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Brugada syndrome is a cardiac arrhythmia disorder associated with sudden death in 
young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, 
susceptibility genes remain largely unknown. Here we performed a genome-wide 
association meta-analysis comprising 2,820 unrelated cases with Brugada syndrome and 
10,001 controls and identified 21 association signals at 12 loci (10 novel). SNP-heritability 
estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 
21 susceptibility variants demonstrate varying cumulative contribution of common risk 
alleles among different patient sub-groups, as well as genetic associations with cardiac 
electrical traits and disorders in the general population. The predominance of cardiac 
transcription factor loci indicates that transcriptional regulation is a key feature of 
Brugada syndrome pathogenesis. Furthermore, functional studies conducted on MAPRE2, 
encoding the microtubule plus-end-binding protein EB2, point to microtubule-related 
trafficking effects on NaV1.5 expression as a novel underlying molecular mechanism. 
Taken together, these findings broaden our understanding of the genetic architecture of 
Brugada syndrome and provide new insights into its molecular underpinnings.  
 
 
Brugada syndrome (BrS) is a cardiac disorder characterized by hallmark ST-segment 
elevation in the right precordial leads of the electrocardiogram (ECG) and increased risk of 
sudden death in young adults1,2. Rare coding variants in SCN5A, encoding the cardiac 
sodium channel NaV1.5 that underlies the sodium current (INa), are reported in 
approximately 20% of cases3,4. Other susceptibility genes contributing to the disorder 
remain largely unknown. In a genome-wide association study (GWAS) conducted in 312 
individuals with BrS, we previously identified three common susceptibility variants and 
provided evidence for a complex genetic architecture5. Here we extended this original 
association scan to a large meta-analysis comprising 2,820 unrelated cases and 10,001 
controls of European ancestry (Supplementary Tables 1 and 2 and Supplementary Note), 
testing 6,990,521 variants with a minor allele frequency (MAF) ≥ 0.01 (Fig. 1 and 
Supplementary Figs. 1 and 2). A total of 12 loci (10 novel) reached the genome-wide 
statistical significance threshold of P < 5 × 10-8 (Table 1 and Supplementary Fig. 3a-l). 
Conditional analysis uncovered seven additional association signals at genome-wide 
significance at the chromosome 3 locus, and an additional signal at the chromosome 6 and 
chromosome 7 loci (Table 1 and Supplementary Fig. 3m-u). Analysis of SNP-based 
heritability (h2

SNP) demonstrated that a substantial portion of susceptibility to BrS is 
attributable to common genetic variation. h2

SNP estimates ranged from 0.17 (standard error, 
(s.e.) 0.035) using LDSC6 to 0.34 (s.e. 0.02) using GREML7, assuming a disease prevalence of 
0.05%8, with 24% of the total SNP-based heritability being explained by the 12 loci reaching 
genome-wide significance (Supplementary Table 4).  

Seven association signals (defined by the lead SNP and SNPs with r2 ≥ 0.6) at the 

chromosome 3 locus overlapped SCN5A and one overlapped the neighboring SCN10A gene 
encoding the sodium channel isoform NaV1.8 (Supplementary Fig. 4a-h). While previous 
work9 proposed that the latter signal may act through regulation of SCN5A expression, a 
possible involvement of SCN10A itself is suggested by a significant eQTL in left ventricular 
tissue (P = 5.29 × 10-6, colocalization posterior probability (CLPP) = 0.16) (Supplementary 
Fig. 4h and Supplementary Table 3), whereas no eQTL was detected for SCN5A (P = 0.27). 
Notably, six association signals overlapped genes encoding cardiac developmental 
transcription factors (HEY2, TBX20, ZFPM2, GATA4, WT1, TBX5) and four were < 300 kb from 
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such genes (TBX20, IRX3/IRX5, HEY2)10. In support for the involvement of transcription 
factor genes, an enrichment in genes encoding DNA binding proteins was found at BrS 
GWAS loci by permutation testing (one-tailed permutation P = 1 × 10−4; Extended Data Fig. 
1). The transcription factors HEY2, TBX20, GATA4, TBX5 and IRX3/IRX5 are established 
regulators of ion channel expression in the adult heart, including that of NaV1.511–15, 
suggesting that modulation of ion channel expression is an important mechanism in BrS. 
Potential regulatory effects of the transcription factors WT1 and ZFPM2 on ion channel 
expression have not yet been investigated. One association signal overlapped PRKCA 
(supported by a co-localizing eQTL; P = 4.63  × 10−28, CLPP = 0.99) (Supplementary Fig. 4s 
and Supplementary Table 3), which encodes protein kinase C alpha involved in contractility 
and calcium handling in cardiomyocytes16. Lastly, two association signals overlapped genes 
encoding microtubule or myofiber associated proteins, namely MAPRE217 and MYO18B18. A 
full annotation of the association signals (see Online Methods) is presented in 
Supplementary Table 3 and Supplementary Fig. 4. 

We performed a transcriptome-wide analysis (TWAS)19 based on predicted gene 
expression in cardiac tissues20 and identified 24 associations corresponding to 20 unique 
genes at the Bonferroni-corrected threshold of P < 5.2 × 10-6 (Supplementary Table 5). 
Eighteen of these genes are within ~0.5 Mb of GWAS signals while two point to additional 
loci (Supplementary Table 5). MAGMA gene property analysis for tissue specificity21 as well 
as enrichment analysis using LDSC-SEQ22 and GARFIELD23 identified left ventricle, right 
ventricle and fetal heart, respectively, as significantly associated with BrS (Supplementary 
Figs. 5 and 6 and Supplementary Tables 6 and 7). MAGMA gene-set analysis21 identified, 
amongst others, gene sets related to heart development and regulation of heart growth 
(Supplementary Table 8), which may point to a broader role of transcriptional dysregulation 
in the pathogenesis of BrS, beyond regulation of ion channel expression. 

MAPRE2 overlaps the association signal tagged by rs476348 and its causal role is 
supported by chromatin interaction between its promoter region and the association signal 
and by a significant eQTL (P = 2.9 × 10-5, CLPP = 0.10) (Extended Data Fig. 2 and 
Supplementary Table 3), where the BrS risk allele is associated with lower MAPRE2 
expression in left ventricular tissue compared to the non-risk allele. MAPRE2 encodes the 
microtubule plus-end binding protein EB2, a regulator of microtubule organization17. While 
effects on transcription factor expression and ion-channel patterning are established 
molecular mechanisms associated with BrS susceptibility5,13, mechanisms involving 
microtubule function and ion channel trafficking, as suggested by the association signal near 
MAPRE2, have not yet been explored. We therefore generated loss-of-function mutants 
(KO) using CRISPR/Cas9 in both zebrafish (Supplementary Fig. 7) and human induced 
pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) (Supplementary Fig. 8) to study 
the role of MAPRE2 in cardiac electrophysiology. Using optical mapping, we observed a 
significantly lower conduction velocity and action potential upstroke velocity (Vmax) in 
zebrafish hearts isolated from mapre2 KO compared to control (CTRL) larvae (Fig. 2a,b). 
Similarly, Vmax observed in single MAPRE2 KO hiPSC-CMs was lower than isogenic control 
hiPSC-CMs measured using manual patch clamp (Fig. 2d,e). The lower Vmax observed in both 
mutant zebrafish and hiPSC-CMs suggested lower INa. This was confirmed by automated 
patch-clamp measurements, which demonstrated ~50% less INa density in MAPRE2 KO 
compared to control hiPSC-CMs (Fig. 2f, left panel). Additionally, a small positive shift in 
voltage dependency of activation was observed, while voltage dependency of inactivation 
and recovery from inactivation were not different between control and KO cells (Extended 
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Data Fig. 3a-c). Whereas no repolarization abnormalities were observed in intact mapre2 
KO zebrafish hearts (Fig. 2c), significant action potential duration (APD) prolongation was 
observed in single MAPRE2 KO hiPSC-CMs (Fig. 2d,e). This APD prolongation may be 
explained by the significantly lower repolarizing outward current (Ioutward) amplitude in the 
KO hiPSC-CMs (Fig. 2f, right panel), although the voltage-dependency of activation was 
unchanged (Extended Data Fig. 3d,e). Together with the multiple levels of evidence that 
implicate conduction slowing and decreased INa in the pathogenesis of BrS, and previous 
work linking end-binding proteins to ion channel targeting to the plasma membrane24, our 
data suggest that modulation of microtubule function and subsequent alterations in ion 
channel trafficking may be a novel molecular mechanism contributing to BrS. Future work is 
needed to address the underlying molecular mechanisms and provide insight into the ion 
channels that underlie the observed abnormalities in repolarization, although a role for 
prolonged repolarization is not reconcilable with current hypotheses on BrS pathogenesis25.  

