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Abstract 

The GPIbα-VWF A1 domain interaction is essential for platelet tethering under high shear. Synergy 

between GPIbα and GPVI signaling machineries has been suggested previously, however its 

molecular mechanism remains unclear. We generated a novel GPIbα transgenic mouse 

(GpIbαΔsig/Δsig) by CRISPR-Cas9 technology to delete the last 24 residues of the GPIbα intracellular 

tail that harbors the 14-3-3 and phosphoinositide-3 kinase binding sites. GPIbαΔsig/Δsig platelets bound 

VWF normally under flow. However, they formed fewer filopodia on VWF/botrocetin in the presence 

of a αIIbβ3 blocker, demonstrating that despite normal ligand binding, VWF-dependent signaling is 

diminished. Activation of GpIbαΔsig/Δsig platelets with ADP and thrombin was normal, but GpIbαΔsig/Δsig 

platelets stimulated with collagen-related-peptide (CRP) exhibited markedly decreased P-selectin 

exposure and αIIbβ3 activation, suggesting a role for the GpIbα intracellular tail in GPVI-mediated 

signaling. Consistent with this, while haemostasis was normal in GPIbαΔsig/Δsig mice, diminished 

tyrosine-phosphorylation, (particularly pSYK) was detected in CRP-stimulated GpIbαΔsig/Δsig platelets 

as well as reduced platelet spreading on CRP. Platelet responses to rhodocytin were also affected in 

GpIbαΔsig/Δsig platelets but to a lesser extent than those with CRP. GpIbαΔsig/Δsig platelets formed 

smaller aggregates than wild-type platelets on collagen-coated microchannels at low, medium and 

high shear. In response to both VWF and collagen binding, flow assays performed with plasma-free 

blood or in the presence of αIIbβ3- or GPVI-blockers suggested reduced αIIbβ3 activation contributes to 

the phenotype of the GpIbαΔsig/Δsig platelets. Together, these results reveal a new role for the 

intracellular tail of GPIbα in transducing both VWF-GPIbα and collagen-GPVI signaling events in 

platelets. 

 
Article summary 

GPIbα and GPVI are two key receptors on the platelet surface. Using a novel transgenic mouse 

(GPIbαΔsig/Δsig) that lacks the last 24 amino acids of the GPIbα intracellular tail, we demonstrate the 

importance of this region not only in transducing signals in response to GPIbα binding to VWF, but 

also for collagen-GPVI-mediated platelet responses revealing previously underappreciated receptor 

crosstalk between GPIbα and GPVI. 
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Introduction 

To fulfil their hemostatic function, platelets are recruited to sites of vessel damage by von Willebrand 

factor (VWF), which interacts with exposed collagen and, thereafter, to glycoprotein (GP) Ibα on the 

platelet via its A1 domain. VWF-mediated platelet tethering facilitates platelet capture.(1) Subsequent 

interaction of platelets with additional ligands (e.g. αIIbβ3-fibrinogen, collagen-GPVI, collagen-α2β1) 

and changes in platelet phenotype are required to stabilize the platelet plug. Although the VWF-

GPIbα interaction primarily facilitates platelet recruitment, it also transduces a signal that causes 

intraplatelet Ca2+ release and activation of the platelet integrin, αIIbβ3.(2-5) These signaling events are 

highly dependent upon flow as shear forces induce unfolding of the GPIbα mechanosensitive 

juxtamembrane region that translates the mechanical signal into intracellular biochemical events.(6, 

7) Signaling is dependent upon the binding of adaptor and signaling molecules (e.g. Src kinases, Lyn 

and c-Src, 14-3-3 isoforms and phosphoinositide-3 kinase - PI3K) that can associate with the GPIbα 

intracellular tail.(8-12) Downstream activation of PLCγ2, PI3K-Akt, cGMP-PKG, mitogen activated 

kinase and LIM kinase 1 pathways have also been reported.(13-19)  By comparison to other platelet 

agonists (e.g. collagen, thrombin, ADP, thromboxane A2), signaling through GPIbα is considered 

weak. VWF-GPIbα signaling, which we term platelet ‘priming’ rather than activation, does not induce 

appreciable degranulation.(5) Therefore, the contribution of platelet ‘priming’ to normal hemostasis 

remains unclear as the effects of the other platelet agonists have the potential to mask those of 

GPIbα. However, in scenarios where other platelet agonists are either absent or in low abundance 

(e.g. platelet recruitment to endothelial or bacterial surfaces), the effects/importance of GPIbα 

signaling may become more prominent.(5) 

GPVI is a collagen/fibrin receptor on the platelet surface that non-covalently associates with Fc 

receptor γ-chain (FcRγ) and signals via immunoreceptor tyrosine-based activation motifs (ITAM).(20-

22) Collagen binding to platelets induces clustering of GPVI, which results in the phosphorylation of 

FcRγ by Src family kinases, Lyn and Fyn, that associate with the intracellular domain of GPVI.(23, 

24) This causes the recruitment and phosphorylation of Syk tyrosine kinase, and formation of a LAT-

based signaling complex that can activate phospholipase C (PLC) γ2 and lead to release of 

intraplatelet Ca2+ stores, activation of protein kinase (PK) C, and ultimately αIIbβ3 activation and both 

α- and dense-granule release.(21) 

Previous studies have suggested functional associations between GPIbα and GPVI and/or its co-

receptor FcRγ.(13, 25, 26) For example, VWF-GPIbα-mediated platelet responses are reportedly 

impaired in GPVI/FcRγ deficiencies in both mice and humans.(13, 27) There is also evidence that 

VWF can potentiate responses after collagen mediated responses in human platelets.(28) However, 

the molecular basis of GPIbα and GPVI receptor crosstalk has not been elucidated. Using a novel 

GPIbα transgenic mouse in which the last 24 amino acids (a.a.) of the GPIbα intracellular tail were 

deleted, we demonstrate the importance of this region not only to VWF-dependent signaling in 

platelets, but also reveal a major contribution in augmenting GPVI-mediated platelet signaling. 
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Methods 

Mice 

All procedures were performed with the United Kingdom Home Office approval in accordance with 

the Animals (Scientific Procedures) Act of 1986. GpIbαΔsig/Δsig mice were generated in-house by the 

Medical Research Council transgenic group at Imperial College using CRISPR-Cas9 technology 

(Figure 1). Briefly, pronuclear injections (CBAB6F1) were performed with Cas9 mRNA (75ng/µl), 

guide RNAs (gRNAs; 25-50ng/µl) and single-strand oligo donor DNA (25-50ng/µl). The donor DNA 

(GGTAAGGCCTAATGGGCGAGTGGGGCCTCTGGTAGCAGGACGGCGACCCTGAGCTCTGAGTC

AGGGTCGTGGTCAGGACCTATTGGGCACAGTGGGCATTA) had 50 bp homology arms at the 5’ 

and 3’ ends (Integrated DNA Technologies). Embryos were transferred to pseudo-pregnant 

CBAB6F1 female mice. Two founder mice originated from the same gRNA 

(CGACCCTGACTCAGAGCTGAGGG) were bred with C57BL/6 mice. F1 GpIbαΔsig/+ mice were bred 

to obtain GpIbαΔsig/Δsig mice, and GpIbα+/+ littermates were used as controls. Genotyping was 

performed by PCR amplification of a GpIbα fragment (551bp) using primers:  

AAGCACTCACACCACAAGCC and AGTATGAATGAGCGGGAGCC and subsequent Sanger 

sequencing (Genewiz). 

 

Experimental procedures were performed as previously described. (29, 30) Additional details are 

included in the Online Supplementary Appendix.  

