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Abstract: Cortisol exerts a broad anti-inflammatory effect on the immune system. Inflammatory
cytokines contribute to the molecular signalling pathways implicated in various autoimmune and
inflammatory conditions. However, the mechanisms by which cortisol modulates such signalling
pathways remain uncertain. Leveraging summary-level data from the CORtisol NETwork (CORNET,
n = 25,314) and FINRISK (n = 8293) genome-wide association studies, we used two-sample Mendelian
randomisation to investigate the causal effect of genetically proxied morning cortisol levels on
42 circulating cytokines. We found that increased genetically proxied morning cortisol levels were
associated with reduced levels of IL-8 and increased levels of MIF. These results provide mechanistic
insight into the immunomodulatory effects of endogenous cortisol and the therapeutic effects of
exogenous corticosteroids. Clinically, our findings underline the therapeutic importance of steroids
in inflammatory conditions where IL-8 and MIF play a central pathophysiological role in the onset
and progression of disease.

Keywords: morning cortisol; steroid; inflammation; cytokines; Mendelian randomisation

1. Introduction

Cortisol is an essential steroid hormone released from the adrenal gland. Cortisol
levels follow a circadian rhythm under the control of the Hypothalamic–Pituitary–Adrenal
axis, reaching their highest levels in the morning. Cortisol has long been known to exert
immunosuppressive effects [1] and accordingly, glucocorticoids are the mainstay of clinical
management for many autoimmune and inflammatory conditions. However, the molecular
mechanisms by which glucocorticoids exert therapeutic effects in inflammatory disease
is poorly understood. A role for cortisol in downregulating certain pro-inflammatory
cytokines and upregulating other anti-inflammatory cytokines is widely established in
the basic science literature [2–4], yet there remain gaps in our understanding of precisely
how circulating cortisol modulates various cytokines. Studies have historically focused
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on a small number of well-established cytokines but the effect of cortisol on many im-
portant albeit less well-studied cytokines remains uncertain [5]. By understanding how
different cytokines are influenced by glucocorticoids, we can better understand the ther-
apeutic mechanisms via which glucocorticoids provide clinical benefit in inflammatory
disease. Moreover, by triangulating this information with a growing appreciation of the
role of different cytokines in different inflammatory diseases, we may be able to identify
novel, more precise immunotherapy targets capable of replicating the therapeutic effects of
glucocorticoids whilst avoiding some of their adverse effects.

Mendelian randomisation (MR) utilises genetic variants to make inferences about the
causal effect of an exposure on an outcome [6]. By virtue of Mendel’s Law of Segrega-
tion and Law of Independent Assortment, the inheritance of genetic variants is random.
This reduces the likelihood that the phenotypic effect of a particular genetic variant is
related to, and thus confounded by, environmental factors. Furthermore, germline genetic
variation is non-modifiable by the environment and temporally precedes the onset of
clinical outcomes, which in turn reduces the risk of reverse causality. Thus, under specific
assumptions, Mendelian randomisation allows us to investigate the causal effect of cortisol
on a comprehensive range of inflammatory cytokines in a manner that is less vulnerable to
certain fundamental weaknesses of traditional observational studies [7,8].

In this study, we performed MR to investigate the effect of genetically proxied morning
circulating cortisol on levels of 42 cytokines, chemokines, and growth factors (Table 1).

Table 1. The 42 cytokines, chemokines and growth factors upon which the effect of morning cortisol
was investigated.

Cytokine or Growth Factor
Beta-nerve growth factor (B-NGF)

Cutaneous T-cell-attracting chemokine (CTACK)
Eotaxin

Fibroblast growth factor 2 (FGF2)
Granulocyte-colony stimulating factor (G-CSF)

Growth regulated oncogene-alpha (GROa)
Hepatocyte growth factor (HGF)

Interferon gamma (IFN-G)
Interleukin 1 beta (IL-1B)

Interleukin 1 receptor alpha (IL-1RA)
Interleukin-2 (IL-2)

Interleukin-2 receptor alpha (IL-2RA)
Interleukin-4 (IL-4)
Interleukin-5 (IL-5)
Interleukin-6 (IL-6)
Interleukin-7 (IL-7)
Interleukin- 8 (IL-8)
Interleukin-9 (IL-9)

Interleukin-10 (IL-10)
Interleukin-12-P70 (IL-12-P70)

Interleukin-13 (IL-13)
Interleukin-16 (IL-16)
Interleukin-17 (IL-17)
Interleukin-18 (IL-18)

Interferon gamma-induced protein (IP-10)
Macrophage colony-stimulating factor(M-CSF)
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Table 1. Cont.