To further explore the genetic architecture of BrS in specific patient subgroups as 
well as the association of common variants in aggregate with disease severity, we calculated 
a polygenic risk score (PRSBrS) per individual based on the 21 risk alleles and their 
corresponding effect sizes. Of the 2,469 study participants tested, 454 (18.4%) carried a rare 
pathogenic or likely pathogenic variant in SCN5A (SCN5A+). SCN5A+ cases had a lower mean 

PRSBrS compared to cases without such variants (SCN5A–) (8.8  1.1 vs. 9.3  1.0; P = 2.1 × 
10-17; Fig. 3a), suggesting a higher burden of BrS-associated common variants in SCN5A– 

patients, as similarly shown in other heritable diseases26,27. Using LDSC, we observed a 
strong genome-wide correlation between the genetic contributors in SCN5A+ and SCN5A– 
patient subgroups (rg = 0.82; s.e. = 0.2), suggesting the involvement of the same risk alleles. 
Out of 2,367 BrS cases with complete data, 228 had a life-threatening arrhythmic event 
(LAE) at diagnosis or during follow-up (median age at last follow-up was 50.0 years, 
interquartile range 39.5-60.7). Although SCN5A+ cases had a higher risk for LAE compared to 
SCN5A– cases (HR 1.87; 95% CI 1.37-2.55; P = 8.1 × 10-5; Supplementary Table 9), PRSBrS was 
not significantly associated with LAE in BrS cases (P = 0.30, Supplementary Fig. 9). On the 
other hand, PRSBrS was significantly higher in BrS cases that presented with a spontaneous 
type 1 BrS ECG compared to those with a type 1 BrS ECG after sodium channel blocker 

challenge (9.3  1.1 vs. 9.1  1.1; P = 1.7 × 10-5; Fig. 3b), an effect that seemed more 

pronounced in the subgroup of SCN5A– cases (9.2  1.0 vs. 9.5  1.1; P = 3.5 × 10-8; 
Extended Data Fig. 4). These data support the concept that disease susceptibility in 
different individuals relies upon varying contributions of multiple factors, including both 
rare and common genetic variations and exposure to sodium channel blockade. 

To explore the genetic relationship of BrS with other traits, we performed a 
phenome-wide association study (PheWAS) in the UK Biobank using PRSBrS, applying 
Bonferroni correction (P < 7 × 10-4) to define statistical significance (Fig. 4a and 
Supplementary Tables 10-12). PRSBrS was associated with greater risk for atrioventricular 
conduction disorders (P = 1.5 × 10-9; OR = 1.16 (1.10-1.21) per s.d. increase), as well as 

longer ECG activation/conduction times reflected in the P-wave duration (P = 5.3 × 10-9;  = 

0.76 ms, s.e. = 0.13), PQ interval duration (P = 1.9 × 10-45;  = 2.70 ms, s.e. = 0.19), and QRS 

duration (P = 4.2 × 10-55;  = 1.23 ms, s.e. = 0.08). This underscores the important role of 
conduction slowing in the pathogenesis of BrS, and is further supported by a significant 
positive genome-wide correlation between BrS and QRS duration28 (rg = 0.44, P = 1 × 10-8; 
Supplementary Table 13). In contrast, PRSBrS was negatively associated with the QT interval 

duration (P = 4.8 × 10-16;  = -1.56 ms, s.e. = 0.19), consistent with suggestions of higher 
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cardiomyocyte phase 1 repolarizing drive in BrS13,25. PRSBrS was also negatively associated 
with the occurrence of atrial fibrillation (AF) or flutter (P = 6.2 × 10-13; OR = 0.94 (0.92-0.95)). 
The effects of each of the 21 BrS risk alleles in previously published GWAS of PQ29, QRS28, 
QT30 and AF31 are generally concordant with the aggregate effect of those alleles (PRSBrS) in 
the PheWAS (Fig. 4b, Extended Data Fig. 5 and Supplementary Tables 14-17). One 
exception is the BrS risk allele near MYO18B (rs133902-T), which was also associated with 
greater risk for AF (P = 9 × 10-10 in Nielsen et al.32, and P = 1 × 10-7 in Roselli et al.31; 
Extended Data Fig. 5). This suggests that, although changes in conduction velocity through 
sodium channel expression effects modulate risk for AF and BrS in opposite directions, some 
disease mechanisms such as those involving structural proteins (e.g. MYO18B) may be 
shared in both arrhythmias, with concordant effects. We also observed novel associations of 
PRSBrS with non-electrical phenotypes, namely body mass index (log-transformed; P = 6.2 × 

10-6;  = 0.0012, s.e. = 0.0003) and systolic blood pressure (P = 4.3 × 10-5;  = 0.12 mmHg, 
s.e. = 0.03; Supplementary Table 12). Of note, a recent study identified a modulatory effect 
of hypertension in cardiac sodium channel disease33. Lastly, a lookup of loci previously 
associated with ECG traits and AF identified 9 additional novel loci associated with BrS at a 
Bonferroni-corrected P < 1.9 × 10-4 (Supplementary Table 18). 

In conclusion, several important findings emerge from this work. First, we identified 
a total of 12 loci (10 novel) associated with BrS, a rare disease and a significant cause of 
sudden cardiac death in young adults. Three of these loci harbor multiple association 
signals. Second, the eight independent association signals at the SCN5A-SCN10A locus 
highlight the primacy of reduced sodium channel function in BrS susceptibility, whereas the 
eight loci harboring cardiac transcription factor genes point to transcriptional regulation as a 
key feature of BrS pathogenesis. Third, functional studies of MAPRE2 support a novel 
mechanism of NaV1.5 modulation via the microtubule network in BrS pathogenesis. Fourth, 
analyses using the UK Biobank highlight a genetic overlap between the BrS and cardiac 
electrical traits and common disorders in the general population. Finally, polygenic risk 
score analyses support the concept that disease threshold in different individuals with BrS is 
reached by varying contributions of rare SCN5A variants, common risk alleles and sodium 
channel blockade. Taken together, these findings broaden our understanding of the genetic 
architecture of BrS and provide new insights into its molecular underpinnings. 
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Figure legends 
 
Fig. 1 | Manhattan plot of genome-wide association meta-analysis comprising 2,820 
unrelated Brugada syndrome cases and 10,001 controls. The association P values were 
derived from a meta-analysis of the 10 GWAS strata using a fixed effects model with an 
inverse-variance weighted approach. We performed logistic regression on the disease status 
under additive model of SNP’s genotype. P-values are two-sided and not adjusted for 
multiple testing. The y-axis has breaks to emphasize the novel loci. The red and blue lines 
indicate the genome-wide significance (P < 5 × 10-8) and suggestive significance (P < 1 × 10-6) 
thresholds, respectively. Genes at novel loci are depicted in red. 
 
