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PIGO deficiency: palmoplantar keratoderma
and novel mutations
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Abstract

Background: Several genetic defects have been identified in the glycosylphosphatidylinositol (GPI) anchor synthesis,
including mutations in PIGO encoding phosphatidylinositol glycan anchor biosynthesis class O protein. These defects
constitute a subgroup of the congenital disorders of glycosylation (CDG). Seven patients from five families have been
reported carrying variants in PIGO that cause an autosomal recessive syndrome characterised by dysmorphism,
psychomotor disability, epilepsy and hyperphosphatasemia.

Methods: Whole exome sequencing was performed in a boy with dysmorphism, psychomotor disability, epilepsy,
palmoplantar keratoderma, hyperphosphatasemia and platelet dysfunction without a clinical bleeding phenotype.

Results: Two novel variants in PIGO were detected. The missense variant encoding p. His871Pro was inherited from the
boy’s father while the frameshift variant encoding p. Arg604ProfsTer40 was maternally inherited.

Conclusion: A boy with two novel PIGO variants is reported. The skin phenotype and platelet dysfunction in this
patient have not been described in previously reported patients with PIGO deficiency but it is of course uncertain
whether these are caused by this disorder. The literature on PIGO deficiency is reviewed.

Keywords: CDG, Congenital disorder(s) of glycosylation, Glycosylphosphatidylinositol, GPI, Hyperkeratosis,
Hyperphosphatasemia, PIGO-CDG, Platelet dysfunction

Introduction
GPI anchors are a group of glycolipids with a glycan
core, a phosphoethanolamine linker and a phospholipid
tail. At least 150 human cell-surface proteins are post-
translationally modified by GPI anchors at the carboxyl-
terminus. These proteins are anchored to the outer
leaflet of the plasma membrane via the phos-
phatidylinositol moiety. These GPI-anchored proteins
include adhesion molecules, complement regulatory
proteins, hydrolytic enzymes, protease inhibitors and
receptors. At least 26 genes are involved in the biosyn-
thesis, protein-attachment and remodelling of mamma-
lian GPI [1]. Genetic defects have been reported in 12 of
these genes [2, 3]. They belong to subgroup 3 in the
current classification of congenital disorders of

glycosylation (CDG) [4]. One of them is a defect in
phosphatidylinositol glycan anchor biosynthesis class O
protein (PIGO). This enzyme, together with PIGF, cata-
lyzes the attachment of ethanolamine phosphate to the
third mannose of the three-mannosyl glycan core of
GPI. Seven patients have been reported from five fam-
ilies with PIGO deficiency [5–8]. The present report is
on a patient who expands the phenotypic spectrum of
PIGO deficiency and carries novel mutations in the
PIGO gene.

Patient report
The boy was born in 1994 from unrelated healthy par-
ents from Afro-Caribbean ancestry after a 34 weeks
pregnancy. He has a healthy sister. The family history
was negative for keratotic disorders. Pregnancy was
complicated by polyhydramnion from the fourth
month. Delivery was normal. Birth weight was 2870 g,
length unknown and head circumference 36.5 cm. At
birth, he showed oedema, especially of the distal ends
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of the extremities, as well as dysmorphism: broad nasal
bridge, right preauricular tag, W-shaped upper lip,
relatively large mouth, fusion of upper medial incisors,
short neck, hypogenitalism and hypogonadism
(testicles not palpable), and hypoplastic toenails. At 6
weeks, a deep infantile hemangioma was noted on the
right upper thorax. At 4 months, he was operated for a
right inguinal hernia. He had focal epilepsy at the age
of 17 months, which changed to multifocal epilepsy
and was reasonably controlled with valproate. Both
motor and cognitive development were severely
disabled. He started to walk at 3.5 years (abnormal gait
with abduction of both feet), and said ‘mama’ and
‘papa’ at about 6 years.
On physical examination at 7 years, height was

123 cm (SDS 0.0), weight 25.5 kg (SDS 0.6), head cir-
cumference 56 cm (SDS 2.5). He smiled all the time.
Moderate obesity, convergent strabism and general
hyperlaxity were noted but no hypotonia. There was a
residual hemangioma on the right upper thorax. Dys-
morphism included malalignment of the upper medial
incisors (no fusion of the permanent teeth), a broad
nasal bridge, coarse ears, widely spaced nipples, mild
camptodactyly of the fingers, and small hands and feet
with short fingers and toes. There was a striking hyper-
keratosis of the foot soles and hand palms.
Physical examination at 11.5 years showed a height of

