
Appendix, with additional figures, to:  

Understanding MRSA clonal competition within a UK hospital; the possible importance of density 

dependence 

Anneke S. de Vos, Sake J. de Vlas, Jodi A. Lindsay, Mirjam E.E. Kretzschmar, Gwenan M. Knight 

 

 

Examination of two competing CCs 

 

 
Appendix Figure 1. Example dynamics for two competing CCs. Prevalence over time of the basic 

MRSA resistant 𝑚 and higher resistant r-strains of two CCs, as dependent on starting densities. For 

both CC, parameters are as at baseline for CC22 (see Table 1) except 𝑏2 = 𝑏1 ∗ 1.01, and inflow 𝑖1 =

𝑖2 = 0 (for panels A and B), and in A 𝑔 = 0 and in B 𝑙 = 0. In both these panels CC2 starts with 

1/100th the starting values of CC1 (which would be in equilibrium if 𝑔 were 1 and 𝑙 were 0.03) but 

ends up as the dominant clone. In panels C and D, inflow 𝑖𝑚1 = 𝑖𝑚2 = 0.0015. In C, CC1 starts at 

5/6th of its panel A value, with CC2 at 1/6th, while in D CC1 starts at 4/6th of its panel A value, with CC2 

at 2/6th.   

 

Without gain and loss of resistance, the faster growing CC2 (purple in Appendix Figure 1) always out-

competes CC1 in the end. Even with external inflow, competition can be density dependent; neither 

complex will be absent completely in the end, but which one dominates may depend on initial 

densities.   

  



Density dependence characteristics 

 

 

 
Appendix Figure 2. Fraction of the population of bacteria of one CC that carry an element 

conferring resistance, as dependent on the density of this CC. As stated in the Methods, we solve 

for (initial) resistance levels using (𝑟𝑗 + 𝑑𝑟𝑗 𝑑𝑡⁄ )/(𝑟𝑗 + 𝑑𝑟𝑗 𝑑𝑡⁄ + 𝑚𝑗 + 𝑑𝑚𝑗 𝑑𝑡⁄ ) =  𝑟𝑗/(𝑚𝑗  + 𝑟𝑗) 

with 𝑚𝑗  + 𝑟𝑗 = 𝑥, where 𝑥 is the prevalence of the CC. Parameters are as at baseline for CC22 (see 

Table 1) except inflow 𝑖 = 0.  

 

The value of 𝑟 (𝑚 + 𝑟)⁄  as calculated in this manner was used to set the starting conditions for main 

text Figure 3 and appendix Figure 3. If the resistant fraction is not initially assumed in equilibrium 

with prevalence, but for example at a certain equal percentage for both CC, these Figures would be 

slightly different, showing somewhat less density dependence in CC dominance. However, since gain 

and loss are relatively fast processes, the semi-steady state like assumption for resistance level is 

reasonable. 

 



 
Appendix Figure 3. Eventual outcome of competition between two MRSA CCs as determined by 

initial densities of the two CCs, and on loss-rate l and gain-rate g. Here CC2 (dominance in pink) has 

a slight (1%) growth advantage over CC1 (dominance in green). For each CC, we consider only 

starting densities below or at the equilibrium density of this CC (as achieved without other CCs 

present). For example, at high loss- and low gain-rate (lower three extreme right panels), both CC 

populations lose all antibiotic resistance, which significantly lowers the maximum densities they can 

achieve. Initial resistance level within each CC is assumed at equilibrium with CC density (see 

Methods and Appendix Figure 1). For both CC, parameters are as at baseline for CC22 (see Table 1) 

except inflow 𝑖1 = 𝑖2 = 0 and 𝑏2 = 𝑏1 ∗ 1.01 (i.e., as in main text Figure 3B).  

 

Density dependence in competition outcome occurs when greater density allows for a greater 

fraction of bacteria to carry the resistant element, giving an advantage to the complex with greatest 

initial density. Yet with a very low loss rate (left panels), almost all bacteria carry the element even 

at low density of a CC. At a very high loss rate on the other hand, the element will be lost from the 

population, unless the gain rate is also very high. Without the resistant element, the MRSA are 

rendered less fit, so that the maximum density that can be reached by the CCs is then much lowered 

(bottom right panels).  