Fig. 2 | Loss of MAPRE2 leads to lower conduction velocity, action potential upstroke 
velocity and sodium current. a, Left panel shows representative isochrone maps of hearts 
isolated from 5 day post-fertilization zebrafish larvae injected with tracrRNA/Cas9 and 
multiple gRNAs targeting mapre2 (mapre2 KO) or tracrRNA/Cas9 without gRNA (CTRL). The 
dotted squares reflect the main ventricular area in the hearts from which the various 
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parameters are measured. Right panel shows average ventricular conduction velocity (CV) in 
CTRL and mapre2 KO hearts. b, Left panel shows representative maximum action potential 
(AP) upstroke velocity (Vmax) maps from zebrafish hearts. Right panel shows average Vmax in 
CTRL and mapre2 KO hearts. c, Left panel shows representative maps of AP duration at 80% 
repolarization (APD80) in isolated hearts paced at 100 bpm. Right panel shows average 
APD80 in CTRL and mapre2 KO hearts. d, Representative APs at 1 Hz pacing from single 
human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) with 
CRISPR/Cas9–mediated MAPRE2 knockout and isogenic control (CTRL) hiPSC-CMs. A 
constant ohmic current was injected to set the membrane potential just before the APs at 
approximately -80 mV to overcome the depolarized state of the hiPSC-CMs (see Online 
Methods). Inset shows first derivative of the AP upstroke velocity (Vmax). e, Average Vmax 
and APD at 30 and 90% repolarization (APD30 and APD90, respectively) in CTRL and MAPRE2 

KO hiPSC-CMs. Vmax (P = 8.1  10-6), APD30 (P = 4.8  10-6), and APD90 (P = 6.0  10-7) 
differed significantly between CTRL and MAPRE2 KO hiPSC-CM (**P <0.01; unpaired two-
tailed Student’s t-test). Maximal diastolic potential (-56.4 ± 1.5 mV (CTRL) vs. -55.6 ± 1.6 mV 
(MAPRE2 KO)) and AP amplitude (114.8 ± 6.7 mV (CTRL) vs. 121.8 ± 4.2 mV (MAPRE2 KO)) 
did not differ significantly between CTRL (n = 15) and MAPRE2 KO (n = 12) hiPSC-CMs 
(unpaired two-tailed Student’s t-test). f, Left panel shows average current-voltage 
relationships of the sodium current (INa). Right panel shows average repolarizing outward 
current (Ioutward) in CTRL and MAPRE2 KO hiPSC-CMs. Insets show voltage protocol used. *P < 
0.05, **P < 0.01 vs. CTRL (two-way ANOVA). Results are expressed as mean ± s.e.m. 
Numbers in the bar graph refer to the number of hearts or cells studied.   

Fig. 3 | Distribution of PRSBrS in specific patient sub-groups. a, Histograms displaying PRSBrS 
distribution in BrS cases carrying a rare pathogenic or likely-pathogenic variant in SCN5A 

(SCN5A+; blue) compared to BrS cases without such variants (SCN5A–; red). b, Histograms 

displaying PRSBrS distribution in BrS cases presenting with a spontaneous type 1 BrS ECG 

(blue) compared with those presenting with a type 1 BrS ECG only after sodium channel 
blocker challenge (drug-induced; red). PRSBrS was calculated per individual based on the 21 
BrS risk alleles and their corresponding effect sizes. Results were obtained after logistic 
regression, two sided p-value not corrected for multiple testing. Reported P values refer to 
the difference in PRSBrS units between two groups. Dashed lines showing the mean PRSBrS 
for each group. 

Fig. 4 | Associations between polygenic susceptibility to Brugada syndrome and common 
cardiovascular diseases and traits. a, Results of the phenome-wide association analysis 
(PheWAS) for the Brugada syndrome (BrS) polygenic risk score (PRSBrS) among individuals of 
European ancestry from the UK Biobank. Phenotypes significantly associated with PRSBrS and 
phenotypes relevant to the heart are shown on the x-axis (five electrocardiographic traits 
are depicted on the right of the plot); the P values from multiple regression are depicted on 
the y-axis. Red circles indicate that polygenic predisposition to BrS is associated with a 
positive beta (e.g. increased risk of the condition or higher value for continuous traits), 
whereas blue circles indicate that polygenic predisposition to BrS is associated with a 
negative beta (e.g. decreased risk of the condition or lower value). We set the significance 
threshold to P < 0.0007 after Bonferroni correction (P < 0.05/70), shown as dotted colored 
lines. The grey dotted lines indicate the nominal significance threshold (P < 0.05). The 
complete PheWAS results are shown in Supplementary Tables 11 and 12 for dichotomous 
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and continuous traits, respectively. b, Heat-map of associations between BrS risk alleles and 
atrial fibrillation/flutter (AF), PR-interval (PR), QRS-complex duration (QRS) and QT interval 
duration (QT) from previously published GWAS28–31. The complete PheWAS results are 
shown in Supplementary Tables 14-17. Each row represents an independent BrS risk allele, 
while each column represents a phenotype. Red indicates that the BrS risk allele (or a proxy 
with r2 > 0.8) is associated with higher risk of AF or prolongation of the electrocardiographic 
interval; blue indicates that the BrS risk increasing allele is associated with lower risk of AF 
or shortening of the interval. The darkest red and blue colors represent conventional 
genome-wide significance in the published GWAS (P < 5 × 10-8).  
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Table 1 | Lead SNPs and effect estimates for genome-wide significant association signals (P < 5 × 10-8) in the BrS GWAS meta-analysis 

Locus Lead SNP 
Genomic position 

(hg19) 
Risk allele Other allele 

Risk allele 
frequency 

in cases 

Risk allele 
frequency 
in controls 

OR [95% CI] P value Nearest gene 

1 

rs7638909* 3:38594973 G T 0.32 0.24 1.28 [1.17 - 1.40] 2.79E-08 SCN5A 

rs62241190* 3:38607468 G A 0.06 0.03 1.96[1.63 - 2.32] 8.56E-14 SCN5A 

rs7374540* 3:38634142 C A 0.51 0.39 1.72 [1.61 - 1.81] 3.56E-57 SCN5A 

rs7433206* 3:38657708 A T 0.45 0.42 1.48 [1.37 - 1.60] 9.52E-24 SCN5A 

rs34760424* 3:38683018 G T 0.98 0.94 2.32 [1.96 - 2.70] 3.03E-23 SCN5A 

rs41310232* 3:38689242 A G 0.16 0.09 1.56 [1.40 - 1.74] 1.19E-15 SCN5A 

rs6782237* 3:38696553 C G 0.78 0.68 1.74 [1.61 - 1.87] 1.05E-47 SCN5A 

rs6801957 3:38767315 T C 0.65 0.42 2.49 [2.34 - 2.65] 1.30E-180 SCN10A 

2 
rs6913204* 6:125664540 C T 0.51 0.47 1.22 [1.13 - 1.29] 1.30E-08 HDDC2 

rs9398791 6:126115821 C T 0.61 0.51 1.53 [1.44 - 1.63] 1.49E-39 HEY2, NCOA7 

3 
rs11765936 7:35349146 G T 0.18 0.15 1.37 [1.25 - 1.49] 4.30E-11 TBX20 

rs340398* 7:35413788 C T 0.42 0.38 1.22 [1.15 - 1.30] 1.76E-09 TBX20 

4 rs804281 8:11611865 G A 0.63 0.58 1.22 [1.15 - 1.30] 1.22E-09 GATA4 

5 rs72671655 8:106347897 T A 0.97 0.95 1.85 [1.59 - 2.22] 2.51E-13 ZFPM2 

6 rs72905083 11:32474374 A G 0.1 0.08 1.43 [1.27 - 1.60] 2.09E-09 WT1 

7 rs883079 12:114793240 C T 0.34 0.28 1.25 [1.16 - 1.33] 1.59E-10 TBX5 

8 rs11645463 16:54456353 A G 0.59 0.54 1.22 [1.15 - 1.30] 1.27E-09 IRX3 

9 rs72622262 16:54662944 C G 0.87 0.83 1.36 [1.25 - 1.49] 1.37E-11 CRNDE, IRX5 

10 rs12945884 17:64300281 T C 0.58 0.53 1.20 [1.12 - 1.28] 3.31E-08 PRKCA 

11 rs476348 18:32670021 C T 0.73 0.69 1.25 [1.16 - 1.33] 2.64E-09 MAPRE2 

12 rs133902 22:26164079 T C 0.48 0.43 1.21 [1.13 - 1.29] 7.73E-09 MYO18B 

*Variants associated with BrS in conditional analyses. Abbreviations: 95% CI, 95% confidence interval; OR, odds ratio referring to each unit increase in the risk 
allele. We performed logistic regression on the disease status under additive model of SNP’s genotype. P-values are two-sided and not adjusted for multiple 
testing. Confidence intervals are given for a nominal P-value of 0.05 in order to allow comparability with other studies and reports. 
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Online Methods 

