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Abstract: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disorder,
affecting 1 out of 500 adults globally. It is a widely heterogeneous disorder characterized by a range of
phenotypic expressions, and is most often identified by non-invasive imaging that includes echocar-
diography and cardiovascular magnetic resonance imaging (CMR). Within the last two decades,
cardiac magnetic resonance imaging (MRI) has emerged as the defining tool for the characteriza-
tion and prognostication of cardiomyopathies. With a higher image quality, spatial resolution, and
the identification of morphological variants of HCM, CMR has become the gold standard imaging
modality in the assessment of HCM. Moreover, it has been crucial in its management, as well as
adding prognostic information that clinical history nor other imaging modalities may not provide.
This literature review addresses the role and current applications of CMR, its capacity in evaluating
HCM, and its limitations.
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1. Introduction

Hypertrophic cardiomyopathy (HCM) is an inherited (60–70%) cardiomyopathy, af-
fecting 0.2–0.5% of the general population across the globe, and has been the focus of
extensive research over the last five decades [1]. It is a highly heterogeneous disorder,
attributed to the myriad of mutations involving the cardiac sarcomere proteins. Common
mutations include genes encoding myosin heavy chain 7 (MYH7) and myosin-binding pro-
tein c (MYBPC3). It is characterized by left ventricular hypertrophy (LVH), with or without
signs of left ventricular (LV) outflow tract obstruction, diastolic dysfunction, myocardial
ischemia, and mitral regurgitation. Although the annual mortality rate is 1%, with the
estimated survival rates being 98% at 5 years and 95% at 10 years [2], a small subset of
patients is subject to adverse complications that includes sudden cardiac death (SCD), heart
failure, and tachyarrhythmias [3]. It is also the most common identified cause of SCD in
athletes in North America [4]. It is evident that cardiovascular magnetic resonance (CMR)
imaging is key towards the recognition of HCM, as well as aiding in management of the
disorder. CMR can provide three-dimensional (3D) imaging, with high spatial and temporal
resolution that does not involve any ionizing radiation. Furthermore, CMR is well suited
to describe the various expressions of HCM, with an important feature being the ability
to delineate the etiology of left ventricular hypertrophy from other causes that includes
athlete’s heart, hypertension, valvular disease, and infiltrative diseases. This literature
review discusses the role of CMR in HCM, its current applications, and its limitations.

2. Materials and Methods

We performed a review of the literature on PubMed and Scopus, focusing on cardiovascu-
lar magnetic resonance imaging and hypertrophic cardiomyopathy (Supplementary Table S1,
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Appendix A). Reviews, meta-analyses, prospective, retrospective, interventional, and ob-
servational studies were included in our search. The exclusion criteria included conference
abstracts, case studies, or articles where there was no association between CMR and HCM.
Key search terms included “hypertrophic cardiomyopathy”, “HCM”, “hypertrophic”,
“inherited cardiomyopathy”, “left ventricular hypertrophy”, and “LVH” in combination
with “cardiovascular magnetic resonance imaging”, “CMR”, “cardiac imaging”, “cardiac
magnetic resonance imaging”, “perfusion imaging”, and “cardiac MRI”.

3. Results
3.1. Definition of HCM

HCM is a disorder characterized by inappropriate myocardial hypertrophy that occurs
in the absence of any systemic or detectable causes. Histopathologically, it is defined by
myocyte disarray, microvascular dysfunction, and interstitial and perivascular fibrosis. It
was first described in the late 1950s, and whilst the initial diagnosis of HCM was made by
pathologists, advancement in imaging has facilitated prompt diagnosis, risk-stratification,
and earlier utilization of interventions to curb cardiovascular complications [5,6]. HCM is
diagnosed when one or more LV myocardial segments, at end-diastole, is ≥15 mm, or the
septal to lateral wall thickness ratio is higher than 1.3 in a non-dilated LV, in the absence
of a loading condition [7]. The three main types of HCM, typically identified through
CMR, include asymmetric, concentric, and apical. Asymmetric or septal HCM accounts for
two-thirds of the spectrum, which may lead to systolic anterior motion (SAM) of the mitral
valve, and subsequent left ventricular outflow tract (LVOT) obstruction [8]. The apical
variant accounts for less than 10% of HCM patients [9]. Complications of HCM include
sudden death, heart failure, and arrhythmias. In HCM patients with heart failure, the
annual mortality is ten-fold higher, with the increase in risk being attributed to progressive
pump failure and SCD [10].

