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Structural

Transcatheter aortic valve implantation (TAVI) has been demonstrated in 
randomised trials to be associated with a lower risk of death and disabling 
stroke compared with surgery.1 Therefore, it is likely that TAVI will 
increasingly become the preferred treatment modality for most patients 
with symptomatic severe aortic stenosis, regardless of baseline surgical 
risk. However, as TAVI begins to enter younger, lower-risk cohorts, the 
prevalence of bicuspid aortic valve (BAV) will increase, and it is important 
that clinicians recognise that this patient subset was excluded from all 
clinical trials comparing TAVI and surgery.2 Although clinical outcomes of 
TAVI in BAV have improved with newer generation devices, the incidence 
of paravalvular regurgitation and of conduction disturbance remains 
higher than with surgery, and both of these complications have been 
associated with adverse long-term outcomes.3–6

Therefore, in the absence of randomised data directly comparing these 
two treatment modalities, careful patient selection by the Heart Team, 
based on clinical and, perhaps more importantly, anatomical 
characteristics, must remain paramount. Furthermore, optimising 
transcatheter heart valve (THV) sizing and positioning within bicuspid 
anatomy remains an important consideration.

With this as a background, one potential solution to the challenges of TAVI 
in BAV is patient-specific computer simulation. In this review, we discuss 

how patient-specific computer simulation may be used to guide the 
transcatheter treatment of patients with BAV.

Patient-specific Computer Simulation
Patient-specific computer simulation is a method of simulating the 
interaction between a device and the native anatomy.7 The simulations 
use the geometric and mechanical properties of both the device and 
patient anatomy to predict the deformation of the device and the potential 
for important procedural complications. The technology has been studied 
in a number of structural heart procedures, including TAVI, left atrial 
appendage occlusion and transcatheter mitral valve replacement.8–20

Patient-specific computer simulation of TAVI in BAV has been undertaken 
in a number of small studies, but the largest validation and prospective 
clinical experience has been performed using the FEops HEARTguide 
technology.11,12,21–25 An overview of patient-specific computer simulation of 
TAVI in BAV is presented in Figure 1.

Finite Element Analysis
The first step in patient-specific computer simulation is to create a finite 
element model of the aortic root (Figure 2 and Supplementary Material 
Video 1). Pre-procedural cardiac CT imaging is segmented with inclusion 
of the left ventricular outflow tract, aortic root and the ascending aorta. 
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The aortic root tissues, leaflets and calcification are modelled with 
different elastic material properties.13,26 These material characteristics 
were derived through a process of iterative back-calculation from 39 
tricuspid aortic valve patients who had pre- and post-procedural cardiac 
CT.15 Aortic leaflet modelling has been developed for both Sievers type 0 
and type 1 BAV.27 Furthermore, modelling can be performed to reflect both 
tricommissural, bicommissural raphe-type and bicommissural non-raphe-
type leaflet morphology.28

Finite element models have been developed for a number of THVs, 
including SAPIEN XT (Edwards Lifesciences), CoreValve, Evolut R, Evolut 
PRO, Evolut PRO+ (Medtronic), Lotus and ACURATE neo (Boston Scientific). 
The frame morphology is derived from micro-CT, or based on information 
shared by the device manufacturer. The strut width is obtained from 
optical microscopy, or again, based on information shared by the 

manufacturer. Mechanical properties of the nickel titanium (Nitinol) frames 
are obtained through in vitro radial compression testing, with radial force 
recorded throughout the compression and unloading cycle.

Pre-dilatation is simulated and then the finite element model of the THV is 
positioned within the aortic root model. Finite element analysis (FEA) is 
performed to simulate the interaction between the THV and the native 
anatomy.

