.1 and A23-58.1,
recently isolated from convalescent donors, exhibited
ultrapotent neutralization against the Delta variant with IC50

values of 1.0 and 1.6 ng/ml, respectively (15).
To date, a growing number of nanobodies, single-domain

fragments of camelid heavy-chain antibodies or VHH, were
reported for the prophylaxis or treatment of SARS-CoV-2
infection. However, nanobodies with potent neutralization
against the Delta variant were rarely reported (6, 16–22). As
SARS-CoV-2 is transmitted through replicates in the respiratory
tract and lungs, and does not transverse in blood (1, 23), we
believe that, the exceptional resistance of nanobodies to extreme
pH and high temperature (24), makes them ideal candidates to
be administered via intranasal or oral route, directly to the site of
Frontiers in Immunology | www.frontiersin.org 3
viral infection. Previously, we identified three ultrapotent
nanobodies against the initial strain of SARS-CoV-2, Wuhan-
Hu-01 (WH01); accordingly, one of the intranasally delivered
nanobody was shown to protect hACE2 mice infected by WH01
strain (25).

Here, we compared the neutralizing potency of the
aforementioned nanobodies against various circulating SARS-
CoV-2 variants. Nb22-Fc was identified to exhibit increased
neutralization potency against the Delta variant compared to
the WH01 strain, to which the antibody was originally raised.
The binding characterization and crystal structural analysis were
conducted to further elucidate the potential mechanism.
Furthermore, therapeutic studies demonstrate that intranasal
Nb22 exhibited complete protection against the SARS-CoV-2
Delta variant in hACE2 mice. Additionally, we comprehensively
evaluated the prophylactic efficacy of Nb22 when intranasally
administered at 1, 3, 5, and 7 days prior to SARS-CoV-2
infection. Notably, a single dose of intranasal Nb22 still
exhibited protection against hACE2 mice even when
administered 7 days prior to infection of the Delta variant.
Moreover, four doses of intranasal Nb22 could maintain long-
lasting retention in the respiratory system for more than one
month. All these indicate that intranasal Nb22 could be applied
not only in the PrEP and PEP but also in the STIP, filling the gap
between the long-term lagging prevention and PreP.
MATERIALS AND METHODS

Expression of Nanobodies
The Fc1 gene (CH2–CH3) of the human monoclonal antibody
was fused with the VHH gene of nanobodies (named as Nb-Fc or
Nbs) to assist the purification and prolong the half-life of the Nb
antibody, following our previously published protocol (26). The
Nbs were finally cloned into the pcDNA3.4 eukaryotic
expression vector (Invitrogen), which were transfected into
293F cells (cat.# R79007, Thermo Scientific) to produce Nb-
Fcs. Nb fused with Fc was purified using Protein G (cat.# 20399,
Thermo Scientific).

Enzyme Linked Immunosorbent Assay
(ELISA) Analysis
Antibody quantification and antibody characterization were
tested by ELISA as our previously reported method (27), with
modifications. In brief, the protein was coated to ELISA plates
(Corning) at a concentration of 0.5 mg/ml. After washing 2–4
times, 5% non-fat milk in PBS was added and incubated for
blocking at 37°C for 1 h. After washing, 100 ml serially diluted
sera or purified antibody was added and incubated at 37°C for
1 h. Following washing, secondary antibody of goat anti-llama
IgG (H + L) with HRP (Novus, cat. # NB7242, 1:10,000 dilution)
or goat anti-human IgG with HRP was added and incubated at
37°C for 1 h. Accordingly, 3,3′,5,5′-Tetramethylbenzidine (TMB,
Sigma) substrate was added at 37°C for 10 min (min); and 10 ml
0.2 M H2SO4 was added to stop the reaction. The optical
densities at 450 nm (OD450) were measured using the Infinite
March 2022 | Volume 13 | Article 865401
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200 (Tecan, Ramsey, MN, USA). Antibody quantification in the
sera was calculated according to the standard curve generated by
purified antibody.

Neutralization Activity of Nanobodies
Against Pseudovirus
A pseudovirus neutralization assay was carried out following our
previously published protocol (25), with the follow modifications.
Briefly, pseudovirus of SARS-CoV-2 variants was produced by co-
transfection of pNL4-3.Luc.R-E-, an HIV-1 NL4-3 luciferase
reporter vector that comprises defective Nef, Env and Vpr (HIV
AIDS Reagent Program), and pVAX1 (Invitrogen) expression
vectors encoding the spike proteins of respective variants into
293T cells (ATCC). Supernatants containing pseudovirus were
collected after 48 h, and viral titers were determined by luciferase
assay in relative light units (Bright-Glo Luciferase Assay Vector
System, Promega Biosciences). Human codon optimized S genes of
SARS-CoV-2 variants were synthesized, and the corresponding
pseudoviruses were produced following the above protocol. For
neutralization assay, SNB02, anNb-Fc specific against SFTSV (26),
served as a negative control. Neutralization assays were conducted
by incubating pseudovirus with serial dilutions of purified
nanobodies at 37°C for 1 h. HEK293T-ACE2 cells (cat.#
41107ES03, Yeasen Biotech Co., Ltd. China) (approximately 2.5 ×
104 perwell) were added in duplicate to the virus-antibodymixture.
Half-maximal inhibitory concentrations (IC50) of the evaluated
nanobodies were determined by luciferase activity 48 h following
exposure to virus-antibody mixture, and analyzed by GraphPad
Prism 8.01 (GraphPad Software Inc.).