Cytokine or Growth Factor
Monocyte chemoattractant protein-1/Monocyte chemotactic and activating factor

(MCP-1/MCAF)
Monocyte chemotactic protein-3 (MCP-3)

Macrophage migration inhibitory factor (MIF)
Mitogen-inducible-gene (MIG)

Macrophage inflammatory protein- 1 alpha (MIP-1A)
Macrophage inflammatory protein-1 beta (MIP-1B)

Platelet-derived growth factor (PDGF-BB)
Chemokine ligand 5 (RANTES)

Stem cell factor (SCF)
Stem cell growth factor- beta (SCGF-B)

Stromal cell-derived factor-1 alpha (SDF-1A)
Tumour necrosis factor-alpha (TNF-A)
Tumour necrosis factor-beta (TNF-B)

Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)
Vascular endothelial growth factor (VEGF)

C-reactive protein (CRP)
The 42 cytokines investigated in this study. Summary statistics for 41 cytokines were obtained from the
Kalaoja et al. 2017 GWAS [9]. Summary statistics for CRP were identified from the Neale Lab UK Biobank
GWAS [10]. Table adapted from Rahman et al. 2021 [5].

2. Materials and Methods
2.1. Overview

Mendelian randomisation comprises the use of genetic variants within an instru-
mental variable (IV) analysis (Figure 1) [6]. For the genetic instrument to be valid, three
assumptions must be met: (1) relevance: the genetic variants are associated with the ex-
posure, (2) independence: the genetic variants are independent of confounders, and (3)
exclusion-restriction: the genetic variants influence the outcome only via the exposure [6,7].
We performed a two-sample MR study whereby ‘two-sample’ refers to the fact that gene-
exposure and gene-outcome estimates are obtained using summary data from two separate
genome-wide association studies (GWAS). Consequently, two-sample MR makes two ad-
ditional assumptions. The first is that the gene-exposure and gene-outcome associations
estimated in both samples are representative of the same population, i.e., the same ethnicity,
a similar age and sex distribution etc. The second is that of no sample overlap. In our
study, there was no overlap between the datasets contributing toward the gene-exposure
association and gene-outcome associations, which could otherwise introduce sampling
bias [11]. We reported our findings in line with the MR-STROBE guidance [12].

2.2. Data Sources

The genetic instrument for morning circulating cortisol was obtained from the Craw-
ford et al. 2021 publication of the CORtisol NETwork (CORNET) genome-wide association
study [13] (Table S1). The CORNET GWAS consists of 17 population-based cohorts of Euro-
pean ancestries and 25,314 individuals, with adjustments made for age, sex, and 10 principal
components of genetic ancestry in order to reduce the risk of confounding by population
stratification. The setting and participants have been described in detail previously in
the Supplementary Materials of Crawford et al., where a table of characteristics of the
study participants and circulating cortisol measurements can also be found [13]. Briefly,
circulating cortisol levels were sampled between 07:00 a.m. and 11:00 a.m. and were
quantified via immunoassays of blood samples in all but one cohort, which used liquid
chromatography mass spectrometry. Mean circulating cortisol levels across these 17 cohorts
ranged from 292 to 979 nmol/L. Some cohorts measured circulating cortisol levels from
plasma and others from serum. It should be noted that the ‘morning’ in morning cortisol
refers to the measurement timing and is a means of standardising cortisol measurements,
as opposed to representing genetically proxied variation in morning levels of circulating