Computational Fluid Dynamics
An overview of the computational fluid dynamics (CFD) is presented in 
Figure 3. The blood domain is first extracted from the FEA output. A fixed 
pressure gradient of 32 mmHg is applied across the aortic root, a value 
that was derived using invasive measurement from 60 patients with 
tricuspid aortic valve.14 CFD is performed and paravalvular regurgitation is 
recorded in the left ventricular outflow tract. Importantly, the CFD 
simulations do not model for valvular regurgitation. The simulations are 
performed with the bioprosthetic leaflets aligned with the native leaflets, 
given that non-alignment of the bioprosthetic leaflets has been 
demonstrated to have minimal impact on the computer simulation output.16

Conduction Disturbance Modelling
Conduction disturbance modelling is presented in Figure 4. The inferior 
border of the membranous septum is located and then a region extending 
to 15 mm below the aortic annulus is identified. This anatomical region 
of interest is a surrogate for the His bundle and proximal left bundle 
branch.29 The force exerted by the THV on the native anatomy is extracted 
from the FEA modelling. The percentage of the region of interest that is 
subject to pressure (contact pressure index) is recorded. Importantly, the 
simulations do not account for differences in THV frame rotation, given 
that this has been demonstrated to have minimal impact on the computer 
simulation output.13

Validation of Computer Simulations
Retrospective validation of the computer simulations has been performed 
in 37 patients who had pre- and post-procedural cardiac CT imaging, with 
further validation performed on seven patients who had peri-procedural 
transoesophageal imaging.9,12 The majority of these patients had Sievers 
type 1 BAV (82%). The FEA simulations were found to be reliable at 
predicting the THV frame deformation within the bicuspid anatomy.

Validation of the CFD analysis has demonstrated that the simulations are 
reliable at predicting the development of moderate paravalvular 
regurgitation. A predicted paravalvular regurgitation of 13.6  ml/s was 
found to be 92% sensitive and 72% specific for predicting the development 
of moderate paravalvular regurgitation, representing a positive predictive 
value of 61% and a negative predictive value of 95%.

Limited validation of the conduction disturbance modelling has been 
performed in 20 patients. A contact pressure index of 0.14 was found to 
have a sensitivity of 67% and a specificity of 72% for predicting the 
development of major conduction abnormalities (new left bundle branch 
block, Mobitz type II second-degree atrioventricular block or third-degree 
atrioventricular block), representing a positive predictive value of 100% 
and a negative predictive value of 50%.

Optimising Transcatheter Heart 
Valve Sizing and Positioning
The computer simulations may be used to optimise THV sizing and 
positioning to reduce the severity of predicted paravalvular regurgitation 
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Figure 1: Patient-specific Computer 
Simulation of Transcatheter Aortic Valve 
Implantation in Bicuspid Aortic Valve 

A and B: Pre-procedural cardiac CT imaging (A) is used to create a finite element model (B) of the aortic 
root. C,D: Finite element analysis is performed to simulate the interaction between the transcatheter 
heart valve and the native anatomy. E: The blood domain is extracted and computational fluid 
dynamics is used to simulate paravalvular regurgitation. F: The force exerted by the transcatheter 
heart valve on the left bundle branch is measured and used to simulate conduction disturbance.
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Figure 2: Finite Element Analysis

A–C: Pre-procedural cardiac CT imaging is used to create a finite element model of the aortic root. 
D,E: The aortic wall, leaflets and calcium are given different mechanical characteristics. F–L: Finite 
element analysis is performed to simulate the interaction between the transcatheter heart valve 
and the native anatomy.
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and conduction disturbance (Figure 5).30 Simulations are performed using 
a THV sized using the perimeter-derived aortic annulus dimensions, and 
additional simulations may also be undertaken using a ‘downsized’ THV. 
Furthermore, simulations may also be performed with the THV positioned 
at multiple different implantation depths, typically at a high (0  mm), 
medium (4 mm), and, in some select cases, a deep (8 mm) implantation 
depth. Operators may then review the multiple simulations to choose the 
optimal THV size and implantation depth that reduces predicted 
paravalvular regurgitation and conduction disturbance.