 

Case inclusion and study design. We established an international consortium allowing the 
inclusion of 2,820 unrelated individuals with Brugada syndrome (BrS) from 39 BrS reference 
centers in 12 countries (Supplementary Table 1). All human participants provided written 
informed consent, and all studies had received approval from the appropriate ethical review 
boards (see Reporting Summary). The diagnosis of BrS was made according to the 2013 
Heart Rhythm Society (HRS), European Heart Rhythm Association (EHRA) and Asia Pacific 
Heart Rhythm Society (APHRS) expert consensus statement37, the 2015 European Society of 
Cardiology guidelines2, and the 2017 American Heart Association guidelines38. Specifically, 
cases were included if they had a type 1 BrS ECG, that is, a coved type ST elevation at 
baseline (spontaneous) or after a drug challenge test, in one or more leads in the right 
precordial leads V1 and/or V2 in the standard position (4th intercostal space) or in high 
positions (2nd or 3rd intercostal spaces). Diagnostic ECGs were centrally assessed by a 
cardiac electrophysiologist with expertise in BrS (J.B.G., Y.M. or R.T.) to ensure the 
diagnostic ECG criteria were reached. Clinical data collection was performed at each site, 
including age at diagnosis, presence of a variant in SCN5A, presence of a spontaneous type 1 
BrS ECG or a type 1 BrS ECG observed after drug challenge, implantable cardioverter-
defibrillator implantation, time of occurrence of life-threatening arrhythmic events (LAEs), 
and family history of sudden cardiac death. LAEs were defined as out-of-hospital cardiac 
arrest or hemodynamically unstable ventricular tachycardia/ventricular fibrillation. 

 

Assessment of the pathogenicity of reported SCN5A variants. The SCN5A gene had been 
screened for rare variants in 87.6% of individuals. Pathogenicity of rare variants in SCN5A 
identified in included BrS cases was centrally assessed using the American College of 
Medical Genetics and Genomics and Association of Molecular Pathology (ACMG/AMP) 
guidelines39, using an adapted version of CardioClassifier40 incorporating a quantitative 
approach based on case-control analyses, as performed previously in hypertrophic 
cardiomyopathy genes3, as well as a curated compendium of functional data4. Specifically, 
the following ACMG/AMP rules were applied: 

• PM2/BS1: The PM2 or BS1 rules were activated depending on whether the gnomAD 
exomes filtering allele frequency was below or above the calculated maximum tolerated 
allele frequency for BrS. The threshold applied was 2.5 × 10-5, calculated with 
https://www.cardiodb.org/allelefrequencyapp/ using a disease prevalence of 1 in 2,000, 
allelic heterogeneity of 0.01 and penetrance of 0.10.  

• BA1: Filtering allele frequency in gnomAD exomes > 0.001. 

• PVS1: Truncating variants in SCN5A, i.e. frameshift, nonsense, splice donor and splice 
acceptor variants. 

• PS4: Variant is enriched in case cohorts (based on published BrS SCN5A compendium41) 
compared to ExAC population controls (Fisher’s exact test, P < 1.79 × 10-6 after multiple 
testing correction), as applied by CardioClassifier. 

• PP3/BP4: Multiple lines of computation evidence support or refute a deleterious effect, 
as applied by CardioClassifier.  

https://www.cardiodb.org/allelefrequencyapp/
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• PM4: A protein length change as a result of an in-frame deletion or insertion in a non-
repeat region. 

• BP3: In-frame insertion or deletion that falls within a region annotated by repeat 
masker. 

• PS1: Same amino acid change as a previously established pathogenic variant (multiple 
ClinVar submissions with no conflicting evidence). 

• PM5: Novel missense change at an amino acid residue where a different missense 
change has previously been established as pathogenic (multiple ClinVar submissions 
with no conflicting evidence). 

• PS1_moderate/PM5_supporting: Known disease-causing variant affecting the same 
residue in a paralogous protein42, either with the same or a different amino acid 
substitution, respectively.  

• PS3/BS3: Functional evidence showing a deleterious effect (or no deleterious effect) of 
the variant based on published cellular electrophysiology studies curated by Denham et 
al.43. 

• PM1: This rule was applied based on pre-computed etiological fraction (EF) values for 
rare, non-truncating variants as described by Walsh et al.44. This approach defines the 
prior probability, as calculated through case-control cohort analysis, that a variant in a 
particular gene/protein region is pathogenic. The rules applied are PM1_strong (EF ≥ 
0.95), PM1_moderate (0.9 ≤ EF < 0.95) or PM1_supporting (0.8 ≤ EF < 0.9). For SCN5A 
variants, this analysis was performed using case data from this study and population 
data from gnomAD exomes. Protein domains were defined according to the Uniprot 
(version 207) entry Q14524 with the four transmembrane regions and three interlinker 
domain regions assessed together as functionally equivalent domains. The PM1_strong 
rule was applied to the transmembrane regions (amino acid residues 132-410, 718-938, 
1207-1466, 1530-1771) and the PM1_supporting rule was applied to the N-terminus 
region (residues 1-131). 

Rules based on co-segregation of variants with disease in family pedigrees (PP1/BS4) or de 
novo inheritance with/without confirmed paternity and maternity (PS2/PM6) were not 
applied. 

 

GWAS analysis design, description of the strata and quality control. Quality control (QC) 
and case-control association analysis were performed in 10 strata (see Supplementary Note 
for a full description of the 10 different strata; Supplementary Table 2) followed by meta-
analysis, as described in the following sections. Samples were grouped into strata on the 
basis of common ancestry (as determined by principal component analysis of genotypic 
data; Supplementary Fig. 1), same genotyping platform and time of genotyping. To ensure 
that none of the BrS cases were included in multiple strata, a genotypic relatedness analysis 
based on identity by state was performed using a linkage-disequilibrium (LD) pruned set of 
single nucleotide polymorphisms (SNP) that were overlapping between all strata.  
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Imputation and association analyses. Genome-wide imputation was performed per stratum 
using Eagle2 phasing, Minimac3 and the Haplotype Reference Consortium (HRCr1.1) panel 
implemented on the Michigan Imputation Server v.1.0.245. After imputation, only SNPs with 
MAF > 0.01 and a Minimac R2 > 0.5 were taken forward in the association analysis. 

The association of alternate allele dosage with BrS was performed for each of the 10 
strata using a frequentist test in an additive model implemented in SNPTEST (v2.5.2), 
correcting for the first six genotypic principal components. The summary results of the 10 
strata were then combined using an inverse variance weighted fixed-effect meta-analysis, 
performing meta-analysis heterogeneity analysis, implemented in METAL (version released 
on 2011-03-25). SNPs that were missing in ≥ 4/10 strata, as well as those with a 
heterogeneity test P < 10-7 were excluded. 

We sought to uncover additional association signals at BrS loci using conditional 
analysis. Specifically, for each locus reaching the genome-wide statistical significance 
threshold (P < 5 × 10-8), a frequentist test implemented in SNPTEST (v2.5.2) was performed 
correcting for the first six genotypic principal components and conditioning on the lead SNP 
at the locus, for each of the 10 strata, followed by meta-analysis. If another independent 
signal reaching genome-wide significance was identified at the locus in the meta-analysis, a 
second analysis conditioning on the two independent lead SNPs at the locus was then 
performed. This was repeated until no independent signal reached genome-wide statistical 
significance. 