3.2. Cardiovascular Magnetic Resonance vs. Echocardiography

Whilst conventional echocardiography is considered the first line imaging modality
for the clinical diagnosis of HCM, it is operator dependent and often limited by its acoustic
windows and lack of tissue characterization [11]. Conversely, CMR allows a more com-
prehensive and detailed evaluation of hypertrophy, with accurate measurements of wall
thickness, chamber size, and distribution of hypertrophy (Table 1). It is also capable of
evaluating coronary flow reserve, contractility, and tissue perfusion, permitting the repro-
ducible assessment of cardiac abnormalities [12]. One of the significant advantages of CMR
includes detailed anatomical assessment in different planes, providing a three-dimensional
representation of anatomy [13]. Thus, contouring the epicardial and endocardial borders
allows the calculation of quantitative parameters, including consistent measurements of
atrial and ventricular function and volumes. A typical CMR examination involves electro-
cardiographic (ECG) synchronized cine acquisitions, at a strength of 1.5 or 3T [14]. There
are three main techniques used in clinical CMR, which include spin echo imaging, gradient
echo imaging, and flow velocity encoding [13]. Steady-state free precession (SSFP), related
to gradient echo imaging, involves generating high temporal and spatial resolution cine
images, which are important for functional assessment [15]. This offers a greater distinction
between muscle and blood, with different ratios of T2 and T1, which is suitable for cardiac
imaging and more beneficial for segmentation algorithms.
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Table 1. There are several advantages of cardiovascular magnetic resonance imaging (CMR) that
include functional evaluation, morphological visualization, and risk stratification. There is also the
added benefit of differentiating HCM from other similar processes that result in cardiac hypertrophy,
such as amyloidosis, athlete’s heart, and hypertensive heart disease.

Advantages of Cardiovascular Magnetic Resonance Imaging

Identification of HCM phenotypes
Accurate quantification of maximal wall thickness
Assessment of co-existing valvulopathies
Volume analysis and quantification
Perfusion and strain analysis
Assessment of LVOT and cause
Offers differential diagnosis
Risk stratification through identification of fibrosis

Furthermore, with contrast, there have been additional capabilities of CMR that in-
clude late gadolinium enhancement (LGE) assessment and myocardial T1 and T2 mapping.
CMR also has the capability of distinguishing phenotypic expression, segmental LVH, and
the identification of fibrosis and structural abnormalities. For instance, assessing the extent
of LVH of the lateral or basal anterior LV wall and the LV apex, or the assessment of LV
outflow and/or midflow obstruction, is better evaluated by CMR [16]. Moreover, CMR
provides a clear demarcation between the blood pool and the myocardium, which enables
a more accurate calculation of LV volumes and mass [17].

In addition, the advantage of CMR over echocardiography includes better characteri-
zation of mitral valve abnormalities as well as identifying the mechanisms of LV outflow
obstruction [17]. The discrepancy might be vast between the two imaging modalities, in
which the difference may be as high as 70% in classifying massive LVH [18]. Other useful
information CMR provides includes the identification and quantification of right ventric-
ular (RV) hypertrophy, microvascular dysfunction, and assessment of diastolic function.
LVOT obstruction is another important manifestation of HCM that is better evaluated by
CMR, whereby the identification and grading in severity of the obstruction is cardinal
for offering invasive treatment that includes myomectomy or alcohol septal ablation. In
this sense, CMR has the added advantage of locating the site of flow obstruction, and any
specific anomalies that contribute to it as well.