 

Results 

Generation of GpIbαΔsig/Δsig mice 

Sequence identity between human and murine GPIbα intracellular region is very high, supporting the 

contention that their functions are well conserved (Figure 1A). To evaluate the role of the GPIbα 

intracellular tail upon both VWF- and collagen/GPVI-mediated signaling, we generated a novel 

transgenic mouse (GpIbαΔsig/Δsig) using CRISPR-Cas9 technology. We introduced a point mutation 

(Ser695Stop) that resulted in a premature stop codon that deletes the last 24 a.a. of the GPIbα 

intracellular tail (a.a. 695-718) containing the entire 14-3-3 isoform and PI3K binding region, (10, 12) 

but maintains the upstream filamin binding site in GPIbα (residues 668-681 in murine GPIbα)(31) 

(Figure 1A-B). Introduction of the mutation was confirmed by sequencing and by Western blotting 

using an anti-GPIbα antibody that recognizes the terminal region of the intracellular tail (Figure 1C-

E). GpIbαΔsig/Δsig mice were viable and born with the expected Mendelian frequencies. 

 

GpIbαΔsig/Δsig mice platelet count, platelet size and hemostatic function 

GpIbαΔsig/Δsig mice had mildly reduced (~20%) platelet counts and slightly larger platelet size (Figure 

2A-B), but other haematological parameters were unaffected (Online Supplementary Table S1). This 

is in contrast to the severe thrombocytopenia and giant platelets observed in complete GpIbα 
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deficiency in mice or Bernard-Soulier patients.(32, 33) Expression of the major platelet receptors, 

GPVI, αIIbβ3, GPIbβ, and the extracellular region of GPIbα was unaltered on GpIbαΔsig/Δsig platelet 

surfaces (Figure 2C).  

To assess haemostatic function in GpIbαΔsig/Δsig mice, we performed tail bleeding assays. Unlike Vwf-/- 

mice or mice lacking the extracellular domains of GPIbα,(32, 34, 35) GpIbαΔsig/Δsig mice displayed 

normal blood loss following tail transection (Figure 2D), suggesting that GpIbαΔsig/Δsig platelets can be 

recruited to sites of vessel damage similar to wild-type mice.  

There was no difference between GpIbαΔsig/Δsig mice and wild-type littermates in a non-ablative laser-

induced thrombus formation, as measured by the kinetics and extent, of both platelet accumulation 

and fibrin deposition (Figure 2-E-G;  Online Supplementary Figure S1 & Video 1).(29, 30, 36). These 

results support the contention that deletion of the GPIbα does not appreciably influence either 

platelet recruitment or their ability to support thrombin generation. In this model, platelet accumulation 

requires both VWF and thrombin but has less dependency upon collagen exposure or GPVI signaling 

due to the non-ablative injury. (37, 38) 

 

GpIbαΔsig/Δsig platelets bind VWF normally, but exhibit decreased VWF-mediated signaling 

To specifically examine the effect of the GPIbα intracellular tail truncation upon VWF-dependent 

platelet capture, we coated microchannels with murine VWF over which we perfused plasma-free 

blood (to remove fibrinogen and outside-in activation αIIbβ3) at 1000s-1. GpIbαΔsig/Δsig platelets were 

recruited normally to murine VWF-coated surfaces with rolling velocities, surface coverage and 

platelet accumulation unaltered compared to GpIbα+/+ platelets (Figure 3A-D; Video 2).  

To investigate the impact of the deletion of the last 24 a.a. of GPIbα on VWF signaling, we performed 

platelet spreading assays on murine VWF, which rely upon VWF-GPIbα signaling. On VWF alone, 

very few GpIbα+/+ or GpIbαΔsig/Δsig platelets bound to VWF and only very few exhibited filopodia 

(Figure 3E-H). When these experiments were repeated in the presence of botrocetin (a snake venom 

that increases the affinity of VWF A1 domain for GPIbα)(39) a large proportion (90%±2.8) of GpIbα+/+ 

platelets underwent shape changes and developed filopodia (Figure 3E and 3G; Online 

Supplementary Figure S2A-B), a well-described consequence of VWF-GPIbα signaling.(9, 19) This 

process was significantly diminished in GpIbαΔsig/Δsig platelets with only 46%±2.6 platelets exhibiting 

filopodia (Figure 3E and 3G; Online Supplementary Figure S2C-D).(9, 19) When experiments were 

performed in the presence of both botrocetin and GR144053, which competitively inhibits the 

interaction of αIIbβ3 with VWF and/or fibrinogen, the number of GpIbα+/+ platelets forming filopodia 

was not appreciably influenced (Online Supplementary Figure S2B), but the proportion of that formed 

>3 filopodia was significantly reduced (37%±6.7 vs. 74%±6.9) (Online Supplementary Figure S2A), 

revealing the contribution of outside-in signaling to filopodia formation. Under these conditions, here 

again although GpIbαΔsig/Δsig platelets bound VWF surfaces, they had a significantly diminished ability 

to form filopodia (Figure 3E and H). Moreover, GR144053 had no effect upon filopodia formation in 

GpIbαΔsig/Δsig platelets (Online Supplementary Figure S2C), suggesting that the reduced filopodia 
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formation in these platelets was likely due to a defect in VWF-GPIbα signaling manifest by a lack of 

activation of αIIbβ3 in response to VWF-GPIbα binding. Taken together, these results indicate that 

deletion of the last 24 a.a. of the intracellular tail of GPIbα does not influence platelet binding to VWF, 

but significantly reduces VWF-GPIbα downstream signaling response including αIIbβ3 activation.  

 

The intracellular tail of GPIbα is important for GPVI signaling 

We next evaluated agonist-induced platelet activation in GpIbαΔsig/Δsig mice. In response to ADP, 

washed GpIbαΔsig/Δsig platelets exhibited normal αIIbβ3 activation and P-selectin exposure and normal 

platelet aggregation (Figure 4A-D). Responses to thrombin were also normal except for a slight 

significant decrease in P-selectin exposure with the lowest thrombin concentration (Figure 4A-B) but 

this did not influence thrombin-induced platelet aggregation (Figure 4C-D). How this reduced P-

selectin exposure in response to low thrombin concentration is manifest remains unclear, but may 

reflect the findings of a previous study that suggested the importance of 14-3-3ζ binding to GPIbα 

specifically for low-dose thrombin responses.(40) Despite largely unaffected responses to ADP and 

thrombin, in response to collagen-related peptide (CRP), GpIbαΔsig/Δsig platelets exhibited markedly 

reduced αIIbβ3 activation and P-selectin exposure (Figure 4A-B). Interestingly, GpIbαΔsig/Δsig platelet 

aggregation following CRP stimulation appeared normal (Figure 4C-D).  

Next, we evaluated the ability of GpIbαΔsig/Δsig platelets to spread on fibrinogen surfaces with and 

without prior stimulation with thrombin. Without platelet stimulation, similar to wild-type platelets, most 

GpIbαΔsig/Δsig platelets remained round while upon stimulation with thrombin ∼80% platelets spread 

fully with no difference observed in the spread platelet area (Online Supplementary Figure S3A-E). 

As full spreading is highly dependent upon outside-in signaling through αIIbβ3,(41) this suggests that 

this signaling pathway is unaffected in GpIbαΔsig/Δsig platelets. We then explored the ability of platelets 

to spread on CRP-coated surfaces. Consistent with diminished platelet activation in response to 

CRP, GpIbαΔsig/Δsig platelets remained round in contrast to wild-type platelets (59%±3.4 versus 

19%±7; Figure 4E and 4G). This effect was also quantified by a 20% reduction in bound platelet area 

(Figure 4F) and in the reduced incidence of filopodia formation - 16%±6.3 for GpIbαΔsig/Δsig vs 

52%±7.1 for GpIbα+/+ (Figure 4E and 4G). Collectively, these results reveal an appreciable defect in 

GPVI-mediated signaling in GpIbαΔsig/Δsig platelets. 