The results of the case-control meta-analysis are shown in Fig. 1, Table 1 and 
Supplementary Table 3. Principal component analyses plots of cases and controls in each of 
the 10 GWAS strata are shown in Supplementary Fig. 1. QQ plots of each stratum are 
reported in Supplementary Fig. 2 and forest plots for all loci reaching P < 5 × 10-8 are shown 
per stratum and overall (summary) in Supplementary Fig. 3. Stratum-specific odds ratios, 
95% confidence intervals, and P values are based on logistic regression assuming an additive 
genetic model. Summary odds ratios and 95% confidence intervals are from fixed effects 
meta-analysis. Forest plots were generated using the rmeta library implemented in the R 
project (R foresplot). 

 

Analysis of heritability attributable to common variants. We used the generalized 
restricted maximum likelihood (GREML) approach of GCTA (version 1.92.4 beta)46,47 to 
estimate how much of the variance in BrS susceptibility could be attributed to common 
genetic variants (SNP-based heritability, h2

SNP). The analysis was performed by stratum, 
followed by a fixed-effects meta-analysis using the meta package in R version 3.6.0. The 
GSA_TUR stratum was excluded given its small sample size (n = 300) where GREML failed. 
Prior to heritability analyses, we performed additional stringent post-imputation QC as 
suggested48, using hard call genotypes (genotype probability, GP > 0.9) and excluding SNPs 
with missing rate > 0.01, MAF < 0.05, Hardy-Weinberg test P < 0.05 and phenotype biased 
missingness P < 0.05, as well as samples with missing rate > 0.01. Less stringent QC was used 
for the GSA_IT stratum to allow for sufficient SNPs to remain for GREML. For each stratum, 
we generated a genetic relationship matrix (GRM) and excluded distantly related individuals 
(proportion IBD > 0.05). We estimated h2

SNP on the liability scale assuming a prevalence 
ranging from 0.005 to 0.00058,49 with the first 20 genotypic principal components and sex as 
covariates. We also estimated h2

SNP attributable to the 12 loci associated with BrS at 
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genome-wide statistical significance. Loci were defined as +/- 500 kb from the lead SNP(s) in 
primary or conditional analyses. The proportion of heritability explained by the 12 loci was 
calculated by dividing their h2

SNP by the genome-wide h2
SNP. As an alternative to GREML, we 

also used LDSC (1.0.0) to calculate SNP heritability using the meta-analysis summary 
statistics, restricted to the ~1.2 million HapMap SNPs, using the 1000 Genomes European 
population as a reference. The results of h2

SNP estimation are shown in Supplementary 
Table 4.  

 

Locus annotation. Association signals from the meta-analysis were annotated by presence 
of: (i) (proxy) coding variants; (ii) cis-expression quantitative trait loci (eQTL); (iii) cis-splice 
quantitative trait loci (sQTL); and (iv) contact with promoters of nearby genes.  

(Proxy) coding variants. We performed a lookup to assess whether the lead SNP or 
variants in LD with the lead SNP alter the protein-coding region of a gene. An r2 ≥ 0.6 was 
applied, defined using the European subset of the 1000 Genomes Project in LDlink50. 
Protein-altering coding variants were defined as missense, splice site (within 2 nucleotides 
of the exon-intron boundary), in-frame deletions/insertions, frameshift, and stopgain. 
Coding variants defined in this way are listed in Supplementary Table 3. 

cis-eQTL. For each association signal, we used the left ventricular tissue dataset from 
the Genotype-Tissue Expression project (GTEx, accessed December 2019)20 to identify cis-
eQTLs. Significance of a variant-gene association was defined using a Bonferroni-corrected 
P-value threshold, correcting for the number of genes within 1 Mb of the association signal. 
As such, the P-value thresholds ranged from 5.56 × 10-3 to 1.85 × 10-3. Significant eQTLs are 
listed in Supplementary Table 3 and displayed in Supplementary Fig. 4. Significant eQTLs 
were assessed for colocalization using eCAVIAR51 to determine colocalization with the 
GWAS hit. Heart - Left Ventricle eQTLs from GTEx v.7 were used; eCAVIAR used SNP, eQTL z-
scores and LD correlation values to calculate a colocalization posterior probability of a trait 
GWAS locus and an eQTL. We calculated LD of SNPs 1Mb on both sides of the SNPs, using 
European ancestry HRS samples (dbGaP accession code phs000428.v2.p2) as a reference. 
We used the default assumption of two causal SNPs. Colocalization posterior probability 
(CLPP) for eQTL hits are displayed in Supplementary Table 3. 

cis-sQTL. We assessed whether the lead SNP at each locus displayed a cis-sQTL effect 
by performing a lookup in the left ventricular tissue dataset of GTEx (accessed March 
2020)20. Only variants with a significant variant-gene association are reported.   

Hi-C. Interaction between associated loci and target regions was assessed using the 
tissue specific 3D chromatin interaction (Hi-C) mapping function, incorporated in FUMA52. 
Hi-C data from human left ventricle36 was explored and interactions with an FDR ≤ 10-6  are 
reported in Supplementary Fig. 4 and listed in Supplementary Table 3. Target regions 
including the transcription start site are displayed in bold. 

 

Analysis for enrichment in genes encoding DNA binding proteins. We used SNPsnap53 to 
generate 10,000 sets of 12 SNPs that had characteristics matching the lead SNPs at the non-
chromosome 3 BrS loci. We took 12 SNPs since the two lead SNPs at the TBX20 locus were 
located close to each other and only one of these was therefore considered. SNPs were 
matched based on minor allele frequency, number of SNPs in LD, distance to nearest gene 
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and number of nearby genes (gene density). Genes listed in GO term ‘sequence-specific 
DNA binding’ (GO:0043565) were used as a broad list of genes encoding DNA binding 
proteins. Enrichment was assessed by permutation testing across the 10,000 SNP sets to 
determine the neutral expectation for the number of DNA binding proteins overlapping or 
in vicinity to SNPs with characteristics similar to ours, yielding a P value for a one-tailed test. 
A SNP was considered near a gene encoding a DNA binding protein if it was within a radius 
of 300 kb upstream or downstream of any gene on the GO term list.  

 

Genome-wide visualization and annotation. The BrS GWAS summary statistics were 
uploaded to FUMA (Functional Mapping and Annotation of GWAS)52 for visualization and 
genome-wide analyses. Gene-set and tissue expression analyses were performed using 
MAGMA54 implemented in FUMA. Gene Ontology (GO) gene sets from the Molecular 
Signatures Database (MSigDB, v6.2)55 were used for the gene-set analysis, and the 
Genotype-Tissue Expression project (GTEx, version 8) was used for tissue specificity 
analysis20. The results of MAGMA gene-set analyses are shown in Supplementary Table 8 
and the results of MAGMA tissue specificity analyses are shown in Supplementary Fig. 5.  

We used GARFIELD23 to correlate the GWAS findings with regulatory or functional 
annotations and find features relevant to a phenotype of interest. Since our GWAS included 
only European individuals, we used the original files describing the allele frequencies and 
linkage disequilibrium from the UK10K data provided in the GARFIELD distribution. We also 
used the annotation and distance to TSS files provided with the GARFIELD release. The 
annotations included 1,005 features extracted from ENCODE, GENCODE and Roadmap 
Epigenomics projects, including genic annotations, chromatin states, histone modifications, 
DNaseI hypersensitive sites and transcription factor binding sites, among others, in a 
number of publicly available cell lines. Enrichment P-value is determined empirically 
through a permutation procedure accounting for associated regions structures based on the 
number of SNPs and mean LD. Because the chromosome 3p region presents a complex 
structure with a set of SNPs both physically close and highly associated, we also ran the 
enrichment analysis without this region. Results of GARFIELD functional enrichment 
analyses are shown in Supplementary Table 7 and Supplementary Fig. 6. 

