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Abstract

Background: Epidemiological and experimental evidence has linked chronic inflammation to cancer aetiology. It is
unclear whether associations for specific inflammatory biomarkers are causal or due to bias. In order to examine
whether altered genetically predicted concentration of circulating cytokines are associated with cancer
development, we performed a two-sample Mendelian randomisation (MR) analysis.

Methods: Up to 31,112 individuals of European descent were included in genome-wide association study (GWAS)
meta-analyses of 47 circulating cytokines. Single nucleotide polymorphisms (SNPs) robustly associated with the
cytokines, located in or close to their coding gene (cis), were used as instrumental variables. Inverse-variance
weighted MR was used as the primary analysis, and the MR assumptions were evaluated in sensitivity and
colocalization analyses and a false discovery rate (FDR) correction for multiple comparisons was applied.
Corresponding germline GWAS summary data for five cancer outcomes (breast, endometrial, lung, ovarian, and
prostate), and their subtypes were selected from the largest cancer-specific GWASs available (cases ranging from
12,906 for endometrial to 133,384 for breast cancer).
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Results: There was evidence of inverse associations of macrophage migration inhibitory factor with breast cancer
(OR per SD = 0.88, 95% CI 0.83 to 0.94), interleukin-1 receptor antagonist with endometrial cancer (0.86, 0.80 to
0.93), interleukin-18 with lung cancer (0.87, 0.81 to 0.93), and beta-chemokine-RANTES with ovarian cancer (0.70,
0.57 to 0.85) and positive associations of monokine induced by gamma interferon with endometrial cancer (3.73,
1.86 to 7.47) and cutaneous T-cell attracting chemokine with lung cancer (1.51, 1.22 to 1.87). These associations
were similar in sensitivity analyses and supported in colocalization analyses.

Conclusions: Our study adds to current knowledge on the role of specific inflammatory biomarker pathways in
cancer aetiology. Further validation is needed to assess the potential of these cytokines as pharmacological or
lifestyle targets for cancer prevention.
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Background
Accumulation of biological evidence has led to the estab-
lishment of inflammation as a hallmark of cancer [1]. It
has been postulated that a state of low-grade inflammation
can increase mutation rates and augment the proliferation
of mutated cells by supplying trophic signals [2]. In
addition to potential direct cell growth promotion effects,
activated inflammatory cells can stimulate reactive oxygen
species and the accumulation of reactive nitrogen inter-
mediates in neighbouring cells [1]. These processes may
damage DNA and its protein products, directly or indir-
ectly, thus having tumour promoting effects [3, 4].
Observational evidence has shown that diseases charac-

terised by a chronic inflammatory state are associated with
an increased risk of several cancers, including lung, pros-
tate and colorectal cancer, while use of nonsteroidal anti-
inflammatory drugs such as aspirin, may have a chemo-
preventive role in several cancers, including colorectal,
lung, breast, prostate, endometrial and ovarian [5–8]. Spe-
cific circulating inflammatory markers have been linked to
cancer development in prospective cohort studies. For ex-
ample, higher concentrations of circulating C-reactive
protein (CRP), a highly sensitive but non-specific marker
of elevated inflammatory response, were associated with a
higher risk of several cancers, including breast, lung, pros-
tate, ovarian and colorectal cancer [9]. Higher pre-
diagnostic concentrations of interleukin 1 alpha (IL-1a),
IL-8 and tumour necrosis factor alpha (TNF-A) have been
associated with higher risk of ovarian cancer, whereas
concentrations of serum amyloid A, soluble tumour ne-
crosis factor receptor-2 (sTNF-RII) and monokine in-
duced by gamma interferon (MIG) have been positively
associated with lung cancer risk [10, 11]. If such associa-
tions are causal, preventing or intervening on inflamma-
tion pathways could be a strategy to reduce cancer risk.
While the reduction of chemokine levels for inhibit-

ing cancer progression has been much discussed in
the context of cancer therapy, observational studies
linking specific circulating inflammatory cytokine con-
centrations to cancer risk are sparse, have relatively

small sample sizes, and the results from which may
be impacted by unmeasured confounding, reverse
causation and other biases [12, 13]. An approach to
overcome the potential limitations of observational
epidemiology and strengthen the evidence for a po-
tential causal role of chronic inflammation on cancer
risk is Mendelian randomisation (MR). In MR, germ-
line genetic variants are used as instrumental variables
to proxy lifetime exposure for an exposure of interest,
in this case circulating cytokines, chemokines, growth
factors and interferons (hereafter cytokines). In the
present study, MR was used to capture usual cytokine
concentration experience over the life course, rather
than expression variations such as those resulting
from epigenetic alterations. We used genetic variants
robustly associated with circulating cytokines to esti-
mate the association of genetically proxied inflamma-
tory cytokine concentrations on risk of breast,
endometrial, lung, ovarian and prostate cancer. We
used outcome-data from large well-established con-
sortia that were either publicly available or for which
we had access to base on active research proposals.

Methods
An overview of the analytical approach is shown in Fig. 1.