Immunofluorescence and Flow
Cytometric Analysis
Immunofluorescence and flow cytometric analysis were
conducted following our previously published protocol (28),
with minor modifications. Briefly, S gene sequences for SARS-
CoV-2 spike protein of various SARS-CoV-2 variants were
obtained from the GISAID website (https://gisaid.org). S genes
were synthesized and constructed as expression plasmids by
GenScript. The plasmids were transfected into 293T cells
(ATCC) cultured in 12-well plates. Next, 48 h post transfection,
the cells were washed by PBS and fixed with 4% paraformaldehyde
for 20 min at room temperature. The purified Nb-Fc was used to
stain the 293T cells, followed by Alexa Fluor 488 AffiniPure goat
Anti-human IgG (H + L) (1:500 dilution) (109-545-003, Jackson
ImmunoResearch). For immunofluorescence analysis, the cells on
the plate were examined and the images were acquired using an
OLYMPUS IX73. For flow cytometric analysis, the cells were
resuspended in 500 µl PBSF buffer (PBS + 2% FBS) and analyzed
using ACEANovoCyte TM (Agilent Biosciences); non-transfected
293T cells served as a negative control.

Affinity Determination by Bio-Layer
Interferometry (BLI)
We measured antibody affinity using a ForteBio OctetRED 96
BLI (Molecular Devices ForteBio LLC, Fremont, CA) with
shaking at 1,000 rpm at 25°C (25). To determine the affinity of
Nbs with human Fc tag, Nb-Fcs were loaded to anti-human Fc
Frontiers in Immunology | www.frontiersin.org 4
(AHC) biosensors (cat.# 18-5060, Fortebio) in a kinetic buffer
(PBS, 0.02% (v/v) Tween-20, pH 7.0) for 200 s prior to baseline
equilibration for 180 s in a kinetic buffer. Association of SARS-
CoV-2 RBD in a three-fold dilution series from 33.3 to 1.2 nM
was performed prior to dissociation for 180 s. After each cycle,
the biosensors were regenerated through 3 brief pulses of 5 s each
with 100 mM pH 2.7 glycine-HCL followed by a running buffer.
The data were baseline subtracted before fitting using a 1:1
binding model and the ForteBio data analysis software. KD, Ka,
and Kd values were determined by applying a global fit to
all data.

Expression and Purification of WH01 and
Delta RBD Protein for Crystal Structural
Analysis
The WH01 and Delta RBD were expressed using the Bac-to-Bac
baculovirus system. The two pAcgp67-RBD (residues 333–530)
plasmid with a C-terminal 8× His tag were transfected into Sf9
cells using Cellfectin II Reagent (Invitrogen) to produce the
recombinant baculoviruses. After 3 rounds of amplification, Hi5
cells were infected with baculoviruses at an MOI of 4 at a density
of 2 × 106 cells/ml. The supernatants of cell culture containing
the secreted RBD were harvested at 60 h after infection. The RBD
was purified by Ni-NTA resin (GE Healthcare). Nonspecific
contaminants were removed by washing the resin with 20 mM
Tris–HCl, 150 mM NaCl, pH 7.5, and the target proteins were
eluted with elution buffer containing 20 mM Tris–HCl, 150 mM
NaCl, 500 mM imidazole, pH 7.5. The eluted proteins were
further purified by Superdex 75 (GE Healthcare, USA) and
stored in 20 mM Tris–HCl, 150 mM NaCl, pH 7.5.

Expression and Purification of Nb22 for
Crystal Structural Analysis
The VHH gene for Nb22 was amplified by PCR and cloned into a
pET21a vector with BamH І and Xho І restriction sites. The
recombinant plasmids were transformed into Escherichia coli
BL21 (DE3). The cells were cultured in LB medium and grown to
OD600 = 0.8 at 37°C. Isopropyl-D-1-thiogalactopyranoside
(IPTG) was added to a final concentration of 1.0 mM to
induce the protein expression, and the cultures were grown at
16°C overnight. Cells were harvested by centrifugation at 4,500
rpm for 15 min, re-suspended and homogenized in the lysis
buffer containing 20 mM Tris–HCl, 150 mM NaCl, pH 7.5 using
ultrasonic. Cell debris was removed by centrifugation at 18,000
rpm for 30 min. The supernatants were added to Ni- NTA resin
(GE Healthcare, USA). The nonspecific contaminants were
eluted by washing the resin with the lysis buffer containing 10
mM imidazole. The target protein with 6× His tag, named as
Nb22, was subsequently eluted with the lysis buffer containing
500 mM imidazole. Nb22 was eluted and purified by Superdex 75
(GE Healthcare, USA).