Only at medium loss rate, or if a high loss rate is combined with a high gain rate (upper right 

panels), will the population resistance level depend on the abundance of the CC; at greater 



abundance, bacteria with the element are more likely to come into contact with bacteria without 

the element, giving the opportunity for horizontal gene transfer.  

Interpreting the gain rate is not straight-forward, in that it depends on both the movement 

of bacteria (how many potential meetings take place) as well as the per encounter chance of actual 

horizontal transfer. Bacteria that carry the element will transfer this element on average to 𝑔 ∗ 𝑠 

other bacteria per day, so in case of 𝑔 = 1, the baseline value in our study, this means that less than 

1 other bacterium is transferred to per day. (If transfer takes much time, then the gain rate might 

actually saturate with density of the 𝑚 bacteria, yet it is not likely that this process takes long 

enough to impact dynamics.)  

Loss of the element might occur in several ways, one of which is at cell-division, when all 

copies might end up in one of the two daughter cells. Assuming only this manner, the loss rate can 

be roughly re-quantified to the fraction of cell-divisions at which only one daughter cell retains 

copies, as 𝑙/(𝑏 ∗ 𝑧𝑡). For example, for CC1, at equilibrium density, 0.66 ∗ 0.72 = 48% of cells divide 

each day, then with 𝑙 = 0.03 per day (the baseline value) the element is lost in about 3% of 

daughter cells.  

 

 

 

  



Reproducing observed dynamics 

 

Appendix Figure 4. Exploration of the fitting space. For each scenario, restricting 𝑘239 > 𝑘30 >

𝑘22, and with step sizes of 1% for each of the 𝑘𝑗, all combinations of these three parameters were 



explored. The left column shows the fitting space for our primary model version, in the right column 

for the secondary model version (assuming late CC22 r-strain inception), with baseline parameter 

settings for both. In panels A & B: histograms of the sums of squared differences (SSD) between 

model and relative prevalence data for these scenarios. Lower SSD indicates a better model fit. In 

panels C & E for the primary and in D & F for the secondary scenario, the considered parameter 

combinations (grey dots). Per scenario, the best fitting 200 combinations (in green), the best fitting 

50 combinations (in blue) and the very best fitting combination (red diamond) are indicated in each 

panel.    

 

Note that for computational reasons, the minimum and maximum of the fraction 𝑖𝑟𝑗  of 𝑖𝑗  were set 

to 1% and 99% respectively, which at most parameter settings, certainly for the well-fitting 

parameter settings shown in our other Figures, has no impact, but which does lead to some very 

small difference in the fit  for some of the parameter combinations shown here, compared to results 

that would be obtained when not setting any limits. 

For the secondary model version, a clear optimum in parameter space is seen. At this 

setting, CC22 can take over from CC30 as soon as it gains the higher resistance conferring genetic 

element in 2005. For the primary model version, instead, a band of reasonably fitting parameter 

combinations is seen. Along this band, where CC22 and CC30 high resistance levels are about 10% 

apart, density dependence in competition occurs; higher prevalence allows for more transmission of 

a resistant element, increasing competitiveness of the CC-population as a whole. The CC22 take-over 

from CC30 can then be explained as a switch between two possible stable states of the system. 

Outside of this band in parameter space, other fitness factors dominate competition between CC30 

and CC22, so that density dependence is lost. Above the band in panel C, CC22 is too susceptible to 

removal by antibiotics compared to CC30, even when it carries high resistance, so that CC22 never 

takes over. Conversely, below the band in panel C, CC22 has a lesser disadvantage in lower 

achievable resistance, and in this case CC22’s growth-rate advantage causes it to take over from 

CC30 from the start of model simulation.    

In view of this lack of a single optimum, and also of the high uncertainty in other parameters 

used in the scenario fits, and the simplicity of only two resistance levels per CC in the model, these 

fits are not meant to be informative about the actual death-rates averted by antibiotic resistance for 

these MRSA.  

 

 

 

  



 
Appendix Figure 5. Model fits to observed clonal dynamics, and counterfactual scenarios, all 

without density dependence in competition (𝒈 = 𝟎). Left column, primary model version, right 

column, secondary model version, with the additional assumption of late 𝑟22introuduction in 2004. 

Panels A & B) Model fits. C & D) The same fits as shown in A & B respectively, but re-running the 

model keeping the mean length of stay in hospital constant (𝑑 = 0.28 also after 2005). E & F) The 

same fits as shown in A & B respectively, but re-running the model without ST239 presence (𝑖239 =

0 throughout).  