Alternatively, we used stratified LDscore regression56 to estimate the contribution to 
heritability for cell type or tissue–specific elements. In this extended model, the expected 
SNP association statistic (c2) is modelled by LDscore as previously and by a binary variable C 
(for category) which takes value 1 if the SNP falls into the functional category (and 0 
otherwise). Multiple-regression is applied. We label regions as putatively functional or not 
for each annotation (function/tissue) using the functional map estimated by the method 
FUN-v-LDA57 for the Roadmap-Epigenomic project. Results from this LDSC enrichment test 
are shown in Supplementary Table 6. 

 

Transcriptome-wide association study (TWAS). TWAS was performed using FUSION19 and 
eQTL data in cardiac tissues (left ventricle and atrial appendage) from GTEx20. Gene 
expression weights were calculated using prediction models implemented in FUSION. This 
includes top1 (i.e., the single most significant eQTL-SNP as the predictor), LASSO regression, 
enet (elastic net regression) and BLUP (best linear unbiased predictor). SNP data located 500 
kb on both sides of the probes were used to obtain expression weights. There were 4,490 
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and 5,225 genes with significant cis-heritability (h2 > 0.05) for left ventricle and atrial 
appendage cardiac tissues, respectively, to calculate expression weights. Expression weights 
were then combined with summary-level results from the meta-analysis to estimate 
association statistics between gene expression and BrS. Genome-wide significant TWAS 
genes were considered at PTWAS < 5.2 × 10-6 (Bonferroni = 0.05/4,490+5,225). Significant 
genes identified by TWAS are listed in Supplementary Table 5. 

 

Brugada syndrome polygenic score (PRSBrS). A BrS polygenic risk score (PRSBrS) was derived 
from the BrS case-control GWAS. All independent lead SNPs reaching the genome-wide 
significance threshold (P < 5 × 10-8) in either the primary or conditional analyses were 
included (total of 21 SNPs, Table 1). The score for each individual was calculated by taking 
the sum of risk allele dosage weighted by the beta coefficient estimated in the GWAS over 
these SNPs. To assess whether the burden of BrS-associated common variants differs 
between distinct BrS subgroups, we tested the association between certain subgroups and 
PRSBrS using linear regression. We performed a total of seven predefined analyses involving 
PRSBrS: (i) comparison of PRSBrS in SCN5A+ vs. SCN5A– (n = 1); (ii) association of PRSBrS with 
life-threatening arrhythmic events (LAE) in all BrS, SCN5A– BrS and SCN5A+ BrS (n = 3); and 
(iii) Association of PRSBrS with the occurrence of type 1 ECG at baseline vs. drug-induced in 
all BrS, SCN5A– BrS, and SCN5A+ BrS (n = 3). The Bonferroni-corrected threshold for 
significance was set to P < 0.007 (0.05/7). The five first principal components were used as 
covariates in a sensitivity analysis, and results were similar to the analysis without 
covariates. These data are presented in Fig. 3 and Extended Data Fig. 4. 

 

Survival analyses. Time to life-threatening arrhythmic events (LAE defined as out-of-
hospital cardiac arrest or hemodynamically unstable ventricular tachycardia/ventricular 
fibrillation) survival analyses were performed in the BrS cases. Follow-up started at birth 
and ended at the date of an event, the last visit or the 70st birthday, whichever came first. 
Cox proportional hazards regression models were first used to assess the association of 
clinical risk factors with LAE in univariable followed by multivariable models. The adjusted 
Cox regression multivariable model included sex, SCN5A+ and spontaneous type 1 ECG. The 
proportional hazard assumptions were verified through examination of Schoenfeld residuals 
plots. For all analyses, a P-value < 0.05 was considered statistically significant. All analyses 
were performed using SAS software, version 9.4 (SAS Institute Inc, NC, USA), and R version 
3.4. Kaplan Meier curves were created to illustrate the event free survival within PRSBrS 
quartiles, and single SNP genotypes and log rank tests were used to compare the survival 
curves. The effect of the PRSBrS (continuous) and single SNP genotypes was estimated using 
Cox proportional hazards regression with adjustment for sex, genotypic PC1-PC6, the 
presence of a pathogenic or likely pathogenic variant in SCN5A and spontaneous type 1 BrS 
ECG. All SNP- or PRSBrS-based statistical analysis were performed in three strata separately 
based on genotypic platform (Affymetrix CEU, PMRA and Illumina GSA) followed by meta-
analysis using an inverse variance weighted fixed effect model, implemented in METAL 
(version 2011-03-25)58. Results from these survival analyses are shown in Supplementary 
Table 9 and Supplementary Fig. 9. 
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Pairwise genetic correlation. We performed pairwise genetic correlation between BrS and 
published GWAS studies of ECG traits (PR29, QRS28 and QT30) and atrial fibrillation31,32, using 
LDSC (Version 1.0.1)38,39. For each GWAS, we first reformatted summary statistics using the 
“munge_sumstats.py” command, filtering for the HapMap3 SNPs with corresponding alleles 
using the “--merge-alleles w_hm3.snplist” flag, as recommended. The HapMap3 SNPs were 
downloaded from 
“https://data.broadinstitute.org/alkesgroup/LDSCORE/w_hm3.snplist.bz2”. We then 
assessed genetic correlation using the “ldsc.py –rg” command and pre-computed LD scores 
from the European 1000 Genomes Project dataset which were downloaded from 
“https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2”. In the 
primary analysis, we did not constrain the single-trait and cross-trait LD score regression 
intercepts. The results of the genetic correlation analyses are shown in Supplementary 
Table 13. 

 

Phenome-wide association study (PheWAS) of PRSBrS in the UK Biobank. The UK Biobank is 
a large prospective cohort study from the United Kingdom with deep phenotypic and 
genotypic data on ~500,000 individuals enrolled aged 40-6959,60. Phenotypic data was 
ascertained from anthropometric measurements, surveys, medical history reviews and 
electronic health records. Individuals were genotyped using one of two similar custom 
arrays (UK BiLEVE Axiom Array or UK Biobank Axiom Array) with over 800,000 genome-wide 
markers60. Quality-control and imputation using the UK10K panel and the 1000 Genomes 
reference panels were performed centrally. For the present analysis, we excluded 
individuals with outliers for heterozygosity or genotype missingness, individuals with 
discordance between self-reported and genetically inferred sex, individuals with putative 
sex chromosome aneuploidy, and individuals who decided to withdraw consent. 
Additionally, we restricted ourselves to white-British individuals as determined by previous 
principal component analysis61 and kept only unrelated individuals (those with 3rd degree or 
closer relationships were removed) while maximizing the final sample size62. The final 
cohort consisted of 359,017 individuals (54% females; median baseline age 59; median 
follow-up 7 years) of which 15,208 had a high-quality 12-lead resting ECG. Genetic dosages 
of imputed variants (version 3) were used to calculate PRSBrS using PLINK263. Scores were 
standardized so that the population mean was 0 and the standard deviation was 1. 

A PheWAS with an emphasis on cardiovascular traits was performed in this cohort 
using a list of 65 curated (disease) phenotypes (Supplementary Table 10). Associations 
between PRSBrS and continuous phenotypes were tested using multivariable linear 
regression models in R version 3.5.0. Models were adjusted for age at baseline, sex, 
genotyping array and the first 10 principal components of ancestry. Binary phenotypes were 
included if there were at least 500 cases and were assessed using multivariable logistic 
regression adjusted for the same covariates (Supplementary Table 11).  

For associations between the PRSBrS and ECG-traits we further excluded: (i) 
individuals with heart rates over 120 bpm; (ii) individuals with previous myocardial 
infarction, Wolff-Parkinson-White syndrome or heart failure; (iii) individuals with 
pacemakers; (iv) individuals taking class 1 or class 3 antiarrhythmic or QT-prolonging 
medication (including digoxin); and (v) individuals with atrial fibrillation/flutter, 
atrioventricular block or any fascicular block on automated ECG. Trait-specific exclusions 
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were also applied (Supplementary Table 12). Exclusions were based on previously published 
GWAS28–30 as well manual inspection of trait distributions. Associations were assessed using 
multivariable linear regression adjusted for age at ECG, sex, genotyping array, the first 10 
principal components of ancestry and optionally the RR-interval. Alpha for the entire 
PheWAS was determined at 0.05 / 70 = 7.00 × 10-4 (Bonferroni correction). 