Crystallization, Structural Determination
and Data Acquisition
The complexes were prepared by mixing WH01 or Delta RBD
and Nb22 at a 1:1.2 molar ratio and incubating at 4°C overnight.
The complexes were further purified by Superdex 75 (GE
March 2022 | Volume 13 | Article 865401
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Healthcare, USA) to remove the excess nanobody. The crystals
were screened by vapor-diffusion sitting-drop method at 16°C.
The crystals appeared and reached their final size within 3 days
in a well solution comprising 0.1 M HEPES (pH 7.0), 5% v/v
(+/−)-2-Methyl-2,4-pentanediol (MPD), 10% polyethylene
glycol (PEG) 10,000 (WH01 RBD-Nb22) and 0.1 M Tris (pH
7.0), 37.5% Jeffamine (Delta RBD-Nb22), respectively.

To collect data, a single crystal was mounted on a nylon loop
and was flash-cooled with a nitrogen gas stream at 100 K.
Diffraction data of WH01 RBD-Nb22 was collected on
BL18U1 at the Shanghai Synchrotron Radiation Facility (SSRF)
at a wavelength of 0.97915 Å. While, the Delta RBD-Nb22 was
collected on BL02U1 at a wavelength of 0.97918 Å. Data were
processed and scaled using the HKL3000 package and
autoPROC (29). The structures were elucidated using the
molecular replacement (MR) method in PHASER program
(30) with the structure of SARS-CoV-2 RBD (PDB code: 7CJF)
(31) as the initial searching model. The model was built into the
modified experimental electron density using COOT (32) and
further refined in PHENIX (33). The final refinement statistics
are summarized in Table S1. Structural figures were prepared by
PyMOL. Epitope and paratope residues, and their interactions,
were identified by PISA (http://www.ebi.ac.uk/pdbe/prot_int/
pistart.html) at the European Bioinformatics Institute.

Pharmacokinetics (PK) of Nb22-Fc In Vivo
Purified Nb22-Fc were injected via intranasal (i.n.) into BALB/c
mice (Qing Long Shan Animal Center, Nanjing, China) at a dose
of 10 mg/kg. The concentration of Nb22-Fc in serum was
measured by ELISA. The T1/2 of Nb22-Fc was calculated as ln
(2)/k, where k is a rate constant expressed reciprocally of the x
axis time units by the plateau followed one phase decay or one
phase decay equation in the GraphPad software.

Spatial Distribution of Nb22-Fc In Vivo
Spatial distribution of Nb22-Fc were conducted following our
previously published protocol (25), with minor modifications.
Nb22-Fc labeled with far infrared dye YF®750 SE (US
EVERBRIGHT INC., YS0056) were named as Nb22-YF750.
Approximately10 mg/kg Nbs-YF750 was administered via
intranasal into nude mice (18–22 g, Qing Long Shan Animal
Center, Nanjing, China). Images were recorded at Ex:740 nm/
Em:780 nm by NightOWL LB 983 (Berthold, Germany) at the
indicated time point. Images were analyzed using Indigo imaging
software Ver. A 01.19.01.

Evaluating the Efficacy of Nb22-Fc in
SARS-CoV-2 Infected hACE2 Mice
The efficacy of Nb22-Fc against SARS-CoV-2 were evaluated
according to our previously published protocol (25), with minor
modifications. In brief, a total of 43 8-week-old male transgenic
hACE2 mice (C57BL/6J) (cat.# T037630, GemPharmatech Co.,
Ltd., Nanjing, China) were challenged with 1 × 105 PFU SARS-
CoV-2 Delta variant (CRST: 1633.06.IVCAS 6.7593) per mouse.
The mice were randomly divided into nine groups (n = 3–6) for
either prophylactic or therapeutic evaluation, as described in
Frontiers in Immunology | www.frontiersin.org 5
Figure 5A. Mice without any treatment and challenge were taken
as blank control (No SARS-CoV-2, n = 3). Mice challenged with
SARS-CoV-2 were taken as infection control (SARS-CoV-2, n =
5). Approximately250 mg/mouse (average of 10 mg/kg) SNB02
(Y-Clone, China), an anti-SFTSV antibody constructed by Nb
fused with human Fc1 (Nb-Fc) (26), was intranasally injected 1 h
after infection and was taken as an isotype antibody treated
control (Control Nb, n = 3). For the prophylactic group, mice
were intranasally injected with Nb22-Fc at a dose of 250 mg/
mouse (average of 10 mg/kg) at 7 days (d), 5, 3, and 1 d before
infection (named as −7d Nb22, −5d Nb22, −3d Nb22, and −1d
Nb22, respectively, n = 5–6). For the therapeutic group, mice
were intranasally injected with Nb22-Fc at a dose of 250 mg/
mouse (average of 10 mg/kg) 1 h or 24 h after infection (named
as 1h Nb22 and 1d Nb22, n = 5, respectively). The body weight of
the mouse was recorded daily. Given that hACE2 transgenic
mice typically clear virus within 5–7 days after SARS-CoV-2
infection (34), the mice were sacrificed at 4 days post infection
(dpi). Subsequently, lung tissues were harvested for viral load
determination and tissue sections for immunofluorescence (IF)
and hematoxylin and eosin (H&E) staining. All experiments
were conducted in a Biosafety Level 3 (BSL-3) facility.