 



Note that without the system bi-stability the disruption by ST239 could have only had a temporary 

effect, since, with just a single stable equilibrium, the system must return to it when ST239 inflow 

stops. This can best be seen in panel B, where CC30 and CC22 prevalence (almost) returned to their 

earlier values when ST239 inflow (almost) dried up. 

Panel C shows that the change in mean length of hospital stay is not sufficient by itself to 

cause as large an increase in relative CC22 prevalence as was observed in the hospital. A shorter 

mean length of hospital stay is most disadvantageous for CC30, since it has a lower growth (or 

infection) rate than CC22; with the more limited time in which individuals can spread MRSA once 

infected, it is rendered more important to infect them quickly. In panel F, in the secondary model 

version, we find the relative CC22 prevalence level to be slightly negatively impacted by the change 

in length of stay, despite a shorter mean length of stay being most advantageous for CC22. However, 

in this alternative model version, since the fit antibiotic resistance levels 𝑘30 and 𝑘22 are both low 

(see Table 2), absolute levels of CC22 and CC30 are low in this scenario, rendered even lower by the 

decreased length of stay. This renders the relative impact of inflow of CC22 and CC30 high, and since 

inflow is equal for both, this moves them slightly towards 50% each.  

 

 

 

 



 
Appendix Figure 6. Resistance data and modelled resistance levels. Panel A: Mean, maximum and 

minimum number of phenotypic resistances to antibiotics that were observed to be carried by the 

different strains of the CCs at St George’s NHS hospital (for details see Knight et al. (15)). A minimum 

of four antibiotic resistances defines MRSA. In panel B for our primary model version base scenario 

fit and in panel C for the secondary model version base scenario fit (with assumed CC22 r-type 

introduction in 2004), the modelled fraction of bacteria carrying higher resistance.  

 

Note that the total in modelled CC population resistance is also determined by the (presumed 

unchanging) 𝑘 parameters that set how much antibiotic induced death is avoided at high resistance 

level of a CC (see Table 2); in the primary base scenario the total antibiotic induced bacterial death is 

always higher for CC30 compared to for CC22.   



Hypothetical challenger to CC22 

 

  
Appendix Figure 7. Outcome of competition between CC22 and a hypothetical challenger. The 

impact of the growth-rate (𝑏), resistance (𝑘), and resistance cost (𝑐) parameters on competitiveness 

of a hypothetical new CC is shown. Parameters for CC22 are as in our primary model fit, i.e.  𝑘22 =

 49%, but here we assume inflow of neither CC22 nor of its hypothetical challenger. We do not 

include presence of CC30 or any other CCs, and set 𝑑 = 0.32 (as at the end in our basic scenario), 

and we solve for equilibria as explained in our Methods section. Where we find one equilibrium we 

check which of the CCs has prevalence >0, whereas existence of multiple equilibria indicates density 

dependence in competition.  

 

With either a significantly higher growth-rate or with much greater resistance to antibiotics (not 

offset by too high a cost in carrying this resistance), a hypothetical new CC would take over the 

dominant prevalence position from CC22. However, where fitness is comparable between CCs, we 

see density dependence in outcome of competition. CC22 would then likely keep its dominance as it 

starts at high prevalence. Occurrence of this density dependent competition band in parameter 

space is a robust outcome of our model, as long as the loss rate 𝑙 of resistance is not too small (see 

Appendix Figure 3). However, model parameter uncertainty does render the width and breadth of 

this density dependence band uncertain.  

  



Tables and Figures. 

 

Table 1. Parameter values. 

Description Parameter Time 

dependent 

Base value Alternative 

values  

Removal rate of bacteria 𝑑   before 2005 0.28 per day  

  from 2005 0.32 per day  

Additional removal rate due to 

antibiotics 

𝑎  0.3 per day  

Growth-rate 𝑏30  0.62 per day  

 𝑏22  0.66 per day  

 𝑏239  0.54 per day  

Cost to resistance in percentile 

decrease in growth-rate for 

resistant bacteria 

𝑐30  4 %  

𝑐22  2 %  

𝑐239  6 %  

Rate of resistance transfer  𝑔  1 per day  0 per day 

Rate of resistance loss 𝑙  0.03 per day 0 per day 

Rate of resistance gain by 

mutation 

𝑠  0 per day 0.003, 0.01 

per day 

Rate of bacterial inflow 𝑖30 = 𝑖22*  0.0015 per day  

 𝑖239* before 2003 0 per day  

  2003 - 2004 0.004 per day  

  from 2004 0.0008 per day  

Scalar of the dependence of the 

resistant fraction in inflow of a CC 

on current hospital resistance level 

ℎ  0.5 0, 0.25, 0.75, 

0.8, 1 

Percentile decrease in the 

antibiotics induced removal-rate 

for resistant bacteria  

𝑘30 & 𝑘22 

& 𝑘239  

 Fit to prevalence 

data 

 