Genes 2022, 13, 116 4 of 12

cortisol. The instrument consists of four uncorrelated single-nucleotide polymorphisms
(SNPs) within 1000 kB of the SERPINA6/A1 locus on chromosome 14 that reached a genome-
wide level of significance (p < 5 × 10−8) in the CORNET GWAS. SNPs were selected after
pruning for linkage-disequilibrium (LD) at r2 < 0.3 using the TwoSampleMR R package
(version 4.1.0). The reference panel was the European panel of 1000 Genomes data (phase 1,
release 3). Clumping was performed using the TwoSampleMR R package (version 4.1.0)
and the reference panel was the European panel of 1000 Genomes data (phase 1, release
3) [14]. This process ensures that each of the constituent SNPs in the genetic instrument
represent independent biological signals, thereby avoiding overestimation of instrument
strength and overly precise effect estimates. The SERPINA1/A6 locus influences the func-
tion of cortisol-binding globulin (CBG), a protein that carries cortisol in the plasma [15].
Our genetic instrument collectively explained ~1% (R2 = 0.954) of the variance in morning
cortisol and we calculated a mean F-statistic of 53.9, consistent with a strong relationship
between our genetic instrument and exposure phenotype (Table S1).
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Figure 1. Direct Acyclic Graph Illustrating the Three Core Instrumental Variable Assumptions and
Wald Ratio Method used in Mendelian randomisation. The three core instrumental variable (IV)
assumptions are: (1) relevance: the genetic variants are associated with the exposure, (2) indepen-
dence: the genetic variants are independent of confounders, (3) exclusion-restriction: the genetic
variants influence the outcome only via the exposure (or factors downstream of the exposure). In the
Wald ratio method, the instrument–outcome association (BGY) is divided by the instrument–exposure
association (BGX) to produce a ratio estimate for each genetic variant. These ratio estimates are then
combined in an inverse-variance weighted meta-analysis to produce a causal MR estimate of the
effect of X on Y.

We sought to investigate the relationship between cortisol and as comprehensive a
range of inflammatory cytokines as is feasible, given the existing availability of summary-
level genetic data needed for two-sample MR. Summary statistics for the outcome data
for 41 of the 42 cytokines were obtained from the Kalaoja et al. 2017 GWAS including
8293 Finnish ancestry individuals from three independent cohorts: the Cardiovascular
Risk in Young Finns Study (YFS), FINRISK1997, and FINRISK2002 (Tables S2–S42) [9].
This GWAS represents the largest and most comprehensive meta-analysis of summary-level
genetic data for inflammatory cytokines available to date. Adjustments were made for
10 principal components of genetic ancestry, age, and sex in order to reduce the risk of
confounding by population stratification. The setting and participant characteristics of
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these studies are described in detail in an earlier GWAS from Ahola-Olli et al. 2017 [16].
Cytokine quantification was performed from EDTA plasma in FINRISK1997, from heparin
plasma in FINRISK2002, and from serum in YFS. The summary statistics for CRP were
obtained from the Neale Lab UK Biobank GWAS, in which adjustments were made for
20 principal components of genetic ancestry, age, age2, age*sex, and age2*sex (Table S43) [10].
Standardised units were used to help deal with non-differential measurement errors arising
from different laboratory techniques used to measure circulating morning cortisol and
cytokine levels within the exposure and outcome GWAS datasets.

2.3. Statistical Analysis

Genetic associations were harmonised by aligning effect alleles in both exposure and
outcome datasets, with no exclusions made for palindromic variants. Causal estimates
for each variant were generated using the Wald ratio, i.e., the SNP-outcome association
divided by the SNP-exposure association [17,18]. The corresponding standard errors for
each Wald estimate were approximated using first-order terms from the delta expansion
method [19]. For each cytokine, Wald estimates across all four genetic variants were
then pooled using the (multiplicative) random-effects inverse-variance weighted (IVW)
method [18,19]. The IVW estimate is a weighted mean of the variant-specific estimates
with each variant weighted in inverse proportion to its variance and where first-order
estimates of the variance of the SNP-outcome association are used. The MR estimates
derived represent the association of a 1 standard deviation (SD) increase in genetically
proxied morning cortisol levels with each of the respective 42 circulating cytokines, which
are themselves normalised to SD units. To account for multiple testing and reduce the
risk of false positive findings, a Bonferroni correction was applied (42 significant tests,
p < 0.00119).