Viral Load Measurement by Quantitative
RT-PCR
Viral load was measured by quantitative real-time PCR (qRT-PCR)
on RNA extracted from the supernatant of lung homogenates as
reported previously (35). Briefly, lung homogenates were prepared
by homogenizing perfused lung using an electric homogenizer. The
inactivated samples were transferred from the BSL-3 to BSL-2
laboratory and total RNA was extracted from the collected
supernatant. Each RNA sample was reverse transcribed to 50 ml
cDNA with HiScript II Q RT SuperMix for qPCR (+gDNA wiper)
(R223-01). Approximately 5 ml cDNA was added into a 25 ml
qRT-PCR reaction containing the ChamQ SYBR qPCR Master
Mix (High ROX Premixed) (Q341-02, Vazyme Biotech, China)
and primers designed to target the nucleocapsid protein of
SARS-CoV-2 (5′- GGGGAACTTCTCCTGCTAGAAT -3′ and
5′- CAGACATTTTGCTCTCAAGCTG -3′). The samples were
run in triplicate on an ABI 7900 Real-Time System (Applied
Biosystems, Thermo Fisher Scientific). The following cycling
conditions were performed: 1 cycle of 50°C for 2 min, 1 cycle of
95°C for 10 min, and 40 cycles of 95°C for 15 s and 58°C for 1 min.

Immunofluorescence Staining of SARS-
CoV-2-Infected Cells and H&E Staining in
Tissues
The lung tissues were immersed in 10% neutral buffered formalin
(cat.# Z2902, Sigma) for 24 h. After the formalin fixation, the
tissues were placed in 70% ethanol (Merck) and subsequently
embedded with paraffin. Tissue sections (5-mm thick) were
prepared for H&E staining and immunofluorescence staining
for SARS-CoV-2 detection using the Coronavirus nucleocapsid
protein (NP) antibody (cat. 40143-MM05, Sino Biological).
Sections stained by H&E were scored for pathological severity
of disease on a scale of 0 to 5 grades according to the
March 2022 | Volume 13 | Article 865401
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inflammatory factors invasion and the alveoli integrity (36).
Images were collected under a Pannoramic MIDI system
(3DHISTECH, Thermo) using Pannoramic scanner software
and analyzed by ImageJ (NIH).

Statistics
All statistical analyses were carried out using GraphPad Prism
8.01 software (GraphPad) or OriginPro 8.5 software (OriginLab).
ANOVA or Mann–Whitney test was performed for group
comparisons. P <0.05 was considered as statistically significant
with mean ± SEM or mean ± SD.
RESULTS

Potent Neutralization of Delta
Variant by Nanobodies
We previously reported the discovery and characterization of
three potent neutralizing nanobodies against the WH01 strain
and its variants with IC50 values of ~1 ng/ml. These three
nanobodies (Nb15-Fc, Nb22-Fc, and Nb31-Fc) were identified
to bind to RBD (25). Neutralization experiments were further
conducted to measure their activity against the circulating
variants including variants of concern (VOC) comprising
Alpha (B.1.1.7 with N501Y), Beta (B.1.351 with E484K and
N501Y), Delta (B.1.617.2 with L452R and T478K) and Gamma
(P.1 with K417T, E484K and N501Y), and also variants of
interest (VOI) comprising Eta (B.1.525 with E484K), Iota
(B.1.526 with E484K), Epsilon (B.1.429 with L452R), and
Kappa (B.1.617.1 with L452R and E484Q) (7–10). Nb15-Fc
exhibited increased potency against the Alpha variant, but
decreased potency against the Delta variant or Epsilon as
compared with the WH01, the RBD used to select the
nanobodies. Nb31-Fc exhibited reduced potency against the
Alpha, Delta and Epsilon variants relative to the WH01 or
D614G variant (Figures 1A–G). Interestingly, Nb22-Fc
exhibited about 2.5-fold increased neutralizing potency against
the Delta variant with an IC50 value of 0.41 ng/ml (5.13 pM)
compared to the WH01 with an IC50 of 1.01 ng/ml (12.63 pM).
Notably, Nb22-Fc also exhibited around 8.4-fold increased
neutralization potency against the Delta variant relative to
variant Alpha with an IC50 of 3.45 ng/ml (43.13 pM)
(Figures 1A–G). Impressively, Nb22-Fc also exhibited
outstanding neutralizing curve against the authentic Delta
variant compared to Nb15-Fc and Nb31-Fc (Figures 1A–G).
All three nanobodies failed to neutralize the variants containing
the E484K/Qmutation, suggesting that the E484K/Qmutation in
RBD could lead to the resistance to all three nanobodies.

Altogether, Nb15-Fc presented the most potent neutralization
against the variant Alpha with an IC50 of 0.18 ng/ml, and Nb15-Fc
and Nb31-Fc still retained potent neutralization of variants
containing L452R and T478K mutations in RBD (Figures 1E, G),
though with reduced potency like most other anti-RBD antibodies
(7, 12). Of note, Nb22-Fc exhibited the most potent neutralization
against pseudotyped or the authentic Delta variant virus among
three nanobodies (Figures 1A–G).
Frontiers in Immunology | www.frontiersin.org 6
Characterization of Nb22-Fc
Binding to RBD
To explore antibody binding characteristics to the RBD with
respect to their neutralization of the Delta variant, the
interactions of three nanobodies with variant RBDs were
analyzed using biolayer interferometry (BLI). Nb15-Fc, Nb22-
Fc and Nb31-Fc showed high affinity interactions with the RBD
of the Delta variant at 1.86, 0.31, and 0.31 nM, respectively
(Figures 2A–C). However, the ultrahigh affinity of Nb22-Fc and
Nb31-Fc to the RBD of the Delta variant did not fully reflect the
neutralization potency as Nb22-Fc neutralized the Delta variant
with markedly more potency than that of Nb31-Fc, suggesting
that affinity is not the only factor dictating the neutralization
activity. Furthermore, Nb22-Fc exhibited increased affinity with
the Delta variant RBD relative to other variant RBDs
(Figure 2D), which is in line with the increased potency
conferred by Nb22-Fc against the Delta variant as compared
with other variants.