Prospective Experience
To date, the clinical outcomes of 19 patients who have been treated 
prospectively using the technology have been presented.11,25 A significant 
number of these patients had tricommissural leaflet morphology (47%), but 
patients with bicommissural raphe-type (37%) and bicommissural non-
raphe-type (16%) leaflet morphology were also studied (Table  1). The 
computer simulations have been demonstrated to be a useful aid for 
guiding treatment decisions in BAV patients. In particular, the CFD analysis 
may be used to identify patients whose aortic root anatomy may not be 
suitable for TAVI because of the potential to develop significant paravalvular 
regurgitation. In prospective clinical usage, the computer simulations have 
suggested that five patients might develop significant paravalvular 
regurgitation if treated with a self-expanding THV, and, following discussion 
in the heart team meeting, four of these patients were treated with surgery. 
One patient was thought by the heart team to have a too high risk for 
surgery and was treated with a balloon-expandable THV.

For the 14 patients who were treated with TAVI using a self-expanding 
THV, the computer simulations were found to be a useful guide for THV 
sizing and positioning, and in 10 of these patients, procedural aspects 
were altered to minimise paravalvular regurgitation. In one of these 
patients, a deep implant was predicted to minimise paravalvular 
regurgitation and therefore a pre-procedural permanent pacemaker was 
implanted, given that the computer simulations predicted significant 
conduction disturbance with a deep implantation depth.

Favourable clinical outcomes have been observed in all 19 patients, with 
no patient developing moderate paravalvular regurgitation and no patient 
requiring post-procedural implantation of a permanent pacemaker.

Limitations
It is important that clinicians recognise the limitations of computer 
modelling. The FEA is not performed in a pressurised state and so is 
currently unable to simulate important procedural complications such as 
THV embolisation. Furthermore, the aortic root tissues are modelled with 
elastic material properties and therefore the FEA is unable to simulate 
aortic root rupture. The correct modelling of aortic leaflet morphology is 
dependent on high-quality cardiac CT imaging studies. 

Only limited validation of the FEA has been performed for patients with 
Sievers type 0 (bicommissural non-raphe-type) BAV. The CFD simulations 
do not have perfect diagnostic accuracy. Conduction disturbance 
modelling may not be feasible in all patients, given that adequate 
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Figure 3: Computational Fluid Dynamics Simulation

A: Finite element analysis is performed to simulate the interaction between the transcatheter heart valve and the native anatomy. B: Areas of poor apposition are noted. C: The blood domain is 
extracted and then computational fluid dynamics is used to simulate paravalvular regurgitation. In this example, significant paravalvular regurgitation is predicted. D: Postoperative transthoracic 
echocardiography demonstrates mild–moderate paravalvular regurgitation. *Values above this maximum are displayed in the highest colour in the scale.

Figure 4: Conduction Disturbance Modelling

A: A patient with no conduction disturbance underwent transcatheter aortic valve implantation with a 29 mm Evolut R valve. B: Finite element analysis demonstrates elliptical frame deformation within 
the bicuspid valve. C: Conduction disturbance modelling suggests significant conduction disturbance. D: Following transcatheter aortic valve implantation, the patient developed complete heart block. 
*Values above this maximum are displayed in the highest colour in the scale.
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right‑sided contrast opacification is required. Although multiple computer 
simulations may be performed to model a variety of different THV 
positions, achieving a target implantation depth may not always be 
feasible with current-generation self-expanding devices, because of the 
risk of device migration or embolisation on release.31 Furthermore, 
repositioning of the THV may induce trauma to the conduction tissue, 
although this risk might be mitigated by the top-down deployment 
technique, which is being evaluated in the Optimize PRO study 
(NCT04091048). The FEops HEARTguide technology is currently unable to 
model the SAPIEN 3 THV (Edwards Lifesciences), which has been 
associated with favourable procedural outcomes in bicuspid anatomy, 
although patient-specific computer simulation of BAV with this THV has 
been performed by other groups.22,32 Due to time and financial constraints, 
use of the technology may not be feasible in all patients, and its usage 
could potentially be limited to patients with high-risk complex anatomical 
subsets, such as patients with a calcified raphe or excess leaflet 
calcification, or for patients with a tapered aortic root anatomy, for whom 
THV downsizing might be considered.33,34