In violation of the exclusion-restriction assumption, horizontal pleiotropy may intro-
duce bias where genetic instruments act on the outcome other than via the exposure (see
Figure 1). Consistent estimates from methods with different assumptions about pleiotropy
suggest that bias from pleiotropic effects is less likely. The standard IVW method as-
sumes that the average pleiotropic effect is 0, either because all of the variants used are
valid instrumental variables or because pleiotropy is balanced [19]. Accordingly, in our
secondary analyses, we relaxed these assumptions by using methods that are robust to
the inclusion of pleiotropic variants, thereby allowing us to interrogate the risk of bias
due to horizontal pleiotropy. Simple median [20], weighted median [20], MR-Egger [21],
and MR-PRESSO [22] sensitivity analyses were performed. The MR-Egger intercept es-
timates the average pleiotropic effect and also provides a significance test for pleiotropy.
MR-Egger is based on the INstrument Strength Independent of the Direct Effects (INSIDE)
assumption; namely, the magnitude of the pleiotropic effects of the variants on the outcome
is independent of the association between the variants and the exposure [21]. MR-PRESSO
also includes a global significance test for detecting horizontal pleiotropy. Finally, we used
Cochran’s Q statistic to assess whether the heterogeneity between variant-specific causal
estimates in our multiplicative random-effects IVW model was more than that expected
due to chance alone. Here, significant heterogeneity may indicate the presence of outliers
and in turn, pleiotropy [23]. Data analyses were conducted using the “TwoSample MR”
and “MendelianRandomization” packages in R (version 4.1.0).

3. Results

We found strong evidence of an association between genetically proxied increased
morning cortisol levels and circulating levels of two inflammatory cytokines (Table S44) and
Figure 2). A 1 SD increase in genetically proxied morning cortisol levels corresponded to a
0.767 normalised SD-unit decrease in Interleukin 8 (IL-8) (p = 1.14 × 10−4, 95% CI = −1.157
to −0.378) and a 0.806 normalised SD-unit decrease in Macrophage Migratory Inhibitory
Factor (MIF) (p = 3.68 × 10−5, 95% CI = −1.189 to −0.423). These findings were significant
after applying the Bonferroni correction for multiple testing (p < 0.00119). Numerous other
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cortisol-cytokine effect estimates were suggestive of an MR association (with p < 0.05) but
did not withstand Bonferroni correction: Cutaneous T-cell-attracting Chemokine (CTACK),
Fibroblast Growth Factor 2 (FGF2), Monocyte Chemotactic Protein-3 (MCP-3), Monocyte
Chemoattractant Protein-1 (MCP-1/MCAF), Macrophage Inflammatory Protein-1 alpha
(MIP-1A), Platelet-Derived Growth Factor (PDGF-BB), CC Chemokine Ligand 5 (RANTES),
and Tumour-Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL). Estimates were
similar with Simple Median, Weighted Median, MR-Egger, and MR-PRESSO sensitivity
analyses, suggesting that our results were not biased by pleiotropic associations of the
genetic variants. The full results of our primary analyses are summarised in Table S44 and
illustrated in Figure 2, where IVW effect estimates and corresponding 95% CIs are given
for each cytokine in SD units per 1 SD increase in morning cortisol levels.

Genes 2021, 13, x   6 of 12 
 

 

expected due to chance alone. Here, significant heterogeneity may indicate the presence 
of outliers and in turn, pleiotropy [23]. Data analyses were conducted using the 
“TwoSample MR” and “MendelianRandomization” packages in R (version 4.1.0). 

3. Results 
We found strong evidence of an association between genetically proxied increased 

morning cortisol levels and circulating levels of two inflammatory cytokines (Table S44) 
and Figure 2). A 1 SD increase in genetically proxied morning cortisol levels corresponded 
to a 0.767 normalised SD-unit decrease in Interleukin 8 (IL-8) (P = 1.14 × 10−4, 95% CI = 
−1.157 to −0.378) and a 0.806 normalised SD-unit decrease in Macrophage Migratory In-
hibitory Factor (MIF) (P = 3.68 × 10−5, 95% CI = −1.189 to −0.423). These findings were sig-
nificant after applying the Bonferroni correction for multiple testing (P < 0.00119). Numer-
ous other cortisol-cytokine effect estimates were suggestive of an MR association (with P 
< 0.05) but did not withstand Bonferroni correction: Cutaneous T-cell-attracting Chemo-
kine (CTACK), Fibroblast Growth Factor 2 (FGF2), Monocyte Chemotactic Protein-3 
(MCP-3), Monocyte Chemoattractant Protein-1 (MCP-1/MCAF), Macrophage Inflamma-
tory Protein-1 alpha (MIP-1A), Platelet-Derived Growth Factor (PDGF-BB), CC Chemo-
kine Ligand 5 (RANTES), and Tumour-Necrosis Factor-related Apoptosis-inducing Lig-
and (TRAIL). Estimates were similar with Simple Median, Weighted Median, MR-Egger, 
and MR-PRESSO sensitivity analyses, suggesting that our results were not biased by plei-
otropic associations of the genetic variants. The full results of our primary analyses are 
summarised in Table S44 and illustrated in Figure 2, where IVW effect estimates and cor-
responding 95% CIs are given for each cytokine in SD units per 1 SD increase in morning 
cortisol levels. 