Moreover, immunofluorescence analysis revealed that Nb22-
Fc specifically interacted with spike protein from the WH01,
D614G, Alpha, Epsilon and Delta variants on the surface of
transfected 293T cells, whereas no binding with the spike protein
from other variants containing E484K/Q mutation (Figure 2E).
These results were substantiated by flow cytometric results
(Figure 2F). Overall, these specific binding characteristics are
consistent with its specific neutralization properties.

Structural Analysis of RBD-Nb22 Complex
Structural analysis of Nb22 interaction with RBD was performed
to address the ultrahigh potency of Nb22 against the WH01
strain and the Delta variant. Initially, we determined the crystal
structure of the WH01 RBD-Nb22 complex at a resolution of 2.7
Å (Figure 3A and Table S1). Nb22 adopts a typical b-barreled
structure, and contains three variable complementarity-
determining regions (CDR) binding to RBD. The buried
surface area (BSA) was 800 Å2, mainly constituting of
hydrogen bonds and hydrophobic interactions. A total of 14
residues constituting epitope of three CDRs were identified using
a distance of <4 Å as the cutoff (Figure 3B). For CDR1, T30, and
S33 formed two hydrogen bonds with S494 of RBD, while the
hydrophobic interactions included A32 and F34 of Nb22 and
Y449, L452, F490 and Q493 of RBD (Figure 3C and Table S2).
N57 of CDR2 interacted with G485 by hydrogen bond, and the
hydrophobic interactions were mediated by I56 and Y489
(Figure 3D). CDR3 is a relatively longer region with only one
hydrogen bond (Y119 and G446). The side chain of P104
inserted into the hydrophobic cavity formed by F101, R107,
Y453, F456, and Y495 (Figure 3E). Apart from the five hydrogen
bonds in CDR regions, the interface of Nb22 and RBD was
stabilized by two additional hydrogen bonds consisting of G1,
S75, N450, and E484 (Figure 3F). Interactions were also
facilitated by the hydrophobic network constituted by P2, Q3,
V4, G28, G29, R73, and D74 of Nb22 (Figure 3G and Table S2).

Superimposition of the structure of the WH01 RBD-Nb22
complex and RBD-hACE2 (PDB code: 6MOJ) immediately
elucidates the structural basis of neutralization, in which the
March 2022 | Volume 13 | Article 865401
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binding of Nb22 to RBD effectively blocks the binding of RBD to
hACE2 during virus infection. Firstly, the binding site of Nb22
on RBD partially overlaps with that of hACE2 (Figure S1A).
Secondly, the loop (V102-Y117) of Nb22 clashes with two
a-helices of the N-terminus of hACE2 (Figure S1B).

To elucidate the increased potency of Nb22 in neutralizing the
Delta variant, we determined the Delta RBD-Nb22 complex
structure at a resolution of 2.9 Å, which revealed that two distinct
mutations, T478K and L452R, had differing impact on the binding
K478 locates outside the CDR binding regions, and does not disturb
the interaction surface (Figure 4A and Table S1). Therefore, T478K
mutation does not affect Nb22 neutralization (Figure 4A).
However, the mutation of hydrophilic leucine to positively
charged arginine (R) at position 452 significantly enhances the
Frontiers in Immunology | www.frontiersin.org 7
interactions of RBD with the CDR3 region of Nb22. Two
additionally formed hydrogen bonds, T30-R452 and S33-Q493,
pull the CDR3 loop of Nb22 closer to R452 region of RBD, as
revealed by the superimposition of the structures of WH01 and
Delta RBD-Nb22 (Figures 4B, C and Table S2), explaining
enhanced neutralization activity of Nb22 against the Delta variant.
Nb22 Exhibits Room-Temperature Stability
In Vitro and Long-Lasting Retention
In Vivo
Nanobodies exhibit various advantages including thermostability.
We reported that nanobodies could retain 100% activity even after
being incubated at 70°C for 1 h and retain 83% activity after 80°C
A B

D

E F

G

C

FIGURE 1 | Characterizing nanobodies neutralizing circulating variants of SARS-CoV-2. The neutralization curve of Nb15-Fc (A), Nb22-Fc (B), Nb31-Fc (C),
and SNB02 (D) inhibiting SARS-CoV-2 pseudovirus of circulating variants. Nb-Fcs and SNB02 were all constructed as the format of VHH fused with human Fc1.
SNB02 was taken as an antibody control specific for SFTS virus. (E) The summary curve of IC50 of Nb-Fcs exhibiting potent neutralization against SARS-CoV-2
variants. (F) The neutralization potency of Nb-Fcs was evaluated based on authentic SARS-CoV-2 Delta variant plaque reduction neutralization test. (G) The
summary table of IC50 and IC80 of Nb-Fcs in panels (A–C, F), displaying potent neutralization. Data are represented as mean ± SD. All experiments were
repeated at least twice.
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treatment for 1 h (25). Further evaluation showed that Nb22 could
maintain full activity for at least two months at room temperature
and did not lose any activity even undergoing five rounds of freeze-
thawing (Figures 5A, B), indicating that Nb22-Fc is highly stable
and idea for non-cold chain storage and use at room-temperature.