Cytokine instrument selection
We previously conducted a genome-wide association
study (GWAS) of circulating levels of 47 inflammatory
cytokines, using samples from up to 13,365 Finnish indi-
viduals from the Northern Finland Birth Cohort 1966
(NFBC1966) [14], the Cardiovascular Risk in Young
Finns (YFS) study and FINRISK 1997 and 2002 [15, 16].
Publicly available data for several inflammatory cyto-
kines were available from two additional sources: a
GWAS of up to 21,758 individuals of European descent
from the SCALLOP consortium and a GWAS of up to
3301 individuals of European descent from the INTER-
VAL study [17, 18]. To obtain the most robust estimates
for any given cytokine, the associations of single

Bouras et al. BMC Medicine            (2022) 20:3 Page 2 of 15



nucleotide polymorphisms (SNPs) with inflammatory cy-
tokines from these sources were pooled with the Finnish
GWAS estimates, when estimates between GWAS corre-
lated well, to include up to 31,112 individuals (ranging
from 3301 to 31,112) (Additional file 2: Table S1). De-
tails on the Finnish GWAS and the meta-analysis with
the SCALLOP or the INTERVAL GWAS can be found
in the Additional file 3.

To minimise the possibility of horizontal pleiotropy,
that might occur when a variant influences the cancer
outcomes through traits other than the cytokines of
interest, we used cis instrument definitions. Genetic vari-
ants that are located in or close to the coding gene (in
cis) are naturally more relevant to the expression of that
gene (and hence protein concentrations) in comparison
to other genes [19]. In addition, trans instruments

Fig. 1 Overview of the analytical plan
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(obtained from throughout the genome) are less specific
to particular cytokines and more likely to be invalid due
to pleiotropic functions. We therefore used two distinct
cis instrument definitions as described by Karhunen
et al. [16]: (i) a cis-protein quantitative trait locus (cis-
pQTL) definition, involving cytokines that had genetic
variants within the corresponding gene locus (Additional
file 2: Tables S1 & S2) extended by 500 kb upstream and
downstream, that associated with the circulating cyto-
kine concentrations at p < 1 × 10−4, which comprised
our main analysis, and (ii) a cis-expression quantitative
trait locus (cis-eQTL) definition, selecting cytokines with
variants within the corresponding gene locus extended
by 500 kb upstream and downstream, that associated
with both its gene expression aggregated across tissues
at p < 1 × 10−4, and its circulating cytokine concentra-
tions at p < 0.05, to replicate the findings from our main
analysis and potentially capture additional associations
[16]. Cis-eQTL instruments may capture the effects of
pQTL instruments via gene expression, but not all
pQTLs are represented by eQTLs [20]. Post-
transcriptional effects may be represented by cis-pQTL
instruments with no corresponding cis-eQTL (e.g. pro-
tein degradation, secretion, clearance, etc.) and instru-
ment strength is higher as more pQTLs are available per
cytokine. Additionally, by extending the region by 500
kb regulating regions outside the gene may be captured
and gain in instrument strength [21]. The gene locations
were extracted from human genome build 19 using the
University of California Santa Cruz (UCSC) Genome
Browser (accessed on 18 June 2019). Gene expression
data were obtained from the GTEx Portal (version 8)
[20]. Variants with a minor allele frequency (MAF) <
0.05 were excluded. In the context of a cis-region MR,
using a very small correlation threshold may result in a
loss of causal variants; therefore, clumping was per-
formed using a pairwise linkage disequilibrium (LD)
threshold of r2 < 0. 1[22].

Outcome data
The Breast Cancer Association Consortium (BCAC) of
up to 133,384 women with breast cancer and 113,789
controls of European ancestry was accessed to obtain as-
sociations of SNPs with risks of overall breast cancer
and five intrinsic-like, molecular subtypes defined by es-
trogen receptor (ER), progesterone receptor (PR) and
human epidermal growth factor receptor (HER) 2 status
and tumour grade, namely luminal A-like, luminal
B,HER2-negative-like, luminal B-like, HER2-enriched-
like and triple-negative (Additional file 2: Tables S3 &
S4) [23].
Associations of SNPs with risks of overall endometrial

cancer, and endometrioid and non-endometrioid histo-
logical sub-types, were obtained from a meta-analysis of

17 studies from the Endometrial Cancer Association
Consortium (ECAC), the Epidemiology of Endometrial
Cancer Consortium (E2C2) and the UK Biobank, corre-
sponding to a total of 12,906 endometrial cancer cases
and 108,979 country-matched controls of European an-
cestry [24].
Associations of SNPs with risk of overall lung cancer, its

predominant histological types (lung adenocarcinoma,
small cell carcinoma, squamous cell carcinoma), and asso-
ciations stratified by smoking behaviour (ever and never
smoking) were obtained from the Transdisciplinary Re-
search of Cancer in Lung (TRICL) and the International
Lung Cancer Consortium (ILCCO) of 29,266 patients and
56,450 controls of European descent [25].
Associations of SNPs with risk of overall invasive epi-

thelial ovarian cancer and its histological subtypes (high
grade serous, low-grade serous, endometrioid, clear-cell
and mucinous ovarian cancer) were obtained from the
Ovarian Cancer Association Consortium (OCAC) meta-
analysis of up to 25,509 epithelial ovarian cancer and
40,941 controls. For overall invasive epithelial ovarian
cancer and serous ovarian cancer, we used genetic asso-
ciation estimates from the meta-analysis (MA) that in-
cluded an additional 31,448 BRCA1 and BRCA2
mutation carriers (including 3887 high grade serous
ovarian cancer cases) from the Consortium of Investiga-
tors of Modifiers of BRCA1/2 (CIMBA) [26].
Associations of SNPs with risk of overall and advanced

prostate cancer (defined as Gleason Score 8+ or death
from prostate cancer or metastatic disease (M1) or PSA
> 100) were obtained from the Prostate Cancer Associ-
ation Group to Investigate Cancer-Associated Alter-
ations in the Genome (PRACTICAL) Consortium of
79,148 prostate cancers and 61,106 controls of European
descent. Additionally, summary data from two separate
analyses were used: estimates describing the association
between high vs. low risk and high vs. low or intermedi-
ate risk prostate cancer (Additional file 2: Tables S3 &
S4) [27].