There was an overall reduction in tyrosine phosphorylation after CRP stimulation in GpIbαΔsig/Δsig 

platelets compared to wild-type platelets (Figure 4H). Further analysis revealed appreciably reduced 

Syk kinase activation in GpIbαΔsig/Δsig platelets, as measured by phosphorylation of Syk on Tyr525 

and Tyr526 in response to CRP and lower phosphorylation levels of its downstream target pPLCγ2 

(p-Tyr 1217), although this was less marked than for those observed with pSyk (Figure 4I-K). In 

addition, phosphorylation levels of Akt (p-Ser 473), a known substrate of PI3K were also appreciably 

diminished in GpIbαΔsig/Δsig vs GpIbαΔsig/Δsig (Figure 4I and 4L). To assess whether the effect of 

truncation of GPIbα was specific for GPVI-mediated platelet responses, or whether other tyrosine-
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mediated signaling pathways might also be affected, we stimulated GpIbαΔsig/Δsig and wild-type 

platelets with rhodocytin (C-type lectin receptor 2 (CLEC-2) agonist). Tyrosine-phosphorylation profile 

of GpIbαΔsig/Δsig platelets in response to rhodocytin was similar to that of GpIbα+/+ platelets, with 

slightly reduced phosphorylation of Syk (∼20%) (Online Supplementary Figure S4A-C). P-selectin 

exposure in response to rhodocytin was reduced in GpIbαΔsig/Δsig platelets while αIIbβ3 activation was 

only diminished for the lowest concentration of the toxin without reaching statistical significance 

(Online Supplementary Figure S4D-E). These results suggest that the GPIbα tail may also influence 

CLEC-2 ITAM-mediated signaling, but perhaps with reduced dependency. 

 

The role of the GPIbα intracellular tail in platelet recruitment and aggregation under flow. 

To examine the consequences of the combined effects of disrupted VWF-GPIbα signaling and 

diminished GPVI-signaling in platelets in more physiological assays, we quantified platelet 

recruitment and aggregate formation on collagen-coated microchannels under flow. Experiments 

were performed at high (3000s-1), medium (1000s-1) and low (200s-1) shear, as platelet recruitment is 

increasingly dependent on VWF-GPIbα as shear increases while subsequent platelet aggregate 

formation on collagen surfaces becomes more dependent upon GPVI signaling (42-44).  

Perfusing whole blood at 3000s-1 and 1000s-1 over collagen, we observed a marked reduction in 

surface coverage of GpIbαΔsig/Δsig platelets when compared to GpIbα+/+ platelets (Figures 5A-B and 

6A-B; Videos 3 and 4). GpIbαΔsig/Δsig platelets that bound to collagen also formed smaller aggregates 

than GpIbα+/+ platelets (Figures 5C and 6C), likely reflecting the subsequent effect of diminished 

collagen-GPVI signaling. Perfusing wild-type plasma-free blood (to remove soluble VWF and 

fibrinogen) in collagen-coated microchannels revealed a significant reduction of both platelet 

adhesion and thrombus growth to similar levels observed in GpIbαΔsig/Δsig samples (Figure 6A-B;D-E) 

showing that a small amount of VWF-independent binding to collagen occurs at 1000s-1. When whole 

blood experiments were performed in the presence of GR144053, to block αIIbβ3, GpIbα+/+ platelets 

were recruited to the collagen surface as a monolayer. However, additional platelet-platelet 

recruitment was abolished and therefore there was limited thrombus growth in 3D. This was 

measured by an increase in surface coverage with a decrease in thrombus formation (i.e. total 

platelet fluorescence; Figure 6A-B;D).(45) Surface coverage as well as platelet accumulation of 

GpIbαΔsig/Δsig platelets was similar in both the absence and presence of GR144053 (Figure 6A-B;E), 

suggesting that lack of active αIIbβ3 is part of the platelet phenotype. To more specifically examine the 

role of GPVI in this system, we performed experiments in the presence of JAQ1, an anti-murine GPVI 

blocking antibody. Blocking GPVI significantly reduced surface coverage and platelet accumulation in 

GpIbαΔsig/Δsig and GpIbα+/+ platelets, revealing the important contribution of GPVI signaling at 1000s-1 

(Figure 6F-I), in stabilizing platelet recruitment and their subsequent aggregation. 

At venous shear rates (200s-1) where the dependencies on VWF and collagen are slightly different to 

1000s-1, surface coverage of GpIbαΔsig/Δsig platelets was slightly reduced compared to GpIbα+/+ 

platelets although it did not reach significance. However, thrombus growth was significantly 
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diminished (Figure 7A-C; Video 5). Using plasma-free blood, the surface coverage was similar for 

GpIbαΔsig/Δsig and GpIbα+/+ platelets, mediated by direct (VWF-independent) interaction with collagen 

(Figure 7A-B). Similar to high-shear conditions, platelet accumulation under plasma-free conditions of 

GpIbα+/+ platelets was significantly reduced compared to whole blood (Figure 7D) similar to those 

observed with GpIbαΔsig/Δsig platelets (Figure 7E). In the presence of GR144053, we saw the same 

increase in surface coverage of GpIbα+/+ platelets with reduced localized 3D-platelet thrombi (Figure 

7A-B) although the platelet accumulation was not significantly different to GpIbα+/+ whole blood 

(Figure 7D) likely due to the increased platelet coverage. Consistent with the results obtained under 

high-shear conditions, the effect of increased surface coverage in the presence of GR144053 was 

not observed with GpIbαΔsig/Δsig platelets, nor was platelet accumulation appreciably further 

diminished (Figure 7A-B and 7E). Finally, similar to results obtained under arterial shear conditions, 

blocking GPVI significantly reduced surface coverage and platelet accumulation in both GpIbαΔsig/Δsig 

and GpIbα+/+ platelets (Figure 7F-I). As removal of either VWF or blocking of GPVI had very similar 

effects, this suggests that VWF-GPIbα and GPVI-collagen binding may act synergistically to recruit 

platelets at low shear. 

 

Discussion 

The ability of platelet GPIbα binding to VWF to transduce intraplatelet signaling is well-known, but the 

hemostatic role of the platelet ‘priming’ that follows has frequently been perceived as redundant due 

to the comparatively mild phenotypic changes in platelets that ensue when compared to other platelet 

agonists (e.g. thrombin, collagen). Using a novel GpIbαΔsig/Δsig mouse, we now demonstrate that the 

intracellular tail of GPIbα is important not only for transduction of VWF-GPIbα signaling, but also 

collagen-GPVI-mediated responses in platelets (Figure 8). 

The binding of GPIbα to VWF, and of GPVI to collagen, are critical events for platelet plug 

formation.(42, 46, 47) Previous studies reported associations between GPIbα and GPVI, or its co-

receptor FcRγ suggesting potential interplay between these signaling pathways.(25, 26, 28) 

Functional crosstalk between these signaling pathways is supported by the diminished VWF-GPIbα-

dependent responses in platelets deficient in GPVI and by the ability of VWF to further potentiate 

platelet secretion in response to CRP.(13, 27, 28)  

To explore GPIbα signaling function and its influence upon GPVI signaling, we generated 

GpIbαΔsig/Δsig mice by introduction of a stop codon downstream of the main filamin binding site (a.a. 