To determine Nb22-Fc distribution in vivo, YF®750 SE-
labeled Nb22 (Nb22-YF750) was administered via intranasal
(i.n.) in a mouse model. The fluorescence could be readily
detected in the respiratory system including nasopharynx,
trachea, and lung 2 h post infusion. The fluorescence was
detectable for more than seven days after a single dose of
200 ug (average of 10 mg/kg) Nb22-YF750 administration,
which is in agreement with our previous reports .
Frontiers in Immunology | www.frontiersin.org 8
As expected, the fluorescence could be detected for more than
one month when four doses of 200 mg (average of 10 mg/kg)
Nb22-YF750 were administered every week (Figures 5C–E and
Figure S2). Nb22-Fc could also be detected in the blood,
indicating that Nb22-Fc could also exert its activity in the
blood after bypassing the respiratory system (Figure 5F). All
these observations of prolonged retention of Nb22-Fc in the
respiratory system suggest the potential application of the
antibody for STIP against SARS-CoV-2 infection. Taken
together, intranasal Nb22-Fc could be developed as a STIP
reagent for its long-lasting retention in the respiratory
system and a portable therapeutics thanks to its room-
temperature stability.
A B

D

E F

C

FIGURE 2 | Characterizing the binding of Nbs. Kinetic binding curve of Nb15-Fc (A), Nb22-Fc (B), and Nb31-Fc (C) at the concentrations 33.3, 11.1, 3.7, and 1.2
nM with RBD of Delta variant, respectively, detected by BLI. Binding curves are colored black, and fit of the data to a 1:1 binding model is colored red. (D)
Representative binding curve of various RBD as indicated to Nb22-Fc tested by BLI. Nb22-Fc binding with RBD from representative SARS-CoV-2 variants detected
by immunofluorescence assay (E) and flow cytometric analysis (F), respectively. Mock served as a cell control without plasmid transfection. Images were visualized
under the ×10 objective. All experiments were repeated at least twice.
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Intranasal Nb22 is Highly Efficacious in the
STIP, PreP and PeP in hACE2 Transgenic
Mice Challenged by the Delta Variant
To evaluate the efficacy ofNb22-Fc in vivo, hACE2 transgenicmice
were challenged with 1 × 105 PFU SARS-CoV-2 Delta variant
(CRST: 1633.06.IVCAS 6.7593) and conducted as we previously
reported (25). hACE2micewere divided into nine groups (n= 3–6)
as shown in Figure 6A and 200 mg (average of 10 mg/kg) Nb22-Fc
was administered via i.n. before or after Delta variant challenge to
evaluate the prophylactic or therapeutic efficacy of the antibody
against Delta variant infection.Viral RNA in the lungs was detected
in virus control group named as SARS-CoV-2 group (Group 2).
Animals in Control Nb group Group 3 were challenged with the
Frontiers in Immunology | www.frontiersin.org 9
Delta variant and received control nanobody treatment 1 h post
infection. As expected, high copy numbers of viral RNA were also
detected in control Nb mice without significant difference
compared to SARS-CoV-2 group (Figure 6B).

In order to evaluate the prophylactic duration conferredbyNb22, a
single dose of Nb22 was administered via i.n. at days 1, 3, 5, and 7,
respectively, prior to Delta variant challenge. Viral RNA copies
increased over the course of Nb22-Fc administration (Figure 6B).
As expected, viral RNA copies in the aforementioned prophylactic
groups were all significantly lower than that in the control Nb group,
indicating that even a single dose ofNb22-Fc could provide protection
against Delta variant infection in hACE2 transgenic mice for 7 days.
Nb22 administered in −7d and −5d before challenge significantly
A B

D E

F G

C

FIGURE 3 | Structural analysis of Nb22 and WH01 RBD complex. (A) The overall complex structure of Nb22 and WH01 RBD. The CDR1 (red), CDR2 (blue), CDR3
(green) of Nb22 (pink), and WH01 RBD (orange) are displayed in cartoon representation. (B) The epitope of Nb22 shown in surface representation. The CDR regions
are colored in red, blue, and green, respectively. The interaction between CDR1 (C), CDR2 (D), CDR3 (E), and WH01 RBD (F). The hydrogen bonds of the interface
between Nb22 and WH01 RBD. The hydrogen bonds are shown in cyan dash line. (G) The hydrophobic network between Nb22 and WH01 RBD. All the residues
are shown in sticks.
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reduced viral load though failed to provide complete protection
(Figure 6B). Notably, Nb22 exhibited significant prevention against
SARS-CoV-2 infection in the −3d Nb22 (Group 6) and −1d Nb22
group (Group7) (Figure 6B). All these indicate thatNb22-Fc provides
better protection at the earlier time points upon infection.