Mendelian randomisation analyses
Separate analyses were performed using the two different
sets of instruments (cis-pQTL and cis-eQTL) to investi-
gate the associations of genetically proxied circulating
cytokine concentrations with the risk of each of the cancer
outcomes. When only a single SNP was available to con-
struct the instrumental variable, the ratio of coefficients
method was used to obtain MR estimates with first order
weights used to generate standard errors. Where more
than one SNP was available to construct the instrumental
variable for a given cytokine, MR estimates obtained from
the individual SNPs within the instrument were pooled
using the random-effects inverse-variance weighted (IVW)
MR method. To address multiple hypothesis testing, we
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estimated the false discovery rate (FDR) adjusted p values
(q values), in the main IVW MR analyses, using the se-
quential p value approach proposed by Benjamini and
Hochberg [28]. A q value not greater than 10% was con-
sidered significant. The effect estimates reflect the increase
in cancer risk per SD higher in the natural scale of each
cytokine.
To measure the strength of the genetic instruments,

we calculated the F-statistic and proportion of vari-
ance explained (r2) for each genetic variant based on
the circulating protein concentrations [29] (Additional
file 2: Table S2). In addition, we computed (post-hoc)
the statistical power to detect an odds ratio (OR) of
1.2 per 1-SD increase in circulating cytokine levels,
with type I error rate of 0.05 (Additional file 2: Ta-
bles S5 & S6) [30]. Since large associations for the
genetic propensity for between-individual variability in
circulating cytokine concentrations with cancer are
generally not anticipated, we used an odds ratio of
1.2 in all power calculations.
The selected genetic variants, to be valid instru-

ments for the MR analysis, must meet the following
criteria: (i) they should be strongly associated with
the circulating concentrations of the cytokine, (ii) they
should be independent of any potential confounding
variable of the cytokine-cancer association and (iii)
they should affect cancer only through the cytokine
being instrumented. The presence of horizontal plei-
otropy, that occurs when a variant influences the out-
come through other traits (pathways) that bypass the
exposure of interest, is the most common reason for
violation of the third assumption. We have, in part,
adjusted for horizontal pleiotropy “by design” by ex-
cluding trans-associated loci. In addition, to evaluate
the cytokine specificity, we performed sensitivity ana-
lysis either excluding instruments that are associated
(p < 5 × 10−8), in trans, with other cytokines, or by
multivariate MR [31]. We also used several other sen-
sitivity analyses, namely weighted-median, contamin-
ation mixture (ConMix), MR-Egger and MR-PRESSO,
though these methods operate best in a polygenic MR
analysis framework. Further details on the assump-
tions of these methods are described in the Add-
itional file 3.
To further assess potential pleiotropic effects for

the instruments for which there was evidence of an
association from the MR analyses, we used Phenos-
canner, a database that includes genotype-phenotype
associations [32]. We searched for previously reported
associations for any SNP that was included as instru-
ment in our analysis and associations with any sec-
ondary phenotypes related to inflammatory traits were
considered vertical (in the same pathway from genetic
variant to cancer) pleiotropy.

Systematic review of publicly available databases for
medical drugs, observational studies and biological
pathways
To provide in silico replication to our findings, we
searched DrugBank and ChEMBL using cytokine-specific
terms to identify cytokine-related drug targets, and for the
identified drugs, detailed searches using conventional drug
names or synonyms were performed in clinical trial regis-
tries (e.g. clinicaltrials.gov) [33, 34]. In addition, to com-
pare the findings of the MR analyses with epidemiological
evidence, we searched PubMed for observational studies
investigating the association of chronic inflammatory
markers in relation to the cancer outcomes of interest,
using general MeSH search terms such as “cytokines”, “in-
flammation” and “neoplasms”. Furthermore, biological
pathways that the significant cytokines are involved were
identified using the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) database [35].

Colocalization analysis
Colocalization analysis evaluates the shared, local genetic
architecture between two traits, applying a set of arithmetic
operations followed by statistical testing to assess whether
or not the observed overlap or spatial proximity is likely to
be due to chance [36]. Colocalization analyses are valuable
in strengthening the associations observed in MR analysis.
They can help identify MR associations that may have
arisen due to confounding by LD (i.e. when another genetic
variant which is in high LD with a genetic instrument is
also associated with the outcome) [37]. We applied a Bayes-
ian framework proposed by Pickrell et al. to detect shared
causal variants for the significant associations (FDR ≤ 10%)
in the MR analyses [38]. For each of these cytokines-cancer
pairs, we used the genomic region extending 25 kb on both
sides of the lead cytokine variant. Results with a posterior
probability (PP) > 0.8 within the gene locus of the putative
causal cytokine of each pair were deemed as evidence for
colocalization. We further explored the significant
cytokines-cancer associations in colocalization analyses
using tissue specific gene expression data (i.e. for a cytokine
that was associated with lung cancer, we conducted ana-
lyses of pQTL variants vs. lung tissue eQTL data) [39]. De-
fault priors were used in all analyses.
Significant associations (FDR < 10%) that were con-

firmed in colocalization analyses were replicated using
independent outcome data from the UK Biobank [40].
All analyses were performed using R, version 4.0.2 [41].