 

Zebrafish model of MAPRE2 knockout. Zebrafish maintenance. Zebrafish (Danio rerio) were 
maintained in a dedicated fish facility at 28.5 °C with a stable circulating system that 
continuously filters, treats (with UV light), and aerates the water. All experiments using 
zebrafish followed animal protocols approved by the Harvard Medical School Institutional 
Animal Care and Use Committee and complied with ethical guidelines. For all zebrafish 
studies, wild-type embryos were injected at 1-cell stage (as described under “Genome 
editing”) and used for experiments at 5 days post-fertilization. Sex in zebrafish is not 
determined until adulthood around 2-3 months of age. 

Genome editing. Wild-type (WT) AB/Tuebingen (AB/Tu) zebrafish were crossed and 
resultant embryos from the same clutches were divided into two different groups injected 
with a solution containing either three gRNAs targeting mapre2 at three independent loci 
(exon 1: TGCTCGCCAGGGTCTGGAGGGGG, exon 3: TTCTTAAGACTGATACAGCCGGG, exon 4: 
GACAGAGCTTGGGTCGGACCGGG), Alt-R® tracrRNA (#1072533), and Alt-R® S.p. HiFi Cas9 
Nuclease V3 (#1081060), or tracrRNA and Cas9 alone (all from Integrated DNA Technologies, 
Inc., Iowa, USA), according to the manufacturer’s instructions (Supplementary Fig. 7a). All 
larvae injected with gRNAs and used for optical mapping were sequenced using three 
primer pairs corresponding to the target sites of the three gRNAs: exon 1 
(CTGTCGAGTGGAAGacacattc, CGCACTGTGTTCTTTCTGTAGG), exon 3 
(TCATCTCTGTGCATTGTTTTCC, CTGCACATGTCTAAAGCAAAGG), and exon 4 
(CAACCTTGACTTCATTCAGTGG, acagaatttccatctttgggtg). All larvae had evidence of editing at 
two loci or more by Sanger sequencing.  

Optical mapping of isolated zebrafish hearts. Optical mapping and signal processing 
were performed as previously described64. Briefly, isolated hearts were incubated with a 
voltage-sensitive fluorescent dye in the FluoVolt™ Membrane Potential Kit (Invitrogen, USA) 
for 20 min at room temperature (RT). Subsequently, the hearts were transferred into a 
perfusion chamber (RC-49MFS; Warner Instruments) with Tyrode’s solution (RT) containing: 
136 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl2, 1.0 mM MgCl2, 0.3 mM Na2HPO4, 5.0 mM glucose, 
10 mM HEPES; pH 7.4 (NaOH). Cytochalasin D (1 mM; Sigma, USA) was added to uncouple 
electrical impulses from contractions. The chamber was then mounted onto the stage of an 
inverted microscope (TW-2000; Nikon) with electrical wires connected to the built-in 
platinum wires in the chamber for pacing. The heart was excited with a 470-nm light-
emitting diode, and the emission was collected by a high-speed 80 by 80 pixel CCD camera 

(RedShirtImaging, USA) with 14-bit resolution. Using a 20 objective and 0.5 C-mount 

adapter, the final magnification was 10 with a pixel-to-pixel distance of 2.4 µm. For signal 
processing and quantification, the images were analyzed by customized scripts in MATLAB 
(MathWorks, USA)64. Optical mapping data are shown in Fig. 2a-c. 

Quantitative real-time PCR on whole zebrafish larvae. Total RNA was extracted from 
whole 5 dpf larvae using RNeasy Plus Mini Kit (Qiagen, USA) and reversed transcribed using 
iScript™ Reverse Transcription Supermix for RT-qPCR (Bio-Rad, USA), according to the 
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manufacturers’ instructions. cDNA libraries were used for quantitative real-time PCR using 
iTaq Universal SYBR Green Supermix (Bio-Rad, USA) on the CFX96 Touch Real-Time PCR 
Detection System (Bio-Rad, USA). Samples were run in technical triplicates and data were 
analyzed using the delta-delta Ct method, normalized to the level of eef1a (Supplementary 
Fig. 7b,c and Supplementary Table 19).  

Statistics. Data are presented as mean ± standard error of the mean (s.e.m.). Data 
were analyzed using Excel. Groups were compared with unpaired two-tailed Student’s t-test 
and P < 0.05 defines statistical significance. 
  
hiPSC-CM model of MAPRE2 knockout. hiPSC maintenance. The human induced pluripotent 
stem cell (hiPSC) line 19c3 was previously derived from peripheral blood mononuclear cells 
of a healthy male using Sendai virus (Invitrogen) and expressed an exogenous TNNT2 
promoter-derived Zeocin resistance cassette65. The hiPSCs were passaged at a ratio of ~1:15 
every 4 days using 0.5 mM EDTA (for 6 min at RT), achieving ~75-80% confluence. The cells 
were routinely maintained in B8 mediumX2 on 1:800 diluted growth factor reduced 
Matrigel (Corning), except for the first 24 h after passage when B8 was supplemented with 2 
μM thiazovivin (LC Labs, T-9753), hereby referred to as B8T medium. All cultures 
(pluripotent and differentiation) were maintained in 2 ml medium per 9.6 cm2 of surface 
area or equivalent.  

Genome editing. To generate MAPRE2 knockout gRNA expression vectors, two 
gRNAs targeting all four splicing variants of MAPRE2 were designed using an online CRISPR 
design tool (IDT) with high predicted on-target score and minimal predicted off-target effect 
(Supplementary Fig. 8). DNA oligos (IDT) encoding each gRNA with BbsI ligation overhangs 
were annealed and inserted into the BbsI restriction site of a pSpCas9(BB)–2A–Puro (PX459, 
Addgene 62988) plasmid. The constructed gRNA expression plasmids were confirmed by 
Sanger sequencing (Eurofins) with the LKO1_5_primer (5’–GACTATCATATGCTTACCG–3’). 
CRISPR/Cas9–mediated knockout of MAPRE2 was induced after cell passage by 
electroporation of 5 × 106 hiPSC with 5 µg of each gRNA expression vector. Subsequently, 
cells were maintained for 48 h in B8T medium supplemented with 0.5 μg/ml of puromycin 
(Gibco). Puromycin resistant individual colonies were picked and expanded ~10 days after 
electroporation. Clones with indels were identified by genomic sequencing with primers 
outside of the targeting region. Genomic DNA was extracted from the cell pellets using a 
Quick–DNA Miniprep Plus kit (Zymo). 

hiPSC-CMs differentiation. Differentiation into hiPSC-CMs was performed according 
to previously described protocol with slight modifications66,67. Briefly, at the start of 
differentiation (day 0), B8 medium was changed to R6C, consisting of RPMI 1640 (Corning, 

10-040-CM), supplemented with 6 μM of glycogen synthase kinase 3- inhibitor CHIR99021 
(LC Labs, C-6556). On day 1, medium was changed to RPMI, and on day 2 medium was 
changed to RBA-C59, consisting of RPMI supplemented with 2 mg/ml fatty acid-free bovine 
serum albumin (GenDEPOT, A0100), 200 μg/ml L-ascorbic acid 2-phosphate (Wako, 321-
44823) and 0.5 µM Wnt-C59 (Biorbyt, orb181132). Medium was then changed on day 4 and 
then every other day with RBAI consisting of RPMI supplemented with 0.5 mg/ml fatty acid-
free bovine serum albumin, 200 μg/ml L-ascorbic acid 2-phosphate, and 1 µg/ml E. coli-
derived recombinant human insulin (Gibco, A11382IJ). Contracting cells were noted from 
day 7, differentiated cardiomyocytes were treated with 25 μg/ml of Zeocin from day 10 to 
day 14. On day 20 of differentiation, cardiomyocytes were dissociated using DPBS for 20 min 
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at 37 °C followed by 1:200 Liberase TH (Roche, 5401151001) diluted in DPBS for 20 min at 

37 °C, centrifuged at 300g for 5 min, and filtered through a 100 μm cell strainer (Falcon). 
hiPSC-CMs were then plated on a Matrigel-coated 18-mm cover glass (Warner Instruments) 
for action potential (AP) measurements and into 30-mm culture dishes for membrane 
current recordings. 