3.3. Late Gadolinium Enhancement

The identification and quantification of LGE is a valuable feature of CMR, changing the
paradigm in how ischemic and non-ischemic myocardial diseases are assessed (Figure 1).
It represents myocardial fibrosis and is a predictor of both a higher mortality rate and
the progression towards heart failure amongst HCM patients [19]. The mean reported
prevalence of LGE is 65%, but may be present in up to 86% of HCM patients [7,20]. Typical
patterns include localization to the mid-wall, located in segments with the greatest LVH,
and at RV insertion points. Thus, peculiar patterns of LGE, during the assessment of LVH,
can be attributed to other diagnoses that may include, but are not limited to, Anderson–
Fabry disease or cardiac amyloidosis (CA). The distinction between the location of LGE
includes the type of fibrosis, whereby intramural mid-wall LGE is considered a marker for
replacement fibrosis, whilst LGE at RV insertion points suggests interstitial fibrosis [21].
Replacement fibrosis increases diastolic dysfunction and ventricular stiffness [10], and
plays a role in the progression of heart failure. It is well acknowledged that the presence
and extent of LGE is associated with disease severity, which includes the extent of LV
thickness, remodeling, and dysfunction [17,22]. It has also been suggested that it may act
as a substrate for both arrhythmias and heart failure [23]. More importantly, LGE is an
independent predictor of sudden death, whereby if >15% occupies the LV wall, it results in
adverse remodeling and a twofold increase in the risk of sudden death [24]. The presence
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of LGE is thus proposed to be a substrate, accounting for a greater risk, in ventricular
tachyarrhythmias [23,25].
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Figure 1. Short axis images demonstrating patchy late gadolinium enhancement (LGE) in hyper-
trophic cardiomyopathy (HCM) patients. Common patterns identified in HCM patients include
localization in segments with greatest left ventricular hypertrophy (LVH), and right ventricular (RV)
insertion points.

LGE patterns in HCM patients do vary greatly, with a wide range of locations and
distributions being described. The most common pattern, affecting 30% of patients, is
described as patchy, affecting the septum and free LV wall [26]. Other locations include the
isolated involvement of the apex, septum, lateral wall, and the right ventricular insertion
points. Often, extensive LGE is located in the walls of apical aneurysms associated with
HCM [27]. LGE is, however, frequently absent in HCM patients without LVH, suggesting
the association between pathological hypertrophy and LGE enhancement [27]. In addition,
the presence of LGE has not shown a clear relationship with a reduction in ejection fraction
(EF), but has been implicated in myocardial stiffness, regional wall motion abnormalities,
and magnitude of LVOT obstruction [26,28,29]. Nonetheless, it dictates follow up, as those
with significant LGE do require closer monitoring given the risk of progression in systolic
dysfunction [30,31].

3.4. T1 and T2 Mapping

Early myocardial structural changes in cardiomyopathies are often elusive and in-
distinguishable. LGE was initially viewed as the gold standard for assessment of fibrosis
in HCM. However, with the development of more sensitive techniques, the European
Society of Cardiology (ESC) has described a paradigm shift towards the role of parametric
mapping in assessing myocardial integrity [32,33]. Therefore, T1, T2, and T2* mapping has
become a routine part of the CMR exam, with changes in values showing early remodeling
changes. T1 mapping provides the assessment of the total extent of expanded extracellular
space [34,35], and is thus emerging as a tool for the quantification of subtle fibrosis [36,37].
Longitudinal relaxation time, which depends on T1, varies between tissues and pathological
conditions. Whilst LGE signifies focal fibrosis and myocardial scar, native and post-contrast
T1 mapping detects diffuse interstitial fibrosis [38]. Moreover, subtle LGE enhancement
may not be easily appreciable, and there may be errors in myocardial nulling during LGE
assessment. Therefore, native and post-contrast T1 mapping has become a significant tool
for prognostication in challenging cases. Extracellular volume (ECV), derived from T1 map-
ping, measures the proportion of extracellular space between myocytes. In HCM patients,
both native T1 and ECV have been demonstrated to be prolonged, which correlates with
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the hypertrophied segments, suggesting interstitial fibrosis [39]. More importantly, these
findings were associated with an increased susceptibility to ventricular arrhythmias, and
thus sudden death [40]. The values are also utilized to differentiate from other causes of
cardiac hypertrophy that include amyloidosis [41], hypertensive cardiomyopathy [42], and
Fabry’s disease [43].