Results
Instrument characteristics and instruments strength
In total, 31 and 27 cytokines (35 unique cytokines) with a
median of 5 (IQR 1 to 16) and 2 (IQR 1 to 3) SNPs per in-
strument were included in the analysis under the cis-pQTL
and cis-eQTL definitions, respectively (Table 1 and
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Additional file 2: Table S2). The respective cytokines were
as follows: active plasminogen activator inhibitor-1 (active-
PAI), beta nerve growth factor (bNGF), cutaneous T-cell

attracting chemokine (CTACK), Eotaxin, basic fibroblast
growth factor (FGFBasic), growth-regulated oncogene-
alpha (GROa), hepatocyte growth factor (HGF), interleukin

Table 1 Instrument strength per cytokine in the cis-pQTL and cis-eQTL analyses

Cytokine Gene Gene ensemble Chr Start
hg19

End hg19 cis-pQTL (n
instruments)

pQTL
(r2)

cis-eQTL (n
instruments)

eQTL
(r2)

activePAI SERPINE1 ENSG00000106366 7 100770370 100782547 1 0.003 – –

bNGF NGF ENSG00000134259 1 115828537 115880857 – – 1 0.002

CTACK CCL27 ENSG00000213927 9 34661893 34662689 3 0.060 2 0.041

Eotaxin CCL11 ENSG00000172156 17 32612687 32615199 6 0.015 4 0.010

FGFBasic FGF2 ENSG00000138685 4 123747863 123819390 – – 2 0.002

GROa CXCL1 ENSG00000163739 4 74735109 74737019 11 0.272 1 0.127

HGF HGF ENSG00000019991 7 81331444 81399452 6 0.010 – –

IL-16 IL16 ENSG00000172349 15 81517640 81605104 18 0.037 6 0.031

IL-18 IL18 ENSG00000150782 11 112013974 112034840 5 0.051 2 0.024

IL-1a IL1A ENSG00000115008 2 113531492 113542971 – – 3 0.003

IL-1ra IL1RN ENSG00000136689 2 113885138 113891593 18 0.075 2 0.017

IL-2ra IL2RA ENSG00000134460 10 6052657 6104333 14 0.260 4 0.130

IL-6 IL6 ENSG00000136244 7 22766766 22771621 1 0.002 1 0.001

IL-7 IL7 ENSG00000104432 8 79645007 79717758 1 0.005 – –

IL-8 CXCL8 ENSG00000169429 4 74606223 74609433 1 0.004 2 0.005

IL-12p70 IL12A ENSG00000168811 3 159706623 159713806 1 0.002 – –

IL-12p70 IL12B ENSG00000113302 5 158741791 158757481 1 0.002 – –

IP-10 CXCL10 ENSG00000169245 4 76942269 76944689 5 0.020 – –

MCP-1 CCL2 ENSG00000108691 17 32582296 32584220 28 0.006 3 0.001

MCP-3 CCL7 ENSG00000108688 17 32597235 32599261 13 0.289 – –

MCSF CSF1 ENSG00000184371 1 110453233 110473616 13 0.049 3 0.018

MIF MIF ENSG00000240972 22 24236565 24237409 2 0.019 5 0.020

MIG CXCL9 ENSG00000138755 4 76922623 76928641 1 0.011 2 0.008

MIP1a CCL3 ENSG00000277632 17 34415603 34417506 34 0.217 1 0.059

MIP1b CCL4 ENSG00000275302 17 34431220 34433014 26 0.147 3 0.003

PDGFbb PDGFB ENSG00000100311 22 39619685 39640957 1 0.001 – –

RANTES CCL5 ENSG00000271503 17 34198496 34207377 1 0.009 1 0.009

SCF KITLG ENSG00000049130 12 88886570 88974250 3 0.006 2 0.001

SCGFb CLEC11A ENSG00000105472 19 51226605 51228981 2 0.016 1 0.004

SeSelectin SELE ENSG00000007908 1 169691781 169703220 2 0.008 2 0.002

sICAM ICAM1 ENSG00000090339 19 10381517 10397291 25 0.168 2 0.004

sVCAM VCAM1 ENSG00000162692 1 101185196 101204601 1 0.003 1 0.003

TNF-A TNF ENSG00000232810 6 31543344 31546112 2 0.004 – –

TNF-B LTA ENSG00000226979 6 31539876 31542100 – – 1 0.001

TRAIL TNFSF10 ENSG00000121858 3 172223298 172241297 46 0.027 5 0.006

VEGF VEGFA ENSG00000112715 6 43737946 43754223 21 0.073 1 0.0004

activePAI active plasminogen activator inhibitor-1, bNGF beta nerve growth factor, CTACK cutaneous T-cell attracting chemokine, FGFBasic basic fibroblast growth
factor, GROa growth-regulated oncogene-alpha, HGF hepatocyte growth factor, IL interleukin, ra receptor antagonist, IP-10 interferon gamma-induced protein 10,
MCP1 monocyte chemotactic protein-1, MCP3 monocyte chemotactic protein-3, MCSF macrophage colony-stimulating factor, MIF macrophage migration inhibitory
factor, MIG monokine induced by interferon-gamma, MIP macrophage inflammatory protein, PDGFbb platelet-derived growth factor BB, SCF stem cell factor, SCGFb
stem cell growth factor beta, SeSelectin soluble E-selectin, sICAM soluble intercellular adhesion molecule, sVCAM soluble vascular cell adhesion molecule, TNF
tumour necrosis factor, TRAIL TNF-related apoptosis inducing ligand, VEGF vascular endothelial growth factor
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(IL)-16, IL-18, IL-1a, IL-1ra,IL-2ra, IL-6, IL-7, IL-8, IL-
12p70, interferon gamma-induced protein 10 (IP-10),
monocyte chemotactic protein-1 (MCP1), monocyte
chemotactic protein-3 (MCP3), macrophage colony-