about 144 cm (SDS – 0.7), weight 40 kg (SDS + 0.2) and
head circumference 57 cm (SDS + 1.9). He was still in-
continent for urine and faeces. The father mentioned
progress in language understanding but speech was ab-
sent and he made himself understandable with gestures.
He walked with his feet in 90 degrees abduction. There
was a thickened palmar and plantar skin, more

pronounced on pressure points, with a fine scaling
extending over the dorsal side of hands and feet includ-
ing the wrists and ankles. This thickened skin showed
accentuation of the skin lines, particularly on the wrists.
On the extensor side of elbows and knees the same
thickened skin was seen (Figs. 1 and 2). Vision and hear-
ing were clinically normal. There was no hepatospleno-
megaly. Cardiopulmonary examination was normal. The
testes were small (walnut size). Tendon reflexes were
brisk. He had a mild anal prolapse on pressure.
Laboratory investigation showed persistently in-

creased serum alkaline phosphatase (last control at
13 years: 5131 U/L; normal < 720) mainly due to
increased bone isozyme. There was also a decreased
serum apolipoprotein B (0.42 g/L; normal range
0.66–1.33) and LDL-cholesterol (37 mg/dL) with nor-
mal HDL cholesterol and triglycerides as well as a mild in-
crease of serum amylase (121 U/L; normal range 28–100)
and thyroid stimulating hormone (6.64 mIU/L; normal
range 0.27–4.20) but with normal free T4 and thyroxin-
binding globulin levels. Further routine blood and urine
chemistry as well as metabolic screening were normal in-
cluding serum calcium, phosphate, transaminases, creatine
kinase, lactate dehydrogenase, factor XI, ceruloplasmin,
cholinesterase, lipase, IgA, IgG, IgM and serum transferrin
isoelectrofocusing.
The patient had no obvious clinical bleeding problem

and his Ivy bleeding time was normal as were all blood
cell counts. Repeated platelet function testing showed
decreased aggregation responses for ristocetin, ADP,
epinephrine and Horm collagen (Fig. 3a). A similar
multi - agonist platelet activation defect was detected
using a high-throughput ELISA that records dose re-
sponse activation of platelets where monoclonal

Fig. 1 The patient at age 13 years. Note facial dysmorphism, exorotation of the feet and keratoderma of the dorsum of the right hand
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antibodies against P-selectin (CD62P) or αIIbβ3 and
GPIbα were used to capture and detect platelet activa-
tion with ADP, U46619, TRAP and CRP [9] (Fig. 3b).
In contrast, ATP secretion from dense granules after
stimulation with 2 μg/ml Horm collagen was normal
(4.1 and 4.8 μM; normal range of 2–7 μM). As men-
tioned above, the patient is on valproate therapy that is
known to have slight effects on the arachidonic path-
way of platelets. However, the observed broad platelet

activation defect of this patient is not compatible with
a defect in the arachidonic pathway. It was not possible
to withdraw the drug for further platelet testing.
Radiological examination of the skeleton showed a

thin cortex, triangular distal toe phalanges, scoliosis,
wedge-shaped anterior flattening of the vertebrae, and a
fusion anomaly of the arcus posterior of D3. MRI of the
brain at 6 years showed enlarged lateral ventricles, a
cavum septum pellucidum, a thin corpus callosum, and

Fig. 2 Keratoderma of the hands, foot soles and knees of the patient at 13 years

Fig. 3 Platelet function studies. a Platelet aggregation with Horm collagen (2 μg/ml), ADP (5 μM) and epinephrine (5 μg/ml) was reduced in the
patient. b A high throughput ELISA was performed that records dose response activation of platelets with monoclonal antibodies against P-selectin
(CD62P) or αIIbβ3 to detect platelet activation with ADP, U46619, TRAP and CRP at different concentrations
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minimal white matter lesions at the level of the posterior
horns.
A skin biopsy at the elbow showed a “basket woven”

hyperorthokeratosis with papillomatosis. Electronmicro-
scopy revealed clear vesicles but this might have been a
technical artefact.
DNA from the patient was analysed by whole exome se-

quencing (WES) as part of the NIHR BRIDGE-Bleeding
and Platelet Disorders study [10] and compound heterozy-
gous (and X-linked) rare variants were found in 8 genes
that included two previously unreported variants in the
PIGO gene for phosphatidylinositol glycan anchor biosyn-
thesis class O protein. Details on gene selection from the
WES data is described in the supplementary data
(Additional file 1). Interestingly, recessive PIGO variants
cause hyperphosphatasemia with mental retardation syn-
drome 2 (MIM 614749), as found in the patient. The
missense variant c.2612A > C (p.His871Pro) was absent
from ExAC while the frameshift variant c.1810dupC
(p.Arg604ProfsTer40) was present in ExAC at a minor
allele frequency (MAF) of 0.0001 (0.0002 in non-Finnish
Europeans). Sanger sequencing confirmed the variants in
the child and the mother was the carrier of the variant en-
coding p.Arg604ProfsTer40 while DNA from the father
showed he carried the variant encoding p.His871Pro. Dif-
ferent DNA variant scoring systems predict p.His871Pro
as pathogenic with CADD score of 20, PolyPhen score of
0.836 (‘possibly damaging’), SIFT score of 5.44
(‘deleterious’) and GERP score of 5.44.