T2 mapping, however, demonstrates myocardial or interstitial water content with
variations in signal intensity being useful in differentiating between different cardiac dis-
eases [44]. In HCM, higher T2 values are reported, with the differences being accounted
for on a structural level, which are purported to reflect myocyte degeneration, disarray,
and replacement fibrosis [45]. In addition, it frequently corresponds with LGE, which may
explain the process of initial dysfunction in HCM and the subsequent progression to fibro-
sis [46,47]. Another technique is T2* blood oxygen level-dependent (BOLD) MRI, which
evaluates myocardial oxygenation. In HCM patients, the values are reduced, reflecting
areas of reduced perfusion, and correlate with T1 mapping, showing a temporal association
between fibrosis and silent ischemia [2]. Similar to the presence of LGE, abnormalities with
T2* values were also associated with ventricular arrhythmias [48].

3.5. Strain Measurement

HCM patients often exhibit a hyperdynamic LV, and therefore the assessment of true
LV function is of paramount importance. Similar to echocardiography, strain measurements
include measurements in radial, circumferential, and longitudinal directions, reflecting
both global and regional myocardial function. With a higher spatial resolution offered by
CMR, it is argued that it displays a more superior and sensitive estimation of LV function
than echocardiography. Here, LV strain is assessed using myocardial tissue tagging, where
tagged CMR can assess regional myocardial mechanics at different time-points during the
cardiac cycle [49,50]. Several studies have reported HCM patients, despite a seemingly
normal LV ejection fraction, as having globally reduced strain, which is associated with
both increased mortality and heart failure events [51,52]. The dysfunction of the LV in
HCM is silent, and given myocardial contraction is heterogeneous, the different markers of
strain assessment are useful in delineating the type of contractile dysfunction. For instance,
the hypertrophied segments often exhibit reduced early diastolic strain rates [53]. Such
aggravation in myocardial integrity correlates biochemically, with elevated NT-proBNP and
troponin T, and is also reflected by an increased likelihood of ventricular arrhythmias [18,54].
Furthermore, the impairment in strain often correlates with the presence of LGE, and its
role has been extended to the assessment of the right ventricle and left atrium [52,55]. Given
that approximately 1 in 5 HCM patients are affected by atrial fibrillation (AF) [56], the
evaluation of left atrial strain is becoming more essential, as it may predict the risk of AF,
but also provide the clinician with a cause for closer monitoring [54,55,57,58].

A proponent of CMR is speckle tracking imaging. Speckle tracking echocardiography
(STE) involves tracking patterns provided by speckles, which are stable acoustic mark-
ers [59]. These are sites of positive interference with the ultrasound wave, and depend on
the orientation of the scattering sites and surrounding ultrasound field. The orientation
of the myocardial architecture changes within each cardiac cycle, which is reflected by
changes in speckles. An additional advantage of STE includes having a lower signal-to-
noise ratio than CMR. However, the tissue tracking technology is based on estimations of
tissue displacement, and thus may not be representative of true myocardial motion, may
be affected by blood motion, and is often operator dependent [59].

3.6. Perfusion CMR

Microvascular dysfunction (MVD) is another common feature thought to be responsi-
ble for ischemia-mediated myocyte death in HCM, which is argued to result in replacement
fibrosis and adverse LV remodeling. This is corroborated in postmortem studies that reveal
the presence of ischemic damage in HCM hearts, without any significant coronary artery
disease, that varies from acute to chronic fibrotic changes [60,61]; other noteworthy changes
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include arteriolar dysplasia, without significant plaque formation [10]. In order to assess
the presence and impact of MVD, indirect measures such as myocardial perfusion reserve
(MPR), derived by the ratio of myocardial blood flow (MBF) during maximal coronary
vasodilation to MBF at rest, provides the means of estimating MVD. Adenosine stress
perfusion MRI is highly sensitive and is the method that may assess such myocardial
perfusion defects in HCM patients with suspected MVD [62–65]. Perfusion defects are
present in up to half of HCM patients, and is a predictor of clinical decline [10]. As a result,
it has been viewed as a target, albeit unsuccessful thus far, for the prevention of disease
progression [62]. A frequent finding using this technique was stress perfusion defects along
hypertrophied segments, often correlating with the degree of maximal wall thickness in
HCM patients [61]. Such findings were also associated with ventricular arrhythmias, the
presence of apical aneurysms, and increased LV mass index [61]. It was also common for
HCM patients (30%) to demonstrate perfusion defects at rest, which often correlates with
the presence of LGE and a reduction in contractile function [66,67]. Thus, it is suspected
that the presence of such findings are risk factors for HCM patients to develop adverse
cardiovascular effects that include sudden cardiac death.