668-681), but upstream of the 14-3-3 isoforms and PI3K binding regions that are important for VWF-

GPIbα signaling.(8-12, 48)(Figure 1) This resulted in uniform production of platelets that express 

GPIbα with truncated intracellular tail. This circumvented the limitations associated with 

studying/expressing platelet receptor complexes in heterologous cellular systems. Previously 

generated full knockout (GpIbα-/-) and also GpIbα/IL4Rα-tg mice that lack the extracellular region of 

GPIbα do not enable analysis of VWF signaling per se, as they lack the ability to bind VWF, meaning 
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that one cannot dissociate the effects of loss of VWF binding and/or VWF signaling upon functional 

effects upon the platelets.(32, 35) Transgenic mice (hTgY605X) that express human GPIbα that lacks 

the terminal 6 a.a. of the intracellular tail displayed reduced megakaryocyte recovery following 

induced thrombocytopenia,(49) but more recent in vitro studies have revealed that these mice do not 

lack the entire 14-3-3/PI3K binding region,(9, 10, 12) suggesting that their VWF signaling function 

may not be fully disrupted making interpretation of the mouse phenotype difficult. 

GpIbαΔsig/Δsig mice had a modest reduction in platelet counts compared to GpIbα+/+ littermates that is 

likely be attributable to the small increase in platelet size (Figure 2A-B). Interestingly, platelet size is 

also moderately increased in the GpIbα/IL4Rα-tg mice,(35) but, again, this is modest compared to 

the size observed in GpIbα-/- or in Bernard-Soulier platelets.(32, 33) Although the major filamin 

binding site remains intact in GpIbαΔsig/Δsig mice, our findings may be consistent with CHO cell studies 

that suggested the presence of additional or extended filamin binding regions within intracellular tail 

of GPIbα.(48) By themselves, the 20% reduction in platelet count and slight increase in platelet size 

would not impart a hemostatic defect.(50)  

GpIbαΔsig/Δsig mice exhibited normal hemostatic responses to tail transection, and normal thrombus 

formation following mild laser-induced thrombosis (Figure 2D-G). We used a non-perforating 

endothelial cell injury that does not induce collagen exposure. Therefore, this non-ablasive model is 

independent of collagen-mediated signaling pathways. (36, 38) However, both the tail transection 

and laser-induced models are sensitive to VWF function.(34, 37) Our results reveal the normal VWF-

binding function of GpIbαΔsig/Δsig platelets. Normal bleeding times were also reported in hTgY605X 

transgenic mice with no overt effect on platelet or coagulation functions.(49)  

Truncation of the intracellular tail of GPIbα did not alter expression of its extracellular domain (nor 

influence surface expression of GPIbβ, GPVI or αIIbβ3) (Figure 2C). Consequently, GpIbαΔsig/Δsig 

platelet capture to mouse VWF-coated surfaces was unaffected as well their rolling velocities (Figure 

3A-D). Despite normal VWF binding, deletion of the PI3K and 14-3-3 binding region in GPIbα (9, 10, 

12) significantly decreased filopodia extension upon stimulation of VWF binding with botrocetin but 

also in the presence of an αIIbβ3 antagonist that prevent outside-in signaling induced by the VWF C4 

domain binding to activated αIIbβ3 (Figure 3E;G-H)). Normal VWF-platelet binding in GpIbαΔsig/Δsig 

mice is in line with previous studies showing that deletion of the 14-3-3ζ binding site in human GPIbα 

in GPIb-IX CHO cells does not influence VWF binding, but does reduce their ability to spread.(9, 51) 

Other studies showed that a membrane-permeable inhibitor of the 14-3-3ζ-GPIbα interaction (MP-

αC) inhibited GPIbα-dependent platelet agglutination and was protective in murine thrombosis 

models.(11, 52) However, although this peptide disrupts the interaction between 14-3-3ζ and GPIbα, 

it may also influence 14-3-3ζ function independent of GPIbα binding. This contention is perhaps 

supported by a recent study revealing that 14-3-3ζ deficient mice are protected against arterial 

thrombosis with normal VWF-GPIbα-mediated platelet function.(53)  
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In addition to defective VWF-mediated signaling, GpIbαΔsig/Δsig platelets exhibited markedly diminished 

collagen-mediated signaling through GPVI evidenced by reduced surface expression of P-selectin 

and activation of αIIbβ3, fewer filopodia upon CRP stimulation (Figure 4A-B;E-G), and severely 

diminished platelet aggregate formation on collagen under venous and arterial shears (Figures 5-7). 

Bernard-Soulier patient platelets have historically been reported to respond normally to collagen in 

aggregation assays (54). However, the thrombocytopenia and giant platelets associated with full 

GPIbα deficiency combined with the loss of VWF-dependent platelet recruitment on collagen impair 

full analysis of other platelet signaling pathways under physiological flow conditions. Interestingly, 

although early studies on Bernard-Soulier patients reported that platelet aggregation in response to 

collagen was normal, their transformation into procoagulant platelets was specifically impaired in 

response to collagen (but not other agonists).(55) More recently, a Bernard-Soulier patient with 

mutations in both GPIbα and filamin A was also reported to exhibit defects in GPVI-mediated 

signaling responses.(56) Although the authors contended that this defect might be due to the filamin 

A mutation, this may warrant some reappraisal in light of the data presented herein. Like Bernard-

Soulier platelets, we found that GpIbαΔsig/Δsig platelets aggregated normally in response to CRP 

(Figure 4C-D). The signaling deficit presumably allows sufficient activation of αIIbβ3 for the platelets to 

aggregate. This is perhaps unsurprising given that Gp6+/- platelet aggregation is only affected at low 

collagen concentrations.(57, 58) Taken together, previous studies support the contention that 

Bernard-Soulier patient platelets exhibit a partial deficit in GPVI signaling that resembles the deficit in 

GpIbαΔsig/Δsig mouse platelets. 

Platelets can interact with collagen directly through GPVI and α2β1, and indirectly via GPIbα binding 

to VWF, the latter being increasingly important as shear rates rise to first capture the platelets and 

enable the aforementioned direct interactions to take place.(42, 59) This is demonstrated in wild-type 

mice, similar to previous reports,(43, 60) by the markedly reduced binding of platelets to collagen in 

the absence of plasma (and therefore VWF) at medium shear rates (Figure 6A-B,D). Although we 

demonstrated that GpIbαΔsig/Δsig platelets bind VWF normally, we saw the largest defect in platelet 

coverage/accumulation when compared to wild-type mice at 3000s-1 (Figure 5). Based on these 

results, it seems likely that VWF-GPIbα signaling is also important at these high shear rates, similar 

to the importance of GPIbα binding to VWF for platelet tethering. We therefore contend that under 

medium/high shear conditions, VWF-GPIbα platelet priming induces some rapid activation of αIIbβ3, 

which enable the platelets to better withstand the higher shear rates, prior to their 

interaction/activation by collagen (Figure 8). Although most evident at the highest shear rates, 

GpIbαΔsig/Δsig platelets exhibited reduced accumulation at venous shear rates (Figures 7C). Given that 

the surface coverage on collagen was not significantly altered at 200s-1 in GpIbαΔsig/Δsig platelets 

compared to wild-type platelets (Figure 7A-B), the deficit in subsequent platelet accumulation must 

be due to reduced reactivity of GpIbαΔsig/Δsig platelets. This is supported by the clear importance of 