Discussion
To date, only 7 patients from 5 families have been
described with PIGO deficiency (Table 1) [5–8].
Interestingly, they all carry the combination of a high
impact variant with a missense variant in PIGO.
Table 1 summarizes the clinical findings of the previ-
ously reported patients and our patient. All eight
patients had a moderate or severe psychomotor dis-
ability as well as hyperphosphatasemia. The following
symptoms were present in the majority of patients:
epilepsy (6/8), facial dysmorphism (6/8), brachytele-
phalangy (5/8), nail hypoplasia (4/7), and anorectal
abnormalities (5/6). A minority of patients showed
various neurological, cardiac, urogenital and skeletal
abnormalities. Novel features observed in our patient
include palmoplantar keratoderma, extreme rotation
of the feet, dental abnormalities and platelet
dysfunction.
Cutaneous abnormalities have been reported in two

other GPI anchor synthesis disorders. In patients with
PIGA deficiency, dry scaling, ichthyosis-like and
eczema-like lesions, pigmentation abnormalities, and lin-
ear plaque-like scales, including the feet, have been de-
scribed [11]. More consistent skin lesions have been

reported in patients with PIGL deficiency or CHIME
syndrome (coloboma, congenital heart defects, early on-
set migratory ichthyosiform dermatosis, mental retard-
ation, and ear anomalies, including conductive hearing
loss). A diffuse, erythematous, pruritic, often migratory
rash at or shortly after birth (sometimes even erythro-
derma) was present in all described cases. Thereafter,
the skin becomes increasingly ichthyotic; primarily at
the flexural surfaces [12, 13]. GPI anchoring plays a role
in skin cells, particularly in keratinocytes. An epidermal-
specific defect of GPI anchor in Pig-a null mice results
in Harlequin ichthyosis-like features [14, 15]. In these
mice, there was an impaired processing of profilaggrin
to filaggrin, accompanied by a decreased activity of pro-
tein phosphatase 2A involved in this processing. Protea-
sin, one of the enzymes involved in filaggrin synthesis, is
a GPI-anchored protein, and in mice its deficiency leads
to a phenotype comparable to matriptase deficiency, a
cause of autosomal recessive ichthyosis with hypotricho-
sis [15]. On the other hand, Tam et al. have shown that
GPI-anchored proteins regulate transforming growth
factor-beta signalling in human keratinocytes [16].
Platelet function has not been studied in GPI anchor

disorders, probably because until now no patient showed
a haematological phenotype. We studied it in our patient
as part of the etiological work-up in unexplained psycho-
motor disability. A characteristic feature of PIGO defi-
ciency (and of six other known GPI anchor synthesis
defects, namely in PIGA, PIGV, PIGW, PGAP1, PGAP2
and PGAP3) is the increase of serum alkaline phosphat-
ase (tissue nonspecific; liver/bone/kidney), while in PIGT
deficiency serum alkaline phosphatase is decreased [17]
(reminiscent of hereditary hypophosphatasia). Alkaline
phosphatase testing may be helpful in the etiological
work-up of patients with (syndromic or non-syndromic)
intellectual disability, and the finding of increased or
decreased levels of this enzyme should prompt a search
for a GPI anchor defect.
Coagulation and platelets defects have been reported

in different congenital disorders of glycosylation as im-
portant receptors and proteins for coagulation, platelet
formation and function are regulated by glycosylation
[18–25]. The importance of GPI-anchoring for platelet
proteins is not well studied. It is known that GPI-
anchored glycoproteins are absent or deficient in
platelets from patients with paroxysmal nocturnal
haemoglobinuria (PNH) [26]. PNH is an acquired stem
cell disorder due to somatic variants in PIGA and causes
an abnormal susceptibility of erythrocytes to comple-
ment induced lysis, resulting in episodes of intravascular
haemolysis, haemoglobinuria and both thromboembolic
events and bleeding complications. Platelets from PNH
cases showed platelet hyporeactivity using in vitro assays
possibly due to chronic hyperstimulation in the
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circulation [27]. Though functional platelet defects have
not been reported in the other patients with PIGO
variants, we detected a multi- agonist platelet defect in
our patient as a subclinical phenotype. Further studies
need to be undertaken to support these findings and
compare them with PNH.
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