Cellular electrophysiology of hiPSC-CMs. APs and membrane currents were measured 
with manual and automated patch clamp, respectively. The experiments were not 
randomized and the investigators were blinded to allocation during experiments and 
outcome assessment. APs were recorded at 37 °C from spontaneously beating hiPSC-CMs 
using the amphotericin-B perforated patch-clamp technique with a Multiclamp 700B 
amplifier and Clampex 10.3 software (Molecular Devices, Sunnyvale, CA, USA). Pipettes 
(resistance 3-3.5 MΩ) were pulled from thin wall borosilicate glass capillaries (WPI, 1B120F-
4) using a horizontal microelectrode puller (Sutter instrument, P-1000). Signals were low-
pass-filtered with a cutoff of 10 kHz and digitized at 10 kHz. Bath solution contained: 140 
mM NaCl, 4.0 mM KCl, 1.0 mM CaCl2, 0.5 mM MgCl2, 10 mM glucose, 10 mM HEPES; pH 7.4 
(NaOH). Pipettes were filled with solution containing: 125 mM K-gluconate, 20 mM KCl, 5.0 
mM NaCl, 0.26 mM amphotericin-B, 5.0 mM HEPES; pH 7.2 (KOH). To overcome the 
spontaneous activity and depolarized state of hiPSC-CMs68, an ohmic current ~4 pA/pF was 
continuously injected to maintain a stable resting potential at approximately -80 mV, except 
where mentioned otherwise. The injected current did not differ significantly between the 
CTRL and MAPRE2 knockout hiPSC-CMs (4.0 ± 0.2 pA (CTRL, n = 15) vs. 4.3 ± 0.4 pA (MAPRE2 

KO, n = 12). APs were evoked at 1 Hz by 4-ms, ~1.3 threshold current pulses through the 
patch pipette, and were characterized by maximum AP amplitude (APA), AP duration at 20 
and 90% of repolarization (APD20, APD90, respectively), and maximal upstroke velocity (Vmax). 
The maximal diastolic potential was analyzed during spontaneous activity. Potentials were 
corrected for the calculated liquid junction potential69.  

The sodium current (INa) and outward currents (IOutward) were recorded at RT using a 
Syncropatch 768 PE automated patch clamp instrument (Nanion Technologies, München, 
Germany). Pulse generation and data collection were performed with PatchController384 
V.1.3.0 and DataController384 V1.2.1 (Nanion Technologies). Whole-cell currents were 
filtered at 3 kHz and acquired at 10 kHz. The access resistance and apparent membrane 
capacitance were estimated using built-in protocols. Series resistance was compensated for 
95% and leak and capacitance artifacts were subtracted using the P/4 method. The average 
seal resistance was 0.54 ± 0.05 GΩ (average ± s.e.m., n = 234), and cells were excluded from 
analysis if the maximum peak INa amplitude was less than 300 pA.  

For the automated patch clamp recordings, hiPSC-CMs were plated into 30-mm 
culture dishes 5 days prior to the experiment. The day of the experiment, cells were washed 
once with DPBS-/- for 20 min. Cells were then detached with 5 min treatment of TrypLE 
followed by 20-30 min treatment with RBAI media with 1:200 dilution of Liberase TH. Cells 
were then re-suspended in 15% RBAI media and 85% external solution at 180,000 cells/ml. 
Cells were allowed to recover for at least 30 min at 15 °C while shaking on a rotating 
platform. Following equilibration, 10 µl of cell suspension was added to each well of a 384-
well, single-hole, low resistance (2 MΩ) for INa study and medium resistance (4 MΩ) for 
IOutward study ‘chip’ (Nanion Technologies). The external solution contained: 140 mM NaCl, 
4.0 mM KCl, 2.0 CaCl2, 1.0 mM MgCl2, 5.0 mM glucose 5, 10 mM HEPES; pH 7.4 (NaOH). The 
internal solution to study INa contained: 110 mM CsF, 10 mM CsCl, 10 mM NaCl, 10 mM 
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EGTA, 10 mM HEPES; pH 7.2 (CsOH). The internal solution to study IOutward contained: 60 mM 
KF, 50 mM KCl, 10 mM NaCl, 10 EGTA, 10 mM HEPES; pH 7.2 (KOH). 

INa was measured using a double pulse protocol (Fig. 2f, inset left panel) from a 
holding potential of -120 mV (cycle length of 5 seconds). INa was defined as the difference 
between peak and steady state current and current densities were calculated by dividing 
current amplitude by Cm. Recovery from inactivation was measured using a two pulse 
protocol, where a conditioning pulse -20 mV inactivated Na+ channels, followed by a test 
pulse to -20 mV after a variable recovery interval ranging between 1 and 5,000 ms at -120 
mV. Voltage dependence of activation and inactivation curves were fitted with Boltzmann 
function (y = [1 + exp{(V-V1/2)/k}]-1), where V1/2 is the half-maximal voltage of (in)activation 
and k, the slope factor. IOutward was acquired with a double pulse protocol (Fig. 2f, inset right 
panel) from a holding potential of -80 mV (cycle length of 10 seconds). IOutward was measured 
at the end of the first pulse and densities were calculated by dividing current amplitude by 
Cm.  

Quantitative real-time PCR. RNA was isolated using TRI reagent (Zymo) and Direct-zol 
RNA microprep kit (Zymo) including on-column DNase digestion to remove genomic DNA. 
cDNA was produced from 2 µg of total RNA using a High Capacity RNA-to-cDNA kit (Applied 
Biosystems). All PCR reactions were performed in triplicate in a 384-well plate format using 
TaqMan Gene Expression Master Mix in a QuantStudio 5 Real-Time PCR System (both 
Applied Biosystems) with following TaqMan Gene Expression Assays (Applied Biosystems): 
18S (Hs99999901_s1), ACTB (Hs01060665_g1), GAPDH (Hs02786624_g1), and MAPRE2 
(Hs00936741_m1). Relative quantification of gene expression was calculated using 2-ΔΔCt 
method, normalized to the reference 18S, ACTB, or GAPDH and untreated control samples 
as specified in Supplementary Fig. 7. 

Statistics. Data were presented as mean ± s.e.m.. Data were analyzed and graphed in 
GraphPad Prism 8. Comparisons were conducted via two-way ANOVA test and unpaired 
two-tailed Student’s t-test. P < 0.05 defines statistical significance. The experiments were 
not randomized and the investigators were blinded to allocation during experiments and 
outcome assessment. 
 

Data Availability 

Data from the Genome Aggregation Database (gnomAD, v2.1) are available at 
https://gnomad.broadinstitute.org. Data from the UK Biobank participants can be requested 
from the UK Biobank Access Management System (https://bbams.ndph.ox.ac.uk). Data from 
the Genotype Tissue Expression (GTEx) consortium are available at the GTEx portal 
(https://gtexportal.org) accessed December 2019 & March 2020. Molecular Signatures 
Database (MSigDB, v6.2) is available at http://www.gsea-msigdb.org/gsea/index.jsp. Other 
datasets generated during and/or analyzed during the current study can be made available 
upon reasonable request to the corresponding authors. Individual-level data sharing is 
subject to restrictions imposed by patient consent and local ethics review boards. The 
Brugada syndrome GWAS summary statistics are available on Zenodo, at 
https://doi.org/10.5281/zenodo.5095177 and on the GWAS catalog database (study ID 
accession: GCST90086158). The BrS polygenic score is available on the PGScatalog ( PGS ID 
accession: PGS001779). 
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