 
Figure 2. Mendelian randomisation Inverse Variance Weighted (IVW) Estimates for the effect of a 1 Standard Deviation 
(SD) increase in genetically proxied increased morning cortisol on genetically proxied levels of 42 circulating cytokines. Figure 2. Mendelian randomisation Inverse Variance Weighted (IVW) Estimates for the effect of a 1

Standard Deviation (SD) increase in genetically proxied increased morning cortisol on genetically
proxied levels of 42 circulating cytokines. Forest plots showing IVW estimates and corresponding
95% Confidence Intervals for each of the 42 circulating cytokines, expressed in normalised SD units.
Green = significant result after Bonferroni correction, p < 0.00119). Blue = suggestive result (significant
at p < 0.05 but non-significant after Bonferroni correction). Red = non-significant result.

4. Discussion
4.1. Principal Findings in Context

This study provides genetic evidence supporting a causal effect of increased morning
cortisol levels on reducing circulating IL-8 and MIF levels.

Both IL-8 and MIF are key components of the innate immune system. Classically,
IL-8 is a chemokine released by macrophages via toll-like receptor (TLR) pathways that
promote the recruitment of neutrophils and other granulocytes to new sites of inflammation
via chemotaxis [24]. Upon the arrival of neutrophils, IL-8 also induces phagocytosis by



Genes 2022, 13, 116 7 of 12

neutrophils [24]. In contrast to IL-8 secretion—and indeed the secretion of most other
cytokines—MIF is constitutively expressed by macrophages, T cells, and nearby epithelial
cells [25]. Elevated baseline expression of MIF by macrophages translates into upregulated
TLR signalling and ultimately facilitates the rapid detection of endotoxin-containing bacte-
ria by macrophages [26,27]. MIF also acts as a traditional pro-inflammatory cytokine by
activating macrophages and T cells and by engaging in bidirectional feedback loops with
various other pro-inflammatory cytokines [25]. Hence, MIF-deficient mice fail to produce
an adequate pro-inflammatory cytokine response to intracellular pathogens and are simul-
taneously unable to control the growth of such pathogens in comparison to wild-type (WT)
mice [28]. Thus, the uniquely constitutive expression of MIF in addition to its traditional
pro-inflammatory signalling properties make it integral to the innate immune response to
invasive pathogens.

A range of evidence corroborates our findings. Our finding that cortisol exerts an
inhibitory effect on IL-8 is supported by molecular studies in a range of cell lines, which
have shown that steroids inhibit IL-8 gene transcription via glucocorticoid response ele-
ments in the IL-8 gene [29]. By leveraging genetic data at a large scale, our study provides
an important additional source of evidence for the inhibitory effect of steroids on IL-8.
Furthermore, our finding that higher genetically proxied morning cortisol levels are as-
sociated with reduced circulating MIF is consistent with the overall immunosuppressive
effect of glucocorticoids in two distinct ways. Firstly, considering the protective role of MIF
in responding to pathogenic infections, our finding is consistent with the increased sus-
ceptibility to pathogenic infections seen with corticosteroids in clinical practice. Secondly,
considering MIF’s classical pro-inflammatory signalling functions, our finding is consistent
with the marked anti-inflammatory effects of glucocorticoids.