αIIbβ3 activation to this assay, demonstrated by the effects of GR144053 in preventing 3D 

accumulation of platelets at both 200 s-1 and 1000s-1 in wild-type platelets (Figures 6 and 7 panels A-
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D). We also observed an increase in the platelet coverage in wild-type platelets in the presence of 

the αIIbβ3 blocker. This is in line with our previous study and others showing that αIIbβ3 blockade 

allows the formation of a platelet monolayer, but prevents thrombus growth in 3D and also lateral 

platelet-platelet aggregation (Figures 6B and 7B).(5, 45, 61, 62) This underscores the importance in 

quantifying both platelet coverage and accumulation in flow assays when studying platelet signaling 

defects.(45, 61)   Importantly, GR144053 did not alter these parameters when added to GpIbαΔsig/Δsig 

platelets (Figures 6 and 7, panels A-B, D-E), demonstrating a lack of αIIbβ3 activation that would be 

consistent with a diminished GPVI-mediated signaling response. It is important to note that this 

response is diminished, rather than ablated as the addition of JAQ1 led to a marked decrease in both 

platelet tethering and accumulation at both 1000s-1 and 200s-1 shear rates (Figure 6F-I and Figure 

7F-I).  The question remains open as to the precise contribution of VWF-GPIbα versus collagen-

GPVI signaling deficits to the phenotype of GpIbαΔsig/Δsig platelets. Our data suggest that both 

signaling pathways likely contribute to this, as disruption of either interaction causes a major 

reduction in platelet accumulation in wild-type platelets under both venous and arterial shear rates.   

GPVI belongs to the immunoglobulin superfamily and signals via tyrosine kinase phosphorylation 

pathways. To further investigate the defect in GPVI signaling in GpIbαΔsig/Δsig platelets, analysis of 

tyrosine phosphorylation downstream of GPVI revealed that SYK and PLCγ2 phosphorylation was 

reduced in GpIbαΔsig/Δsig platelets (Figure 4H-K). Interestingly, the diminished phosphorylation was 

more pronounced for SYK than for PLCγ2 perhaps highlighting the existence of LAT-independent 

mechanisms of PLCγ2 phosphorylation.(63) Interestingly, activation of GpIbαΔsig/Δsig platelets via  

CLEC-2, another receptor that signals via an ITAM motif,(64) was also affected, but perhaps to a 

lesser extent than those mediated by GPVI (Online Supplementary Figure S4) suggesting that the 

function of the GPIbα intracellular tail is more important for GPVI mediated responses. Based on 

these findings, we hypothesize that the tail of GPIbα may be important for the docking of signaling 

molecules such as SYK, LAT and PLCγ2 that are downstream of GPVI and CLEC-2 on ITAM 

phosphorylated motif of the FcRγ and CLEC-2 receptors and warrant further investigation. It would 

also be of interest to determine if the reduction in PI3K signaling in response to CRP stimulation 

(Figure 4I-L) is due to the lack of binding of PI3K to the intracellular tail of GPIbα or it is a 

consequence of diminished SYK phosphorylation (65) 

In summary, we generated a novel GPIbα transgenic mouse in which their platelets bind VWF 

normally, but the subsequent VWF-GPIbα signaling is disrupted. Intriguingly, these mice clearly 

reveal the molecular link between GPIbα- and GPVI-mediated signaling in platelets and underscore 

the cooperative functions of these two major platelet receptors.(45) Platelets in addition to their 

important role in thrombosis and haemostasis contribute to the host response to infection and 

inflammation.(66-69) Our recent work suggests that VWF-GPIbα-dependent platelet priming 

potentiates the recruitment of neutrophils, which may represent a key early event in the targeting of 

pathogens, but also in the development of deep vein thrombosis.(5) The GpIbαΔsig/Δsig mice now 
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provide an invaluable tool to probe the importance of the GPIbα-mediated signaling in inflammatory 

diseases such as atherosclerosis and deep vein thrombosis, as well as in the host response to 

infection but also to fully decipher the molecular dependency of GPVI signaling upon GPIbα. 
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FIGURE LEGENDS: 
 
Figure 1. Generation and characterization of GpIbαΔsig/Δsig mice. (A) Sequence alignment of the 
last 100 amino acids (a.a.) of human and mouse GPIbα. Sequence identities are highlighted in red. 
Filamin binding region: (a.a. 560-573) and (a.a. 668-681) for human and mouse GPIbα; PI3K/14-3-3 
binding region: (a.a. 580-610) and (a.a. 688-718) for human and mouse GPIbα. (B) Schematic 
representation of the GpIbα gene with CRISPR guide target site, gRNA sequence, BbvCI restriction 
enzyme site and Cas9 predicted cut site. Primers used to amplify the GpIbα allele from genomic 
DNA are indicated in purple. Design of the 101�bp ssDNA repair template with the point mutation to 
introduce a codon stop eliminating the BbvCI restriction enzyme site and removing the last 24 a.a. of 
GPIbα is also shown. The resulting truncated a.a. sequence from GpIbαΔsig/Δsig mice is indicated in 
green. (C) Genomic DNA sequences from GpIbα+/+ and GpIbαΔsig/Δsig mice. Successful substitution is 
indicated with an arrow. (D) Diagram showing the binding of the anti-GPIbα tail Ab (Biorbyt; orb 
215471). (E) Platelet lysates from GpIbα+/+ and GpIbαΔsig/Δsig mice were probed with the anti-GPIbα 
tail and β-actin antibodies. Absence of band in the GPIbα western-blot confirms the successful 
truncation of the GPIbα intracellular tail in GpIbαΔsig/Δsig mice.  

Figure 2. GpIbαΔsig/Δsig mice display normal bleeding loss and platelet and fibrin accumulation 
in the laser-induced thrombosis model. A) Platelet counts and (B) platelet size in GpIbα+/+ (n=25) 
and GpIbαΔsig/Δsig mice (n=30) as determined by flow cytometry. (C) Surface expression of platelet 
receptors GPIbα, GPIbβ, αIIbβ3 and GPVI in GpIbα+/+ and GpIbαΔsig/Δsig mice (n=4 for each genotype) 
determined by flow cytometry and expressed as % of control. (D) Bar graph analyzing blood loss 
after 10 min following tail transection in GpIbα+/+ and GpIbαΔsig/Δsig mice (n=9 for each genotype). (E-
G) Mice cremaster muscle arterioles were subjected to the laser-induced thrombosis model as 
described in Supplementary Methods. Curves represent median integrated fluorescence intensity 
(IFI) from platelets (arbitrary units: AU) (E) or fibrin(ogen) (F) as a function of time after the injury (20 
thrombi in 3 GpIbα+/+ and 34 thrombi in 4 GpIbαΔsig/Δsig mice). (G) Representative composite 
fluorescence images of platelets (green) and fibrin (red) with bright field images after laser-induced 
injury of the endothelium of GpIbα+/+ (top panels) versus GpIbαΔsig/Δsig mice (bottom panels). Scale 
bar represents 10 µm. Each symbol represents one thrombus. Horizontal lines intersecting the data 
set represent the median. Data was analyzed using Mann Whitney test; ns: p>0.05. Also see Video 1 
and Figure S1. 