More importantly, several studies have also shown a correlation between MVD and
LGE burden [68]. However, these perfusion defects may manifest themselves prior to
the development of LGE [69–71]. This was complemented by a recent study showing
genotype-positive, phenotype-negative carriers of HCM in demonstrating both global and
segmental perfusion defects, prior to the development of LGE [72,73], therefore suggesting
that microvascular abnormalities may precede the development of cardiac hypertrophy
and fibrosis.

3.7. Microstructural Dysfunction

Microstructural changes are argued to precede macroscopic abnormalities in HCM,
and in patients with normal wall thickness, and without any discernable scar, it is important
to devise a technique that may appreciate these abnormalities and thus provide the viable
markers necessary for the early detection of disease, screening of family members, and for
prognostication. Cardiac diffusion tensor imaging (cDTI) is a method that allows the char-
acterization of the myocardial microstructure and may provide such a solution. There are
several parameters of measurement, including mean diffusivity (MD), fractional anisotropy
(FA), voxel-wise helix angle (HA), and secondary eigenvector angle (E2A). MD measures
the magnitude of diffusion in a given voxel, and is said to be increased in areas of interstitial
fibrosis in HCM patients [74]. FA measures the directional variability of diffusion in a given
voxel, and is a measure of myocyte disarray, with low values suggesting adverse clinical
outcomes, such as ventricular arrhythmias [74–76]. HA describes myocyte orientation, and
E2A reflects orientations of laminar sheetlets [57]. Studies have demonstrated that HCM
patients have increased MD, E2A, and reduced FA in comparison to normal subjects [76,77].
Higher MD and E2A was seen to correlate with areas of scarring, fibrosis, increased ECV,
and LV wall thickness, whereas a reduction in FA was a marker for areas of fibrosis [77].
Whilst this may be an investigative tool, and its clinical applicability is still being explored,
such in vivo biomarkers may provide an additional means of risk stratifying HCM.

3.8. Flow Imaging

The assessment of blood flow is important to the clinical evaluation of cardiovascular
disease. Phase-contrast imaging allows the visualization and quantification of flow, and
is widely used in cardiac imaging for the functional assessment of regional blood flow
in the heart, across the valves, and in great vessels [78–80]. It involves taking advantage
of the direct relationship between blood flow velocity and phase of the MR signal, and
through correction sequences and subtraction of unwanted signals, velocity encoded
images are generated [79,81]. Important basic functions of phase-contrast MRI include the
estimation of cardiac output and evaluation of diastolic dysfunction. The measurement of
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diastolic dysfunction may be done by measuring the flow across the mitral valve, yielding
information on early (E) and late or atrial (A) ventricular filling patterns [13,81].

One of the uses of phase-contrast MRI includes assessing obstructive HCM, a common
disease subtype, characterized by thickening of the interventricular septum and associated
with systolic anterior motion (SAM) of the mitral valve, in which the leaflets, during mid-
systole, contact or near contact the septum. A component of HCM that is also often not
highlighted as much in literature is aortic stiffness, with the LVOT-to-ascending aorta (AAo)
diameter ratio correlating with the outflow gradient [82]. The degree of LVOT obstruction is
necessary to evaluate, as it is associated with structural disadvantages that include diastolic
dysfunction and reduced LV compliance, leading to adverse cardiovascular events such as
heart failure, stroke, and SCD [83]. The hemodynamic assessment of the LVOT gradient in
HCM using echocardiography is limited, and with recent developments, four-dimensional
(4D) flow MRI, which can visualize 3D flow patterns, may provide a more comprehensive
assessment of the LVOT pressure gradient and ascending aortic flow [15]. The findings
include altered pressure gradients and abnormal flow patterns in the LVOT and AAo,
demonstrating that as the gradient increases, it leads to worsening outcomes [15,84].