Interestingly, however, the inhibitory effect of steroids on MIF observed in our study
runs counter to the established finding that exogenous glucocorticoids induce the release
of MIF, in contrast to their uniform suppression of other pro-inflammatory cytokines [30].
This discrepancy likely reflects the biphasic and bidirectional nature of the interaction
between glucocorticoids and MIF in the regulation of innate immunity. Indeed, whilst
glucocorticoids have been shown to induce MIF, MIF has consistently been shown to
inhibit and counter-regulate the action of glucocorticoids [30]. Furthermore, it has been
shown that the ability of exogenous glucocorticoids to induce MIF release is greatest at low
physiological concentrations and diminishes at increasing concentrations [30–32]. In other
words, the stimulatory effect of glucocorticoids on MIF may not hold in circumstances
in which glucocorticoid concentrations are significantly elevated, beyond this low phys-
iological range. Indeed, it is likely that the effect of gradual changes in glucocorticoid
concentrations studied using in vitro and in vivo cell lines will differ to that in MR, which
estimates the lifelong effect of expressing additional glucocorticoid level-increasing alleles
and thus represents the effect of marked upward shifts in glucocorticoid concentrations.
Taken together, these findings suggest a complex, concentration-dependent feedback loop
between glucocorticoids and MIF that will require additional studies using a range of
molecular and epidemiological techniques in order to better elucidate.

4.2. Clinical Implications

Corticosteroids are widely used in the clinical management of inflammatory diseases
and our study offers insight into the mechanisms by which steroids exert their therapeutic
effect. Specifically, our results suggest that the therapeutic effect of steroids is in part medi-
ated by their inhibition of the pro-inflammatory effects of IL-8 and MIF. This in turn high-
lights the therapeutic value of steroids in conditions where IL-8 and MIF play a central role
in disease onset and progression. Of note, both IL-8 and MIF have consistently been impli-
cated in propagating inflammatory cascades in Inflammatory Bowel Disease (IBD) [33–40],
Rheumatoid Arthritis (RA) [41–46], Systemic Lupus Erythematosus (SLE) [47–49].

With respect to IBD, IL-8 gene expression is increased in the bowel mucosa and ep-
ithelial cells of patients with Crohn’s and Ulcerative Colitis [33,34] and is associated with
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the histological grade of inflammation [35]. IL-8 has even been shown to predict the risk
of relapse in Crohn’s patients in remission [36]. Certain polymorphisms in the MIF gene
are also associated with an increased risk of developing IBD in patients [37]. Conversely,
administering anti-MIF antibodies has been shown to reduce the degree of inflammation in
experimental models of inflammatory colitis and MIF-deficient mice are resistant to devel-
oping inflammatory colitis in the first place [38]. Similarly, numerous studies demonstrate
a role for IL-8 [39,40] and MIF [41,42] in propagating synovial inflammation in Rheumatoid
Arthritis and MIF gene promoter polymorphisms have been shown to correlate with the
28-joint Disease Activity Score [43]. Patients with SLE tend to have higher circulating IL-8
levels and this correlates with the SLE disease activity index [44,45]. IL-8 gene polymor-
phisms are even associated with the severity of Lupus Nephritis [46]. In SLE, MIF exerts a
paradoxical effect that reflects its dual immune functions [47]. Circulating levels of MIF are
increased in SLE patients and are associated with autoimmune tissue damage, including
lupus nephritis and subsequent renal dysfunction [48]. However, high expression MIF
alleles reduce the risk of less secondary pathogenic infections in patients with SLE [49],
consistent with its important role in the immunological alarm system.

Taken together, these findings suggest that the strong efficacy of corticosteroids in
treating these specific conditions may in part be attributable to the ability of steroids to
regulate IL-8 and MIF activity. It also follows that IL-8 and MIF could represent alternative
therapeutic targets in IBD, RA, and SLE which, if precisely targeted, may avoid some of
the adverse effects associated with long-term corticosteroid therapy [50]. Alternatively,
specifically targeting IL-8 or MIF could offer additional treatment options to patients with
IBD, RA, and SLE who for various reasons do not respond to steroids.