 
Figure 3. GpIbαΔsig/Δsig platelets exhibit normal binding to VWF but disrupted GPIbα-mediated 
signaling. (A-D) Plasma-free blood from GpIbα+/+ and GpIbαΔsig/Δsig mice supplemented with anti-
GPIbb-DyLight488 Ab was perfused over murine VWF at a shear rate of 1000s-1. (A) Representative 
fluorescence images (n≥3; scale bar 10 µm) and bar graphs analyzing the integrated fluorescence 
intensity (IFI) (B) and the surface coverage (C) of GpIbα+/+ and GpIbαΔsig/Δsig platelets captured by 
murine VWF after 3.5 mins of flow. (D) Rolling velocities (median ± CI) were calculated from 
(∼10,000) platelets rolling/adhering to murine VWF within the first 30 seconds (n≥3) (E) 
Representative confocal images of GpIbα+/+ and GpIbαΔsig/Δsig platelets (n=3 for each genotype) 
spread on mVWF and stained with Phalloidin-Alexa 488, in the absence or presence of Botrocetin or 
Botrocetin and GR144053 (scale bar 10 µm). (F-H) Percentage of platelets from GpIbα+/+ and 
GpIbαΔsig/Δsig mice (individual data points representing the average of 3-6 fields of view) with no 
filopodia, 1-3 filopodia or >3 filopodia formed on murine VWF in the absence (F; 129 GpIbα+/+ 
platelets and 115 GpIbαΔsig/Δsig platelets analysed) or presence of Botrocetin (G; 511 GpIbα+/+ 
platelets and 547 GpIbαΔsig/Δsig platelets analysed), or Botrocetin and GR144053 (H; 359 GpIbα+/+ 
platelets and 480 GpIbαΔsig/Δsig platelets analysed). Data represents mean ± SEM (B,C, F-H) or 
median ± CI (D) and was analyzed using unpaired two-tailed Student’s t-test (B,C), unpaired Mann 
Whitney test (D) or using two-way ANOVA followed by Sidak’s multiple comparison test (F-H); 
*p<0.05, ***p<0.001, ****p<0.0001. Also see Online Supplementary Figure S2 and Video 2. 
 
Figure 4: GpIbαΔsig/Δsig platelets exhibit altered GPVI-mediated signaling. (A-B) Flow cytometric 
analysis of surface expression of activated αIIbβ3 (A) and P-selectin (B) in GpIbα+/+ and GpIbαΔsig/Δsig 
platelets (n=8) in response to ADP (1-20μM), α-thrombin (20-200mU/ml), or CRP (1-10μg/ml). MFI: 
geometric mean fluorescence intensity (C) Representative aggregation traces (n=3-6) of washed 
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platelets isolated from GpIbα+/+ (blue) or GpIbαΔsig/Δsig (red) mice and stimulated with ADP (1-10μM), 
α-thrombin (20-50mU/ml) or CRP (0.5-3μg/ml). Aggregation was monitored using a Chronolog 
aggregometer over 6 mins. (D) Bar graph analysing the maximum aggregation (%) obtained in the 
conditions presented in (C). (E) Representative micrographs (n=3 for each genotype; 3 fields of view 
analyzed per condition; scale bar 10 µm) of 454 GpIbα+/+ and 420 GpIbαΔsig/Δsig platelets (>400) 
spread on CRP and stained with Phalloidin-Alexa 488. Bar graphs quantifying the surface area (F) 
and percentages (G) of platelets that remained round, formed filopodia or spread on CRP. (H) 
Western blot analyzing tyrosine kinase phosphorylation in platelets from GpIbα+/+ and GpIbαΔsig/Δsig 
mice, following stimulation with 3 µg/ml CRP for 0-180s, using β-actin as a loading control 
(representative of n=3). (I) Western blots analyzing the levels of phosphorylated and non-
phosphorylated SYK, PLCγ2 and Akt in platelets from GpIbα+/+ and GpIbαΔsig/Δsig mice, after 0-180s 
stimulation with CRP (representative of n=3). (J-L) Bar graphs displaying the levels of 
phosphorylated SYK, PLCγ2 and Akt in platelets from GpIbα+/+ and GpIbαΔsig/Δsig mice, after 0-180s 
stimulation with CRP and normalizing the intensity according to the non-phosphorylated levels of 
SYK, PLCγ2 and Akt. For the surface area (F), the data represent the median±CI and was analyzed 
using the unpaired Mann Whitney test. All other data is displayed as mean±SEM and was analyzed 
using two-way ANOVA followed by Sidak’s multiple comparison test. *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001. Also see Online Supplementary Figure S2 and S3. 
 
Figure 5. GpIbαΔsig/Δsig platelets have a reduced ability to bind to collagen and form 
microthrombi at 3000s-1. Hirudin anticoagulated whole blood from GpIbα+/+ and GpIbαΔsig/Δsig mice 
was labelled with anti-GPIbβ-DyLight488 Ab and perfused over fibrillar collagen type I (0.2 mg/ml) at 
a shear rate of 3000s-1 for 3 mins. (A) Representative fluorescence images (n=6) after 3 minutes of 
perfusion in whole blood (WB) from GpIbα+/+ and GpIbαΔsig/Δsig mice at 3000s-1. Platelet deposition (B) 
and thrombus build-up measured as integrated fluorescence intensity (IFI) (C). All data is shown as 
mean ± SEM and analyzed using unpaired two-tailed student’s t-test The maximal platelet IFI was 
used to compare the thrombus build up data. *p<0.05, ***p<0.001. Scale bar 100 µm. Also see Video 
3. 
 

Figure 6: GpIbαΔsig/Δsig platelets have a reduced ability to bind to collagen and form 
microthrombi at 1000s-1.  (A-E) Hirudin anticoagulated whole blood supplemented or not with 
GR144053 or  plasma-free blood from GpIbα+/+ and GpIbαΔsig/Δsig mice was labelled with anti-GPIbβ-
DyLight488 Ab and perfused over fibrillar collagen type I (0.2 mg/ml) at a shear rate of 1000s-1 for 3 
mins. (A) Representative fluorescence images (n≥3) after 3 minutes of perfusion in whole blood 
(WB), plasma-free blood (PFB) or WB + GR144053 from GpIbα+/+ and GpIbαΔsig/Δsig mice. Platelet 
deposition (B) and thrombus build-up measured as IFI (C-E). All data is shown as mean ± SEM and 
analyzed using unpaired two-tailed student’s t-test (C) or one-way ANOVA followed by Dunnett’s 
multiple comparison test (B, D-E). Data is compared to means from GpIbα+/+ WB (B,D) or 
GpIbαΔsig/Δsig WB (E). The maximal platelet IFI was used to compare the thrombus build up data. 
*p<0.05. Scale bar 100 µm. Also see Video 4. (F-I) Hirudin anticoagulated whole blood from GpIbα+/+ 
and GpIbαΔsig/Δsig mice supplemented with JAQ1 or Rat-IgG control Abs (20µg/ml) was labelled with 
anti-GPIbβ-DyLight488 Ab and perfused over fibrillar collagen type I (0.2 mg/ml) at a shear rate of 
1000s-1 for 3 mins. (F) Representative fluorescence images (n=3) after 3 minutes of perfusion. 
Platelet deposition (G) and thrombus build-up measured as IFI (H,I). All data is shown as mean ± 
SEM and analyzed using unpaired two-tailed student’s t-test. The maximal platelet IFI was used to 
compare the thrombus build up data. *p<0.05, **p<0.01. Scale bar 100 µm.  
 