In the therapeutic group, viral RNA copies in the animals
treated with Nb22 at 1 h or 1 day postinfection were undetectable
in 5/5 mice in the groups 8 and 9, suggesting that Nb22 had
complete protection of hACE2 mice against Delta variant
infection (Figure 6B). The viral RNA results were also
validated by immunofluorescence (IF) staining and HE
staining in the lungs (Figures 6C, D, 7). Compared with
uninfected healthy mice, mice treated with Nb22 showed mild
or limited alveolar septal infiltration and peribronchiolar
Frontiers in Immunology | www.frontiersin.org 10
infiltration. In contrast, control SARS-CoV-2 infected mice or
mice treated with control Nb showed large patchy areas of
alveolar space and alveolar wall involvement by inflammatory
infiltrates and exudation (Figures 6D, 7).We noted that mice
challenged by the Delta variant did not show obvious weight loss
even in 4 days post infection (Figure S3). In summary, Nb22
exhibited high efficacy in both the prevention and therapy of
hACE2 transgenic mice challenged with the Delta variant. Nb22
provided complete protection in PEP (in 1h Nb22 group and 1d
Nb22 group) and exhibited high efficacy in PrEP (in −1d Nb22
and −3d Nb22 group). Impressively, a single dose of Nb22 could
maintain effectiveness in the prevention against Delta variant
infection for at least seven days (in −7d Nb22 group), indicating
the potential application for STIP against SARS-CoV-2.
A B

C

FIGURE 4 | Structural analysis of Nb22 and Delta RBD complex. (A) The two mutation sites of Delta RBD. K478 is located outside the CDR binding regions, R452
is on the CDR2 recognized epitope. R452 and K478 are colored in cyan, and the epitope of CDRs is colored identical to Figure 3. (B) The superimposition of WH01
RBD-Nb22 (orange and pink) and Delta RBD-Nb22 (light blue and yellow). (C) The hydrogen bonds on the interaction interface of Delta RBD-Nb22. R452 and Q493
form two additional hydrogen bonds with T30 and S33 of Nb22 The residues identified are shown in sticks.
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DISCUSSION

To date, a small number of nanobodies with ultrahigh potency
against SARS-CoV-2 and its variants have been reported (15, 37,
38), whereas nanobodies with potent neutralization against the
currently dominant Delta variant were rarely reported. Our
results revealed that three previously reported nanobodies (25),
retained ultrahigh potency in neutralization against the Delta
Frontiers in Immunology | www.frontiersin.org 11
variant. Among them, Nb22-Fc with an IC50 value of 0.41 ng/ml
(5.13 pM) is outstanding with increased neutralization of the
Delta variant relative to the Alpha variant. The Nb22 binding to
RBD provides mechanistic insight into the enhanced
neutralization against the Delta variant, suggesting that the
increased binding affinity enhanced the neutralizing potency
against the Delta variant relative to the Alpha variant
(Figure 1). Given that most anti-RBD, anti-NTD antibodies or
A B

D
E

F

C

FIGURE 5 | Characterizing Nb22-Fc stability in vitro and pharmaceutics in vivo. (A) Binding curve of RBD with Nb22-Fc detected by ELISA after storage at room
temperature in the indicated time points, namely, 0, 5, 10, 30, 40, 50, and 60 d. (B) Binding curve of RBD with Nb22 detected by ELISA after the indicated rounds
of freeze-thawing, namely, 0, 1, 3, and 5 rounds, respectively. (C) Pharmacokinetic of Nb22-Fc labeled with dye YF®750 SE via intranasal administration was
detected. Approximately 200 mg Nb22-YF750 was infused at days 0, 7, 14, and 21 respectively. The optical imaging of mice upper half body was measured by
NightOwl LB 983 0.08 d (2 h) post Nb22-Fc infusion or at indicated time point labeled at the top of panel. The mice in the red dash line figure were sacrificed at the
indicated time point in the left of panel for analysis of the fluorescence intensity of lung. (D) The fluorescence intensity of upper half body of mice in panel (C) was
summarized. (E) The fluorescence intensity of lung in lung column of (C) was summarized. (F) Bioavailability and t1/2 of Nb22 in BALB/c mice.Nb22 was intranasally
(i.n.) administered into mice (n = 3, Female) at 200 mg (average of 10 mg/kg mice. Serum concentrations of the Nbs were determined at various time points by
ELISA. T1/2, time of half-life. Data represent mean ± SEM.
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convalescent sera or vaccine-elicited antibodies showed reduced
neutralization of the Delta variant relative to that of the Alpha
variant (7, 12), the increased neutralization activity of Nb22-Fc
against the Delta variant is particularly striking and the structural
Frontiers in Immunology | www.frontiersin.org 12
basis of the phenomenon is of interest for understanding the
neutralization mechanisms.