4.3. Strengths

Our study has many strengths. Firstly, it is the first MR analysis to investigate the
causal effect of morning cortisol on a comprehensive panel of inflammatory cytokines.
Many of these cytokines have well-established roles in autoimmune and inflammatory
diseases whilst others are poorly understood, especially in the context of cortisol-mediated
immune regulation. Recent studies have adopted a similar approach to investigating the
role of inflammatory cytokines in immune signalling pathways [5]. Secondly, we lever-
aged genetic data in the MR framework and thus were able to produce evidence of causal
associations less vulnerable to confounding and reverse causality in comparison to con-
ventional observational studies. Thirdly, in order to minimise pleiotropy, genetic variants
were chosen based upon their proximity to the SERPINA1/A6 genes, which is implicated
in mediating the physiological effects of plasma cortisol. Expression quantitative trait loci
analyses have shown that the SERPINA1/A6 locus contains genes encoding cortisol-binding
globulin (CBG) and may therefore facilitate cortisol delivery to peripheral tissues [12]. Thus,
in addition to a very strong statistical association (p < 5 × 10−8), the presence of an estab-
lished biological link between our selected variants and exposure of interest strengthens
the validity of these variants as instruments within the IV framework. This strengthens our
conclusion that the MR estimates generated in this study reflect causal relationships rather
than mere association. Fourthly, we interrogated the robustness of our IVW estimates to the
presence of pleiotropic variants using a range of sensitivity analyses, each of which make
different assumptions, and we did not find evidence of significant pleiotropy. Rather, our
MR estimates were consistent across these different robust methods. Finally, there was no
significant heterogeneity between variant-specific estimates, consistent with a concordant
causal effect across multiple genetic variants.

4.4. Limitations

Our analysis has a number of limitations, primarily with regard to its scope, which
should inform the interpretation of our results. Given that genetic variants are present
in the germline, MR estimates represent the effect of lifelong elevated levels of morning
cortisol starting from conception, rather than the effect of a discrete clinical intervention
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that increases morning cortisol levels in mature individuals, in whom a degree of disease
progression is already manifest [8]. Nor can the effect of lifelong elevated morning cortisol
levels be extrapolated to reflect the impact of acute changes in morning cortisol levels
on circulating cytokines. Our estimates should not be extrapolated to estimate the effect
of changing morning cortisol levels in subgroups of the population with particularly
high or low morning cortisol levels [21]. The pooling of genetic data across numerous
cohorts in consortia-derived genome-wide association studies will give rise to a degree of
heterogeneity between cohorts and yet the combined cohort is treated as a homogenous
population in our MR analysis. Measurements differed across the individual cohorts in
the underlying GWAS datasets in terms of both laboratory techniques used to measure
cortisol and cytokine levels, as well as protocols for sampling plasma or serum levels
of cortisol and cytokines. Although standardised units were used to help account for
these differences, there will nevertheless be a degree of measurement variability in both
our exposure and outcome. However, given the large sample size in this study, such
variability is unlikely to significantly affect the magnitude or directionality of our MR
estimates. Unfortunately, because we only had access to summary-level and not individual
participant-level genetic data, we are not able to perform sub-group analysis investigating
whether the relationship between cortisol and particular cytokines varies between males
and females or across different age groups. The summary-level genetic data used for both
exposure and outcome were obtained from individuals of European ancestry. Given that the
frequency and distribution of genetic variants may differ across populations, the extent to
which these findings can be generalised to other ethnic populations remains uncertain [7,8].
Finally, despite finding no evidence of significant pleiotropy in our sensitivity analyses,
we cannot definitively exclude the potential for bias due to horizontal pleiotropy whereby
the variants used to proxy morning cortisol levels influence circulating cytokine levels via
pathways independent of morning cortisol levels.

5. Conclusions

In summary, this study identified a novel causal effect of increased genetically prox-
ied morning cortisol on circulating levels of IL-8 and MIF. Such findings provide useful
mechanistic insight into the immunomodulatory effects of endogenous cortisol and the
therapeutic effects of exogenous glucocorticoid therapy. This bears clinical relevance to
inflammatory diseases where IL-8 and MIF play a central pathophysiological role in the
initiation and progression of disease.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes13010116/s1, Tables S1–S43 summarise the genetic associations of the four SNPs used in
the genetic instrument for morning cortisol with our exposure and outcomes of interest. Table S44:
Mendelian randomisation estimates for the effect of a 1 Standard Deviation (SD) increase in genetically
proxied increased morning cortisol on genetically proxied levels of 42 circulating cytokines.
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