Figure 7: GpIbαΔsig/Δsig platelets have a reduced ability to bind to collagen and form 
microthrombi at 200s-1.  (A-E) Hirudin anticoagulated whole blood supplemented or not with 
GR144053 or plasma-free blood from GpIbα+/+ and GpIbαΔsig/Δsig mice was labelled with anti-GPIbβ-
DyLight488 Ab and perfused over fibrillar collagen type I (0.2 mg/ml) at a shear rate of 200s-1 for 3 
mins. (A) Representative fluorescence images (n≥3) after 3 minutes of perfusion in whole blood 
(WB), plasma-free blood (PFB) or WB + GR144053 from GpIbα+/+ and GpIbαΔsig/Δsig mice. Platelet 
deposition (B) and thrombus build-up measured as IFI (C-E). All data is shown as mean ± SEM and 
analyzed using unpaired two-tailed student’s t-test (C) or one-way ANOVA followed by Dunnett’s 
multiple comparison test (B,D-E). Data is compared to means from GpIbα+/+ WB (B,D) or 
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GpIbαΔsig/Δsig WB (E). The maximal platelet IFI was used to compare the thrombus build up data. 
*p<0.05, **p<0.01. Scale bar 100 µm. Also see Video 5. (F-I) Hirudin anticoagulated whole blood 
from GpIbα+/+ and GpIbαΔsig/Δsig mice supplemented with JAQ1 or Rat-IgG control Abs (20µg/ml) was 
labelled with anti- GPIbβ-DyLight488 Ab and perfused over fibrillar collagen type I (0.2 mg/ml) at a 
shear rate of 1000s-1 for 3 mins. (F) Representative fluorescence images (n=3) after 3 minutes of 
perfusion. Platelet deposition (G) and thrombus build-up measured as IFI (H,I). All data is shown as 
mean ± SEM and analyzed using unpaired two-tailed student’s t-test. The maximal platelet IFI was 
used to compare the thrombus build up data. *p<0.05. Scale bar 100 µm. 
 
Figure 8: Proposed model for GPIbα-GPVI cross talk. Under normal conditions, resting/circulating 
platelets (1) present αIIbβ3 on their surface in its closed conformation. Plasma VWF (2) circulates in its 
globular conformation with its A1 domain hidden, preventing interaction with platelet GPIbα. Upon 
vascular injury, the subendothelial extracellular matrix containing collagen becomes exposed to the 
blood. VWF, via its A3 domain, binds to collagen and, due to shear forces, unravels to expose its A1 
domain to which platelet GPIbα binds (3). Next, mechanosensitive signaling events downstream of 
VWF A1-GPIbα that require the intracellular tail of GPIbα take place leading to some activation of 
surface αIIbβ3 (4) while the deceleration of platelets allows for the subsequent binding of platelets to 
collagen via several collagen receptors including GPVI (6). The intracellular tail of GPIbα is also 
crucial for optimal collagen/GPVI signaling that lead to platelet activation, shape change and granule 
release (7). Ultimately, additional circulating platelets will be recruited at the site of injury to form the 
hemostatic plug (8). 
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SUPPLEMENTARY METHODS 

 

Determination of complete blood counts, platelet counts, surface protein expression and 

platelet activation. 

Mice were anaesthetized with ketamine/medetomidine and blood was collected retro-orbitally in 3.8% 

citrate. Blood was diluted with equal volume of saline and analyzed by the clinical pathology laboratory 

at Hammersmith Hospital to obtain full blood counts. Platelet counts were determined using precision 

count beads (Biolegend) and flow cytometry according to the manufacturer’s instructions. 

Platelets were washed as previously described with the following modifications.(1) Blood was diluted 

in an equal volume of modified Tyrode’s buffer supplemented with prostaglandin E1 (PGE1) and 

apyrase (both from Sigma) and centrifuged at 150xg for 10 mins at room temperature (RT). PRP was 

subsequently centrifuged at 1000xg for 10 mins at RT and three additional centrifugation steps were 

performed to wash the platelets. Platelets were resuspended at 3x105 platelets/μl in modified Tyrode’s 

buffer. In experiments using plasma-free blood, red blood cells and leukocytes were separately 

washed twice in PBS, by centrifugation at 650xg for 10 mins at RT and resuspended in Tyrode’s 

buffer. Washed platelets were subsequently added to obtain plasma-free blood. 

Flow cytometry was performed to analyze the surface expression of GPIb, GPIb, IIb3 and GPVI 

in platelets from GpIbsig/sig and wild-type littermates using the following antibodies (Abs; Emfret): 

XiaB2, X488, Leo.H4, and JAQ1, respectively. Whole blood was diluted with modified Tyrode’s buffer 

(1/20) and stained with Abs for 15 mins at RT before being analysed. Mouse platelets were washed 

as above and incubated with varying concentrations of agonists - ADP (2-20μM; Labmedics), 

thrombin (0.02-0.2U/ml; Enzyme Research Laboratories [ERL]), CRP (1-10μg/ml; Cambcol 

Laboratories), rhodocytin (3 and 300nM; kindly provided by Professor Eble and Dr Hughes) in the 

presence of 2mM CaCl2 for 10 mins at RT. Thereafter, platelets were incubated with JON/A-PE and 

Wug.E9-FITC Abs for 15 mins at RT to analyze the surface expression of activated IIb3 and P-

selectin. Samples were analyzed using a BD LSRFortessa X-20 flow cytometer. 

 

Platelet aggregometry 

Platelet aggregation was assessed by light transmission using the Chronolog 700 aggregometer with 

continuous stirring at 1,200 rpm at 37°C. Washed platelets were resuspended to a final concentration 

of 3x105 platelets/μl in modified Tyrode’s buffer and supplemented with 70μg/ml fibrinogen (ERL), 

1mM CaCl2 and different concentrations of ADP (1-10µM), -Thrombin (10-50mU/ml) or CRP (0.5-

10μg/ml). Platelet aggregation was monitored over 6 mins. 
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Platelet spreading 

Coverslips were coated with fibrinogen (200μg/ml), CRP (100μg/ml), murine VWF (10μg/ml) or BSA 

(0.5mg/ml) overnight at 4C. Coverslips were then blocked with PBS-BSA (5mg/ml) for 1 hour at RT. 

Washed GpIb+/+ or GpIbsig/sig mouse platelets were added to the coverslips (150μl/coverslip, 

25,000 platelets/μl) in the presence or absence of thrombin (1U/ml) or Botrocetin (2μg/ml) and allowed 

to adhere for 30 mins – 1 hour, at 37°C. When indicated, platelets were incubated with GR144053 

(20µM) for 10 minutes to inhibit IIb3 outside-in signaling prior to stimulation with Botrocetin. 

Coverslips were then washed with PBS, fixed with 10% formalin, and finally quenched with 50mM 

NH4Cl-PBS. Platelets were then permeabilized in 0.1% Triton-PBS and stained with Flash 

Phalloidin™ Green 488 (2U/ml; Biolegend) for 1.5 hours, at RT. Finally, coverslips were mounted onto 

slides using ProLong™ Gold Antifade Mountant with DAPI (Thermofisher). Spread platelets were 

visualized using either a Vert.A1 inverted microscope (Zeiss; 40x and 63x air objectives) equipped 

with ExiBlue camera (Q Imaging) or a confocal microscope (SP5 Leica, 63x objective, z-stack, oil 

immersion). At least 3 fields of view were analyzed per condition. Surface area of spreading platelets 

was quantified using Slidebook software 5.0 (3i) and filopodia counted independently by two different 

researchers. 