4. Discussion

HCM is a widely heterogeneous disorder that is associated with sudden cardiac
death and heart failure, but often presents without any symptoms. Thus, its variability
in presentation makes it challenging to risk stratify the disorder and delineate its disease
course. Reassuringly, with CMR, there has been greater confidence in evaluating HCM
and its associated disease severity. There are several applications of CMR that describe
HCM well, both at a subclinical and molecular level. Methods include LGE assessment,
strain analysis, and T1/T2 mapping. Whilst LGE detects replacement fibrosis, parametric
mapping can detect interstitial fibrosis and changes prior to focal scar formation. For
instance, T1 and T2 remodeling occurs even in normal appearing myocardial segments,
suggesting that tissue remodeling precedes functional and morphological changes in HCM
patients [85]. There has been an overwhelming number of studies and evidence in the use of
LGE, and it is becoming a recognized arbitrator in assessing the risk of SCD. For instance, if
>15% LGE occupies the LV wall, it dictates whether an implantable cardioverter-defibrillator
(ICD) should be considered, as well as the length of follow-up. Undoubtedly, one of the
advantages of CMR over echocardiography is its better visualization and assessment of the
LV wall and thickness. For instance, the identification of apical hypertrophy and aneurysms
may only be identified through CMR. The other use of CMR includes preprocedural
planning, which allows the evaluation and follow-up of remodeling post interventions
such as septal myectomy or ablation. The influence and potential of CMR is extensive,
with new and emerging applications that include the use of cDTI, hyperpolarized 13C
MRI, and CMR spectroscopy involving assessment of myocardial dysfunction and energy
status at a cellular level [86]. Moreover, as the incidence of unexplained LVH increases,
novel quantitative markers have been developed. For instance, myocardial contraction
fraction (MCF), calculated by dividing the LV stroke volume by LV myocardial volume,
discriminates HCM from CA and hypertensive heart disease [87].

On the other hand, it should be noted that there are several limitations in the utility of
CMR. Much of the functional analyses require manual editing, which may result in over- or
underestimation. Other common barriers include longer examination times, reimbursement
issues, and lack of availability and expertise. Furthermore, the interpretation of LGE in
HCM patients can be challenging and may be overexaggerated. For instance, the LGE
signal may differ from one study to another, and is influenced by technical parameters
that include the threshold set to differentiate normal from fibrotic myocardium. However,
this has been resolved with the use of semi-automated analysis for quantification. Here,
using signal intensity in normal myocardium as a reference, five or six standard deviations
from the normal myocardial intensity seem to correlate the best with visual assessment
when identifying LGE [9]. Within multiparametric mapping, factors such as co-morbidities,
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age, and gender play a role with the values obtained. More importantly, centers use
different vendors, mapping sequences, and field strength, which makes it difficult at times
to incorporate complex protocols and apply them to the general HCM population.

5. Conclusions

HCM is an inherited cardiomyopathy with a wide range of clinical presentations and
long-term sequelae. Whilst many patients have an indolent course, a considerable number
of patients are at an increased risk of SCD, heart failure, or tachyarrhythmias. Thus, imaging
has come to play a central role in the diagnosis and prognostication of HCM. CMR is a
widely employed tool that aids in the diagnosis and clinical management of HCM patients.
Its capability in providing unique information on cardiac function, morphology, and tissue
characterization has surpassed its own expectations, and with continued technological
advancement, it is only a matter of time before pre-existing techniques are refined and
newer methods are devised to even further characterize HCM.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/review/10.3390/12020314. Supplementary Table S1: PRISMA 2020 Checklist.

Author Contributions: S.S. contributed to the writing, elaboration, editing, and approval of the
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version of the manuscript.
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