stimulating factor (MCSF), macrophage migration
inhibitory factor (MIF), monokine induced by interferon-
gamma (MIG), macrophage inflammatory protein (MIP)-
1a, MIP1b, platelet-derived growth factor BB (PDGFbb),
beta-chemokine RANTES (RANTES), stem cell factor
(SCF), stem cell growth factor beta (SCGFb), soluble E-
selectin (SeSelectin), soluble intercellular adhesion molecule
(sICAM) 1, soluble vascular cell adhesion molecule
(sVCAM) 1, tumour necrosis factor (TNF)-A, TNF-B,
TNF-related apoptosis inducing ligand (TRAIL) and vascu-
lar endothelial growth factor (VEGF) (Table 1 and Add-
itional file 2: Tables S2, S5 & S6).
The median variance explained (r2) by the genetic vari-

ants, per cytokine, was 1.60% (IQR 0.55 to 6.65%) for the
cis-pQTL and 0.51% (IQR 0.20 to 1.90%) for the cis-eQTL
(Table 1). The F-statistic for cytokines (averaged per cyto-
kine) was ≥ 10 for 90% of the cytokines in the cis-pQTL
analysis (range 4 to 186) and for 67% of the cytokines in
the cis-eQTL analysis (range 5 to 1194) (Additional file 2:
Table S2). In (post-hoc) power estimations, power ≥ 80%
to detect an odds ratio of 1.2 (per SD), assuming a type I
error rate of 0.05, was available for 37% (median power
0.51) and 20% (median 0.21) of the analyses using the
pQTL and eQTL instrument definitions, respectively.
Using the cis-pQTL instrument definition, 75 of the

1,013 associations (7.4%) that were investigated using
MR IVW were nominally significant (p < 0.05), while
considering an FDR of 10% or less, 12 associations
were significant, five of which were replicated (p <
0.05) in analyses using the cis-eQTL instrument def-
inition. Regarding these 12 associations, the median
number of SNPs per instrument was 11.0 (IQR 5.0 to
18.75) and the median r2 was 6.6% (IQR 4.9 to
9.96%). The significant (p < 0.05) MR IVW estimates
using the cis-pQTL instrument definition positively
correlated with MR IVW estimates using the cis-
eQTL (r2 = 0.55; Additional file 4: Figure S1).
The FDR significant associations are presented in

more detail, by cancer outcome, below.

Cytokine associations with site-specific cancers using MR
Breast cancer
Using the cis-pQTL instrument selection criteria, we found
evidence of a positive association between genetically proxied
concentrations of growth-regulated oncogene-alpha (GROa/
CXCL1) and overall breast cancer risk (odds ratio [OR], 95%
confidence interval [CI] 1.03, 1.02 to 1.05, p = 1.09 × 10−4),
with little evidence of heterogeneity or directional pleiotropy
and associations were similar in all the sensitivity analyses
(Figs. 2, 3 and 4; Additional file 2: Tables S5 & S6). Using the

cis-eQTL criteria and applying a FDR correction (FDR ≤
10%), an inverse association between genetically proxied cir-
culating concentrations of macrophage migration inhibitory
factor (MIF/MIF) and overall breast cancer risk (0.88, 0.83 to
0.94, p = 1 × 10−4) was found, compatible with the results
from sensitivity analyses.

Endometrial cancer
Genetically proxied concentrations of interleukin 1 re-
ceptor antagonist (IL-1ra/IL1RN) were inversely associ-
ated with overall endometrial cancer risk (0.86, 0.80 to
0.93, p = 2.23 × 10−4) and the endometrioid subtype
(0.85, 0.78 to 0.94; p = 7.9 × 10−4), and the results were
similar in all sensitivity analyses (Figs. 2, 3 and 4; Add-
itional file 2: Tables S5 & S6). Using the eQTL definition
and applying an FDR correction (FDR ≤ 10%), a positive
association between monokine induced by gamma inter-
feron (MIG/CXCL9) and non-endometrioid endometrial
cancer risk was observed (3.73, 1.86 to 7.47, p = 2 ×
10−4). We also observed inverse associations between
genetically proxied circulating soluble intercellular adhe-
sion molecule 1 (sICAM/ICAM1) and endometrioid
endometrial cancer risk (0.47, 0.31 to 0.70, p = 1.96 ×
10−4).

Lung cancer
Using the cis-pQTL instrument selection criteria, we
found a positive association between genetically proxied
circulating concentrations of cutaneous T-cell attracting
chemokine (CCL27/CTACK) and lung cancer risk in
never smokers (2355 cases, 1.51, 1.22 to 1.87, p = 1.73 ×
10−4) and inverse associations between genetically prox-
ied interleukin-18 (IL-18/IL-18) concentrations and
overall lung cancer (0.87, 0.81 to 0.93, p = 9.9 × 10−5)
and lung adenocarcinoma (0.80, 0.73 to 0.89, p = 1.41 ×
10−5) (Figs. 2, 3 and 4; Additional file 2: Tables S5 & S6).