The structural analysis further illustrated the characteristics
of Nb22 binding to WH01 and Delta RBD and the mechanisms
A

B

D

C

FIGURE 6 | The efficacy of Nb22s evaluated in hACE2 transgenic mice challenged by SARS-CoV-2. (A) Experimental schedule of Nb22s in the prevention and treatment of
SARS-CoV-2 infection. Bottom, table summary of groups (n = 3–6 mice) with different treatments. (B) Viral loads in lungs among 9 groups were measured by qRT-PCR. The
name of each group in the x axis was indicated as in the table in panel (A). Each dot represents one mouse. The limit of detection was 1,000 copies/mg referenced to blank
control (No-SARS-CoV-2 group). Data are represented as mean ± SEM; Mann–Whitney test was performed to compare treatment group with the SARS-CoV-2 control
group. (C) Sections of lung were analyzed by immunofluorescence staining using antibodies specific to SARS-CoV-2 NP in red and DAPI for nuclei in blue, respectively. The
fluorescence signal intensity of red was taken as a quantitative indicator for viral infection, which was calculated by ImageJ software. (D) Sections of lung were analyzed by
H&E staining, which were scored for pathological severity of disease on a scale of 0 to 5 grades according to the alveoli integrity and the inflammatory factors invasion. ns, no
significance; *p <0.05, **p <0.01, ****P < 0.0001. All experiments of panels (B, C)were repeated twice.
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of viral inhibition. Nb22 binding to RBD effectively blocks the
binding of RBD to hACE2 during virus infection. The binding
site of Nb22 on RBD overlaps with that of hACE2 (Figure S1A),
and the loop (V102-Y117) of Nb22 clashes with two a-helixes of
the N-terminus of hACE2 (Figure S1B). In addition, crystal
structural analysis showed that T478K mutation of the Delta
variant are located outside 800 Å2 BSA of Nb22 interacting with
RBD and do not perturb the interaction between Nb22 and the
RBD of the Delta variant. Of note, the guanidine moiety in the
L452R mutation forms an additional hydrogen bond with
the hydroxyl group of T30 of Nb22, pulling the CDR3 loop of
Nb22 closer, and leading to an extra hydrogen bond between
S33 of Nb22 and Q493 of RBD (Figure 4). Consequently, the
BSA extends from 800 to 835 Å2, in comparison with that of
Nb22-WH01 RBD. All these contribute to the enhanced binding
and neutralizing potency of Nb22 against the Delta variant.

Compared to conventional antibodies for passive
immunization, nanobodies are efficiently produced in prokaryotic
expression systems at low cost and possess favorable biophysical
properties including high thermostability (39). We reported that
nanobodies could remain 100% activity even incubated at 70℃ for
1 h and are amenable to engineering of multimeric nanobody
constructs (25). Such nanobodies exhibit high effectiveness against
Frontiers in Immunology | www.frontiersin.org 13
virus infection via intranasal administration (25). The results reveal
that Nb22 couldmaintain full activity formore than twomonths at
room temperature and does not lose any activity even after
undergoing five rounds of freeze-thawing.

Our results demonstrate that a single dose of intranasal Nb22
could exhibit efficacy in the STIP, PrEP, and PEP against SARS-
CoV-2 infection in hACE2 mice. Of note, a single dose of intranasal
Nb22 could maintain efficacy against SARS-CoV-2 infection for at
least one week in hACE2 mice, which would readily serve as STIP.
Our antibody distribution results also revealed that Nb22 could
retain in respiratory tracts for at least one month when weekly
administered via i.n. As such, we anticipate that Nb22 could provide
one month prevention against SARS-CoV-2 infection when
administered intranasally every week.

Long-term lagging prevention against SARS-CoV-2 conferred by
approved vaccine usually takes more than one month to be effective
and then lasts for months or years (40). Vaccine efficacy has been
shown towanwithinmonths after vaccination (7, 11). Instantaneous
prevention of SARS-CoV-2 is also needed for individualswho donot
take vaccines when SARS-CoV-2 is circulating. A few studies in
animal model demonstrated that antibodies exhibited accelerated
clearance of SARS-CoV-2 inPrEPwhen administered 1–3days prior
to infection (2, 4–6). Whereas, to the best of our knowledge, few
studies have fully investigated the STIP that prevention could be
readily effective immediately following inoculation and last for more
than one week to one month for people at high risk of SARS-CoV-2
infection, which can also serve to reduce transmission during the
asymptomatic stage of the infectionAs such, our results demonstrate
that intranasal Nb22 with ultrahigh potency and long-lasting
retention in the lung could satisfy the need of STIP against SARS-
CoV-2.

In summary, structural analysis provides a mechanistic
explanation to the enhanced sensitivity of the Delta variant
and the increased neutralization potency of this antibody. The
structural analysis may further guide the rational design of pan-
coronavirus vaccines and therapeutics. Nb22 exhibited one of the
ultrahigh neutralization potencies among the reported antibodies
or nanobodies against Delta variant infection (7, 12, 37, 41, 42).
We presented proof of concept of STIP against SARS-CoV-2
using our Nb22 and suggest STIP as a new prophylactic strategy
for long-lasting antibodies to prevent virus infection. Although
the newly emerged Omicron variant is spreading globally, the
Delta variant is significantly more severe than Omicron;
therefore, the ultrahigh potent, and thermal stable Nb22 is an
excellent candidate for intranasal or inhalable anti-SARS-Cov-2
agent for both therapy or prophylaxis, especially including STIP.
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