Parameter values as used to reproduce the MRSA clonal complex (CC) dynamics as observed at St 
George’s Healthcare NHS Trust hospital between 1999 and 2009. For the more theoretical main 
Figures 1-3, plus Appendix Figures 1-3, we use parameters as at baseline for CC22, while 𝑑 is set at 



0.3 (the mean over the two time-periods), and 𝑘 = 49%, as in the primary model version basic 
scenario fit (see Table 2). For each scenario, i.e. primary or secondary model version, baseline or 
alternative parameter value, 𝑘30 & 𝑘22 & 𝑘239 are fit to best reproduce the prevalence data. For 
details, see Methods. See Table 2 for the fit values. * We assume a constant number of patients 
within the hospital, so that the total patient inflow rate equals the outflow rate of ~0.2 per day (as 
the mean length of stay is about 5 days). Then infected inflow i equals this total inflow rate of 0.2 
multiplied by the proportion of individuals infected at hospital entrance, as stated per CC in the 
Methods section. 
 

  



Table 2. Fitted model scenarios.  

Model 

version 

Change 

from base 

values 

Presence of 

multiple stable 

states at t=0 

(1999) for best fit 

𝒌s (and in what 

fraction of 

all 𝒌𝟑𝟎 and 𝒌𝟐𝟐 

combinations) 

Best fit: 

 

𝒌𝟑𝟎 

 

𝒌𝟐𝟐 

 

𝒌𝟐𝟑𝟗 

 

SSD  

 

Figure 

Primary 

ℎ = 0 Yes    (16.7%) 32 % 15 % 39 % 0.022 - 

ℎ = 0.25 Yes     (6.3%) 40 % 25 % 53 % 0.086 - 

All baseline Yes     (2.6%) 61 % 49 % 74 % 0.043 4A 

ℎ = 0.75 Yes     (0.9%) 81 % 71 % 94 % 0.026 - 

ℎ = 0.8 Yes     (0.7%) 82 % 72 % 95 % 0.039 - 

ℎ = 1 Yes     (0.2%) 84 % 74 % 96 % 0.077 - 

𝑔 = 0 No      (0.0%) 85 % 75 % 95 % 0.181 App.A4A 

𝑙 = 0 No      (0.0%) 85 % 76 % 96 % 0.181 - 

𝑠 = 0.003 Yes     (2.4%) 62 % 50 % 76 % 0.059 - 

𝑠 = 0.01 Yes     (1.9%) 71 % 60 % 84 % 0.062 - 

Secondary 

(with 

evolutionary 

event, i.e. 

CC22 r-type 

introduced in 

2004*) 

ℎ = 0 No      (0.0%) 28 % 16 % 33 % 0.020 - 

ℎ = 0.25 No      (0.0%) 27 % 15 % 34 % 0.017 - 

All baseline No      (0.0%) 26 % 17 % 34 % 0.015 4B 

ℎ = 0.75 No      (0.0%) 26 % 20 % 36 % 0.013 - 

ℎ = 0.8 No      (0.0%) 26 % 21 % 36 % 0.014 - 

ℎ = 1 No      (0.0%) 25 % 22 % 36 % 0.013 - 

𝑔 = 0 No      (0.0%) 34 % 27 % 37 % 0.013 App.A4B 

𝑙 = 0 No      (0.0%) 22 % 17 % 32 % 0.012 - 

Each scenario was fit to the data by finding the 𝑘 parameters, denoting the proportional decrease in 

the antibiotics induced removal-rate for resistant bacteria, for which the sum of squared differences 

(SSD) between model outcome and data was minimal. For examples of the fitting space, see 

Appendix Figure 4. The impact of parameters on model fit was explored by changing one at a time; 

all other parameters were set at their base values (see Table 1; at baseline ℎ = 0.5, 𝑔 = 1, 𝑙 =

0.03 and 𝑠 = 0). *In the secondary model version with CC22 r-type introduced only from 2004, we 

did not run the model with alternative values for the mutation rate s, since if 𝑠 ≠ 0, a higher 

resistance carrying element is obtained by CC22 from 1999, and we in effect regain our primary 

model setting.   