Ovarian cancer
Using the cis-pQTL definition, positive associations were
observed for genetically proxied macrophage colony-
stimulating factor 1 (MCSF/CSF1) (1.75, 1.26 to 2.43; p
= 7.95 × 10−4) and macrophage inflammatory protein 1-
alpha (MIP1a/CCL3) (1.48, 1.18 to 1.86, p = 8.19 × 10−4)
in relation to low-grade serous ovarian cancer (Figs. 2,
3 and 4; Additional file 2: Tables S5 & S6). Furthermore,
an inverse association for genetically proxied concentra-
tions of Beta-Chemokine RANTES (RANTES/CCL5) in
relation to serous ovarian cancer (0.70, 0.57 to 0.85, p =
3.8 × 10−4) was found, which was based on a single in-
strumental variable, hence no sensitivity analyses were
performed.
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Prostate cancer
Using the cis-pQTL instrument selection criteria, we
found evidence of a positive association between genetic-
ally proxied concentrations of MIP1a and overall pros-
tate cancer risk (1.06, 1.03 to 1.1, p = 5.62 × 10−4) and
for an inverse association between genetically proxied
vascular endothelial growth factor (VEGF/VEGFA) con-
centrations and risk of advanced prostate cancer (0.86,
0.79 to 0.93; p = 2.28 × 10−4). The above estimates were
similar in all sensitivity analyses (Figs. 2, 3 and 4; Add-
itional file 2: Tables S5 & S6).

Systematic review of publicly available databases for
medical drugs, observational studies and biological
pathways
Of the 11 cytokines that showed evidence of a causal
link with a cancer, records on past or present clinical
drug development programmes were identified for six
cytokines (RANTES, MIF, VEGF, IL-1ra, MIP1a,
sICAM), four of which on drugs that have already
been marketed (MIF, VEGF, IL-1ra and sICAM).
Among the indications and associated conditions for
these drugs are macular degeneration, skin disorders,
cardiovascular disease, multiple sclerosis, cryopyrin-
associated periodic syndrome, and as a pain remedy

in inflammatory conditions of the joints and against
microbial infections. Furthermore, drugs targeting
VEGF have been used in several chemotherapy regi-
mens to treat metastatic cancers, including non-
squamous non-small cell lung cancer and epithelial
ovarian cancer (Additional file 2: Table S7). Epi-
demiological evidence for the observed associations
was available for IL-1ra in relation to endometrial
cancer, from a nested case-control study (OR = 1.28
per doubling concentrations; 95% CI 1.06 to 1.54).
Regarding the rest of the cytokines for which we
found evidence of association from the MR analyses,
observational epidemiological evidence was sparse
(Additional file 2: Table S8).
Eight of the 11 cytokines that showed evidence of a

causal link with a cancer were identified in the KEGG
pathway database. The most common across cyto-
kines was the ‘Cytokine-cytokine receptor interaction’
pathway, while most of these cytokines were involved
in known cancer-related pathways, such as the
‘MAPK’ (MCSF; VEGF), the ‘NF-kappa B’ (GROa;
sICAM), the ‘PI3K-Akt’ (MCSF; VEGF), the ‘Ras’
(MCSF; VEGF), the ‘HIF-1’ (VEGF) and the ‘Toll-like
receptor’ (MIG) signalling pathways among others
(Additional file 2: Table S9).

Fig. 2 Summary of the MR-IVW results based on the cis-pQTL instrument definition. Squared tiles indicate that the association is nominally
significant (p < 0.05), and the asterisk denotes that the association was significant when considering multiple comparison correction (FDR ≤ 10%).
Colour is scaled based on the MR beta estimates, while associations for which no instrument was available are presented as white tiles
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Colocalization
We found evidence to support the presence of a shared
causal variant, using colocalization analysis (posterior
probability for shared variant > 0.8) for the associations
between MIF and overall breast cancer, IL-1ra and endo-
metrioid endometrial cancer, IL-18 and lung adenocar-
cinoma, CTACK and lung cancer (in never smokers)
and RANTES in relation to serous ovarian cancer (Add-
itional file 2: Table S10). Regional colocalization plots
for these associations are provided in Additional file 4:
Figure S2.
When tissue specific gene-expression estimates were

used, significant results were found for MIF in relation
to breast tissue, IL-18 in relation to lung tissue and for
MIG expression in the corpus uteri tissue (Additional
file 2: Table S10).

Secondary traits associated with selected instruments and
sensitivity analyses
Genetic variants that were used as instruments for spe-
cific cytokines were concomitantly associated (in trans)
with other cytokines (Additional file 2: Table S11a). Sen-
sitivity analysis, excluding these variants, did not materi-
ally alter the effect estimates (Additional file 2: Table
S12). Several SNPs used as instruments in our analyses

have also been associated with other inflammation-
related traits, such as white blood cell count, CRP,
rheumatoid arthritis and eczema, strengthening their
biological relevance as instrumental variables (Additional
file 2: Table S11b). Two SNPs, namely rs868340 (used
under the pQTL instrument definition for MIP1a) and
rs281431 (used under the eQTL instrument definition
for sICAM), were associated with secondary traits, such
as body mass index and height, potentially introducing
horizontal pleiotropy. Results were similar in sensitivity
analyses, excluding potentially pleiotropic variants (Add-
itional file 2: Table S12a). In addition, when we adjusted
for the potential small LD among variants, results were
qualitatively the same (Additional file 2: Table S12b).
Only the association of IL-18 in relation to lung cancer

was replicated (p < 0.05) in the UK Biobank (Additional
file 2: Table S13); power though was substantially limited
(5%) in all analyses.