Future Directions
It is important to consider how patient-specific computer simulation of 
BAV could best be implemented into routine clinical practice. Ideally, 

Figure 5: Patient-specific Transcatheter Heart Valve Sizing and Positioning

A B C D

E F G H

I J K L

3 m/s*

0 m/s

0.4 MPa*

0.0 MPa

Finite element analysis simulations have been performed with a 29 mm Evolut PRO (A,B) and 34 mm Evolut R (C,D) transcatheter heart valve implanted at high (A,C) and at medium (B,D) implantation 
depths. The computational fluid dynamics simulations (E–H) and conduction disturbance modelling (I–L) suggest that predicted paravalvular regurgitation and conduction disturbance will be lowest with 
a 29 mm Evolut PRO transcatheter heart valve positioned at a high implantation depth. *Values above this maximum are displayed in the highest colour in the scale.

Table 1: Baseline Characteristics of 
Prospectively Treated Patients

Characteristic n=19
Age (years) 78.9 ± 8.1

Male 13 (68.4)

EuroSCORE II (%) 7.0 ± 6.2

Mean aortic valve gradient (mmHg) 48.6 ± 18.1

Aortic valve morphology

   Sievers classification

      Sievers type 0 3 (15.8)

      Sievers type 1 16 (84.2)

   TAVR-directed BAVi morphological classification

      Tricommissural 9 (47.4)

      Bicommissural raphe type 7 (36.8)

      Bicommissural non-raphe type 3 (15.8)

BAVi = bicuspid aortic valve imaging; TAVR = transcatheter aortic valve replacement.
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technologies such as deep learning would be used to rapidly identify 
patients with BAV at the time of cardiac CT acquisition.35 Cardiac CT 
imaging might then be transferred onto a cloud-based platform, where 
deep learning algorithms could assist with automatic segmentation of 
aortic root structures, reducing case processing times.36,37 Computer 
simulation output could then be provided to treating physicians in an 
expedited manner.38 

To date, limited prospective experience exists with patient-specific 
computer simulation of TAVI in BAV. To address this shortcoming, the 
PRECISE TAVI study (NCT04473443) will examine the role of patient-
specific computer simulation in heart team decision-making in complex 
anatomy.

Optimal THV device selection for bicuspid anatomy is yet to be established 
and patient-specific computer simulation could potentially be used to 
guide the selection of a high-radial-force or high-conformity THV.21

Ultimately, there exists the potential for patient-specific THVs to be 
developed, which would be tailored to the patient’s precise anatomical 
characteristics and could potentially reduce both paravalvular 
regurgitation and conduction disturbance.26

Finally, further studies will be needed to determine if hospital outcomes of 
TAVI in BAV patients might benefit from other uses of artificial intelligence, 

such as deep learning, which has been demonstrated to be predictive of 
short-term outcomes in other fields of cardiovascular diseases, such as 
carotid artery stenting.39

Conclusion
As the use of TAVI continues to expand into the younger, lower-risk patient 
cohort, achieving excellent clinical outcomes in BAV is important. Patient-
specific computer simulation is an emerging technology that may be used 
by the heart team to guide the transcatheter treatment of patients 
with BAV. 

Clinical Perspectives
•	 Patient-specific computer simulation of transcatheter aortic valve 

implantation in bicuspid aortic valve may predict the 
development of important clinical outcomes such as paravalvular 
regurgitation and conduction disturbance

•	 Patient-specific computer simulation may be used to optimise 
transcatheter heart valve sizing and positioning to minimise 
predicted paravalvular regurgitation and conduction disturbance

•	 The usage of patient-specific computer simulation to risk-stratify 
bicuspid patients and to optimise transcatheter heart valve 
sizing and positioning has been associated with favourable 
clinical outcomes
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