  

 
Figure 1. Example dynamics for a single CC. A: Prevalence over time of the basic MRSA resistant 𝑚 

(light-green) and higher resistant r-strain (dark-green) of a single CC, which has entered the hospital 

with low initial prevalence (𝑚(𝑡 = 0) = 0.01 and 𝑟(𝑡 = 0) = 0.0001.) z is the density of resource 

available. Parameters are as at baseline for CC22 (Table 1) except inflow 𝑖 = 0. B: Equilibrium 

prevalence of this CC as dependent on the loss-rate 𝑙 of the resistant element (solid lines). The 

baseline loss-rate l = 0.03 (used for panel A) is indicated here with a vertical dashed line. Total CC 

prevalence declines with increasing loss-rate, since in this setting (with high antibiotic induced 

death-rate, 𝑎) resistance is fitness enhancing (i.e. outweighs the cost to resistance in diminished 

growth, c). The equilibrium prevalence without the r-strain present is also shown (dotted lines). 

Note that this unstable equilibrium is lost when the mutation rate 𝑠 >  0.  

 

  
Figure 2. Dynamics for two competing CCs, exemplifying density dependence. Prevalence over time 

of the basic MRSA resistant 𝑚 and higher resistant r-strains of two CCs, as dependent on starting 

densities. CC2 has a 1% higher growth-rate than CC1, all other parameters are equal (and at baseline 

for CC22, except inflow 𝑖 = 0 (see Table 1)). In A both m1 and r1 (so CC1 as whole) (light- and dark-

green respectively) start at 2/3d of their equilibrium density, and m2 and r2 (light- and dark-purple) 

start at half these densities. In B the starting densities for CC1 and CC2 are reversed.    



 
Figure 3. Eventual outcome of competition between two MRSA CCs as determined by initial 

densities of both CCs. Here CC2 (dominance in pink) has the growth advantage over CC1 (dominance 

in green). For each CC, we consider only starting densities below or at the equilibrium density of this 

CC (as achieved without other CCs present) (hence the unequal panel sizes). Initial resistance level 

within each CC is assumed at equilibrium with CC density (see Methods and Appendix Figure 2). For 

both CCs, parameters are as at baseline for CC22 (see Table 1) except inflow 𝑖1 = 𝑖2 = 0 (for panels 

A, B and C) and 𝑏2 = 𝑏1 ∗ 1.01 (for panels A, B and D). For panel A, resistance transfer 𝑔 = 0 instead 

of baseline 𝑔 = 1. For panel C, 𝑏2 = 𝑏1 ∗ 1.03.  For panel D, 𝑖𝑚1 = 𝑖𝑚2 = 0.0015.  

 

 

 



Figure 4. Model fits to observed clonal dynamics. Model output (coloured lines, for CC30 (red), 

CC22 (green) and ST239 (blue)) compared to the relative CC-prevalences observed at St George’s 

Healthcare NHS Trust (star points). As explained in the Methods section, the hospital system is 

assumed to be at steady state in 1999, meaning modelled CC levels would not change until 

something happens. In both scenarios we include two known events: an ST239 outbreak in a nearby 

hospital around 2004, causing a short-term high inflow of this CC, and a drop in length of hospital 

stay from ~6 to ~5 days in 2005. The timings of these events are indicated in the top text-bars. Panel 

A: Primary model version fit. Panel B:  Secondary model version fit, with an additional evolutionary 

event assumed, causing the CC22 r-type to be introduced only in 2004, i.e. no CC22 r-type present 

before. See Table 2 for values of the fit parameters.    



 

 
Figure 5. Counterfactual scenarios. Model output is shown for the same primary scenario fit as 

shown in Figure 4A, but the model is re-run not including either one of the two known disturbance 

events; In panel A, the mean length of stay in hospital is kept constant (𝑑 = 0.28 also after 2005). In 

B, ST239 presence is not included (𝑖239 = 0 throughout).  

 

 

 

 