Discussion
We used MR analyses to investigate potential causal
links between genetically proxied circulating concentra-
tions of several inflammatory-related cytokines and risk
of breast, endometrial, lung, ovarian and prostate cancer.
We found an inverse association between genetically

Fig. 3 Summary of the MR-IVW results based on the cis-eQTL instrument definition. Squared tiles indicate that the association is nominally
significant (p < 0.05), and the asterisk denotes that the association was significant when considering multiple comparison correction (FDR ≤ 10%).
Colour is scaled based on the MR beta estimates, while associations for which no instrument was available are presented as white tiles
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proxied concentrations of MIF and breast cancer, a posi-
tive association of MIG and an inverse association of IL-
1ra with endometrial cancer, a positive association of
CTACK and an inverse association of IL-18 with lung
cancer and an inverse association of RANTES with epi-
thelial ovarian cancer. These findings were similar
among sensitivity analyses and were supported in colo-
calization analyses. We also found a positive association
of GROa with breast cancer, an inverse association of
sICAM with endometrial cancer, positive associations of
MCSF and MIP1a with epithelial ovarian cancer and a
positive association of MIP1a and an inverse association
of VEGF with prostate cancer. These findings were simi-
lar in sensitivity analyses but were not supported by
colocalization analyses.
Previous MR analyses have investigated associations of

cytokines with cancer, but in general used trans SNPs in
the construction of instrumental variables. One MR
study that investigated the effect of 27 cytokines and
growth factors on the risk of prostate cancer, drawing IV
estimates from a previously published GWAS on 8293
Finnish individuals and the same population that we in-
cluded in our analysis for prostate cancer, found that
higher genetically proxied circulating concentrations of
C-C motif chemokine ligand 2 (MCP-1/CCL2) were as-
sociated with a higher risk of prostate cancer [42].

Another MR study using the same source of instrumen-
tal variables investigated 24 cytokines in relation to
breast cancer risk and demonstrated positive associa-
tions for MCP-1, MIP1b and IL-13 [43]. Such associa-
tions were not replicated in our analysis, most likely due
to a different instrument definition. Contrary to the pre-
vious MR studies, we used a cis definition to instrument
the inflammatory biomarkers, selecting variants in close
proximity to the encoding gene region, thus reducing
the likelihood of horizontal pleiotropy [44]. Furthermore,
previous MR studies used publicly available GWAS esti-
mates for cytokines that were adjusted for BMI and
these estimates may suffer from collider bias (a variable
that is a common effect of two other variables) [45, 46],
when cytokine concentrations affect directly BMI levels
that has been observed in the literature for some cyto-
kines [15].
We found an inverse association between genetically

proxied MIF concentrations and breast cancer risk. MIF
is a pro-inflammatory cytokine, aberrantly expressed in
many solid tumours, including breast, and it has been
shown to promote tumour progression and metastasis
[47]. Additionally, due to its functional properties, it has
been characterised as a promising target for anti-cancer
treatment development [48]. Studies in various breast
cancer cell lines and human breast cancer tissue have

Fig. 4 Summary MR-IVW and sensitivity analyses of the associations that were significant when considering multiple comparison correction (FDR
≤ 10%)
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indicated a potential role in breast cancer invasion and
immunomodulation, though its functional role is not
fully understood [49]. Overexpression of MIF has also
correlated with worse survival in triple-negative breast
cancer compared to other hormonal status [50]. Despite
findings from several experimental studies suggesting a
positive association, our study showed an inverse associ-
ation for genetically proxied circulating MIF concentra-
tions in relation to breast cancer and a similar
observation was made in another study using the MR
approach [43]. A reason for this discrepancy could be a
potential pleiotropic effect that MIF might have depend-
ing on its cellular localization and tumour stage and type
[47]. It has been speculated that intracellular MIF in the
breast cells has a protective function, whereas extracellu-
lar MIF, whether it is tumour-associated macrophage
(TAM)-derived or produced by carcinoma cells upon
stroma/tumour interactions, is pathogenic [47].
In our study, we also found an inverse association be-

tween genetically proxied circulating IL-1ra concentra-
tions and endometrial cancer risk. Few prospective studies
have evaluated IL-1ra in relation to endometrial cancer
[51–53]. In a nested case-control study in the European
Prospective Investigation into Cancer (EPIC), elevated
concentrations of IL-1ra were associated with higher
endometrial cancer risk [52]. It should be noted though
that a large proportion of the measurements of IL-1ra
(52%) was below the assay limit of detection. Another
EPIC study, in the context of a factor analysis, provided
evidence for a positive association between IL-1ra and
endometrial cancer only in post-menopausal women,
while adjustment for BMI markedly attenuated risk esti-
mates [51]. A case-control study nested within the PLCO
cohort reported null associations between IL-1ra and
endometrial cancer risk [53]. Even though observational
studies have shown that IL-1ra might act as a pro-
inflammatory agent, mechanistic plausibility for a protect-
ive role of IL-1ra in cancer was demonstrated in experi-
mental studies [54–56]. Little epidemiological and
experimental evidence is currently available to support the
observed positive association for MIG in relation to endo-
metrial cancer, although associations with cancer out-
comes other than endometrial have been reported [57].
A positive association was found between genetically

proxied CTACK and lung cancer in never smokers and
a nominally significant association in small-cell lung
cancer. Findings from experimental studies have shown
that CTACK is highly expressed in tumour cells with
metastatic potential [58]. Additionally, a recent bio-
marker analysis using an antibody array demonstrated
that 17 cytokines, among them CTACK, were differen-
tially expressed in serum samples of non-small-cell lung
cancer patients compared to healthy controls [59]. On
the other hand, a nested case-control study within the

PLCO, including 526 cases and 592 controls, was incon-
clusive on the association between pre-diagnostic plasma
CTACK concentrations and lung cancer (Q4 versus Q1:
OR = 0.93, 0.64 to 1.35) [57]. Our analysis also showed
an inverse association between genetically proxied IL-18
concentrations and overall lung cancer and lung adeno-
carcinoma. Our observations are in line with findings
from experimental research that has demonstrated an
antitumour activity of IL-18 on lung cancer [60, 61]. It
has been shown that IL-18 exhibits a variety of biological
activities with implications in tumour initiation and de-
velopment. IL-18 can activate T-helper cells, which pro-
duce cytokines that interact with activated natural killer
cells and mediate the antitumour activity of IL-18. Fur-
thermore, IL-18 has anti-angiogenic and pro-
lymphangiogenesis properties, which contribute to its
antitumour activity.
We also found inverse associations for RANTES in re-

lation to invasive epithelial ovarian cancer and serous
ovarian cancer. Such an inverse association is not sup-
ported by the limited to date evidence that largely comes
from experimental studies and suggest that RANTES is
positively associated with cancer stem-like cells differen-
tiation and tumour angiogenesis, tumour immune toler-
ance and invasion, and chemoresistance [62–64]. On the
other hand, a study that used publicly available micro-
array data-sets, deposited in the National Center for Bio-
technology Information (NCBI) Gene Expression
Omnibus (GEO) demonstrated that the association be-
tween RANTES and overall survival (OS) among ovarian
cancer patients was dependent on the TP53 mutation
status and higher expression of RANTES was associated
with better OS only on TP53 mutant serous ovarian can-
cer [65].
Among the strengths of our analyses are the wide

range of inflammatory cytokines that we covered, and
the large sample size that was used in most of the ana-
lyses that we performed. Another strength is the ap-
proach that we used for instrument selection by using
variants in close proximity to the encoding gene region,
minimising the likelihood of horizontal pleiotropy [44].
Since cis-acting regulatory variants in the vicinity of
genes influence mRNA and protein expression, and the
majority of drug targets are proteins, an MR analysis
using cis defined instruments is likely to have transla-
tional relevance [66]. In support of this notion, a number
of studies during the last decade have demonstrated that
variants in genes encoding a drug target mimic the effect
of modifying the same target by use of pharmacological
agents [67]. In addition, lifestyle changes such as
changes in dietary habits, weight reduction and smoking
cessation have been associated with changes in plasma
concentrations of inflammatory biomarkers [68–70].
Considering that such changes can have a significant
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impact on the incidence of cancer when applied at the
population scale, with minimal adverse effects, future
studies that will aid in delineating such mediating effects
are warranted. Our study’s primary limitation is the use
of a single instrument or few instruments in some of the
analyses, which may have affected power to reject the
null hypothesis for some associations. The null findings
for some associations are not necessarily indicative of
the cytokines having no effect, since there were several
cytokines with weak instruments. In addition, there may
be non-linear effects, time-dependent effects or
inflammation-environment interactions that are not cap-
tured by the current analysis. Moreover, potential syner-
gistic effects between the studied cytokines and network
cytokine approaches were not considered. Furthermore,
since the number of independent SNPs required for the
MR sensitivity analyses (i.e. weighted median, ConMix,
MR Egger and PRESSO) to work properly is quite large,
which is not the case in most of the analyses that we
performed due to the cis-instrument definition ap-
proach, results of these analyses should be interpreted
with caution. Another important point is that, although
using the cis-eQTL definition (by retaining variants that
are additionally associated with tissue specific expres-
sion), the cytokine expression component throughout
the body (including in target organs) is partially cap-
tured, as measured cytokine concentrations in circula-
tion may not relate to tissue expression. In addition,
different parameters of gene expression, namely tissue
specific and exposure specific expression are not
accounted for in MR analyses. Even though we used a
wide panel of inflammatory cytokines, genetic instru-
ments were not available for several additional cytokines
that may be implicated in cancer, such as IL-13, IFN-
gamma and CXCL13. Future larger single- and multi-
trait GWASs of cytokine concentrations, and MR studies
with individual-level data could address some of the lat-
ter issues.

Conclusions
In conclusion, we used novel instruments that incorpor-
ate gene expression relevance and large-scale genetic
data for various cancer outcomes in MR analyses to in-
vestigate the associations of more than 30 circulating in-
flammatory cytokines with cancer risk. We reported
several robust associations, though further validation is
needed to assess the potential of these cytokines to be
used as drug or lifestyle targets for cancer prevention.
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