 

Western blotting 

For analysis of GPVI and CLEC-2 tyrosine-mediated signaling pathways, washed platelets (3x105 

platelets/μl) were stimulated for the indicated time points with 3µg/ml CRP or 30 and 300nM 

rhodocytin, respectively. Samples were lysed with an equal volume of RIPA buffer (Sigma) 

supplemented with protease and phosphatase inhibitors (cOmplete, mini and PhosSTOP from 

Roche). The samples were run under reducing conditions with 4-12% Bolt™ Bis-Tris Plus or 4-20% 

Novex™ WedgeWell™ Tris-Glycine, 1.0 mm pre-cast gels and proteins were transferred to a 

nitrocellulose membrane. Membranes were blocked for 1 hour in 3% BSA-TBS and incubated 

overnight at 4°C with the following primary antibodies: anti-phosphotyrosine 4G10 (Millipore), anti-

phosphorylated SYK (pY525/526; Abcam), anti-SYK (D1I5Q; Cell signaling Technology), anti-PLC2 

(Cell signaling Technology), anti-phosphorylated PLC2 (pY1217; Cell signaling Technology), anti--

actin (Cytoskeleton Inc.), anti-GAPDH (1D4; Novus Biological). The membranes were incubated with 

horseradish peroxidase-conjugated goat anti-mouse/rabbit secondary Abs (Dako) for 1h at RT and 

developed using Immobilon™ Western Chemiluminescent HRP Substrate (Millipore). Detection and 

quantification of chemiluminescence intensities were quantified by using ChemidocTM imaging 

system. and Image Lab 5.2.1 software (BioRad).  
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Flow assays 

Murine VWF was expressed in HEK293T cells, purified and quantified as previously described.(2) 

VenaFluoro8+ microchannels (Cellix) were coated directly with murine VWF (36.75μg/ml) or collagen 

(200μg/ml; Labmedics) overnight, at 4C, in a humidified chamber. Channels were blocked for 1 hour, 

at RT with HEPES Tyrode’s buffer (134mM NaCl, 0.3mM Na2HPO4, 2.9mM KCl, 12mM NaHCO3, 

20mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid, 5mM Glucose, 1mM MgCl2, pH 7.3) 

supplemented with 1% BSA.  

On the day of the experiments, blood was collected retro-orbitally from GpIbsig/sig mice and wild-

type littermates in 100µg/ml Hirudin (Refludan, CSL Behring GmbH) and labelled with Dy-Light 488-

conjugated rat anti-mouse GPIb (Emfret Analytics, 6µg/ml). When indicated, blood was incubated 5 

min prior perfusion with GR144053 (10µM), anti-GPVI JAQ1 or control Rat IgG (Emfret; 20µg/ml). 

Thereafter, whole blood or plasma-free blood was perfused through the channels at 200-1000s-1 using 

a Mirus pump (Cellix) for 3.5 mins and platelet adhesion/aggregate formation monitored in real-time 

by fluorescence microscopy (Vert.A1 inverted microscope, Zeiss), using an inverted CCD camera 

(ExiBlue from Q imaging) operated by the SlideBookTM5.0 software. Quantification was performed 

using SlideBook 5.0 software (3i), to analyze platelet coverage, platelet velocity and thrombus build-

up. 

 

Tail-bleeding assay 

Tail bleeding time was performed as described previously.(1, 3) Mice were anaesthetized with 

ketamine/medetomidine, placed on a heating pad (Harvard Apparatus) at 37°C and a 2 mm segment 

of the tail was sectioned with a sharp blade. The tail was immediately placed in warm PBS and the 

time taken for the stream of blood to stop for more than 60 seconds was defined as the bleeding time. 

To determine the extent of blood loss during the first 10 mins, hemoglobin content was determined 

by the colorimetric cyanmethemoglobin method using Drabkins reagent and bovine hemoglobin as a 

standard (Sigma). 

 

Laser-induced thrombosis model 

Thrombus formation was evaluated in the cremaster muscle microcirculation as previously described. 

(1, 3) Ketamine (75mg/kg) and medetomidine (1mg/kg) was initially given as an intraperitoneally 

injection. The anesthesia was maintained by giving additional ketamine (12.5mg/kg) every 40 mins. 

Briefly, Dy-Light 488-conjugated rat anti-mouse GPIb Ab (0.15µg/g;Emfret) and Alexa 647-

conjugated fibrinogen (5% total fibrinogen; Invitrogen) were administered via a cannula inserted in 

the jugular vein. Vascular injury was induced by a pulse laser (Ablate!, 3i) focused through a 63X 

water-immersion objective (65-75% intensity, 5-15 pulses) leading to non-ablative/superficial 

injury.(4) No perforating injuries were performed under those conditions. Thrombus formation was 
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followed in real time for 3 mins after the injury. Median integrated fluorescence intensity over time 

from platelet or fibrin was determined and analyzed as detailed previously.(1, 3) The operator was 

blinded to the genotypes during both data acquisition and analysis. 

 

Statistical analysis 

Results are presented as mean ± SEM or median ± 95% confidence interval in accordance with their 

normality (Shapiro-Wilk) and analyzed using GraphPad Prism (8.01). Statistical analysis was 

performed using unpaired student t-test, the Mann-Whitney test or repeated measures ANOVA.  

Significance values are indicated in each figure legends. 
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SUPPLEMENTARY TABLE 

Supplementary Table S1 Haematological parameters 

 GpIb+/+ GpIbsig/sig 

PLT (103/µl) 1028 ± 187 818 ± 188**** 

RBC (106/µl) 9.0 ± 1.0 8.8 ± 0.7 

HCT (%) 50.7 ± 5.2 49.7 ± 3.2 

WBC (103/µl) 5.9 ± 1.8 6.7 ± 1.5 

 

PLT, platelets; RBC, red blood cells; HCT, hematocrit, WBC, white blood cells; ****P <0.001, unpaired, 

two-tailed t-test, mean ± SD (n=10 per genotype) 
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SUPPLEMENTARY FIGURES AND LEGENDS 

 

Figure S1: Thrombus formation and fibrin accumulation are similar in GpIbsig/sig mice 

compared to  GpIb+/+ mice. Mice were subjected to the laser induced thrombosis model as detailed 
in Figure 2. Graphs showing the area under curve values from the platelet IFI (A) or fibrin(ogen) IFI 
(B) vs time from individual thrombus. (C) Distribution of the maximal thrombus size expressed in IFI 
platelet arbitrary units (AU) and (D) the time to maximal thrombus size. Each symbol represents one 
thrombus. Horizontal lines intersecting the data set represent the median. Data was analyzed using 
Mann Whitney test; ns: p>0.05. Also see Video 1 and Fig. 2. 
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Figure S2: GpIbsig/sig platelets exhibit disrupted GPIb-mediated signaling. GpIb+/+ (A,B, 

blue bars) and GpIbsig/sig (C,D, red bars) platelets (n=3 for each genotype with individual data points 

representing the average of 3 fields of view) were spread on murine VWF and stained with Phalloidin-

Alexa 488, in the presence of Botrocetin supplemented or not with GR144053. (A,C) Percentage of 

platelets from GpIb+/+ and GpIbsig/sig mice with no filopodia, 1-3 filopodia or >3 filopodia formed 

on murine VWF upon stimulation with Botrocetin (511 GpIb+/+ platelets and 547 GpIbsig/sig platelets 

analysed), or Botrocetin and GR144053 (359 GpIb+/+ platelets and 480 GpIbsig/sig platelets 

analysed).  (B,D) Percentage of platelets with or without filopodia formed on murine VWF upon 

stimulation with Botrocetin or Botrocetin and GR144053. All data is shown as mean ± SEM and was 

analyzed using two-way ANOVA followed by Sidak’s multiple comparison test; *p<0.05, ***p<0.001. 

Also see Figure 2G-J. 
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Figure S3: GpIbsig/sig platelets spread normally on fibrinogen under basal and stimulated 

conditions. Representative micrographs (n=3 for each genotype; 3 fields of view analyzed per 

condition; scale bar 10 µm) of GpIb+/+ and GpIbsig/sig platelets in the absence (A; 131 GpIb+/+ 

platelets and 86 GpIbsig/sig platelets analysed) or presence of 0.2U/ml -thrombin (B; 264 GpIb+/+ 

platelets and 497 GpIbsig/sig platelets analysed) and spread on fibrinogen.  Platelet spreading was 

visualized by Phalloidin-Alexa 488 staining. Bar graphs quantifying the surface area (C) and 

percentages of platelets that remained round, formed filopodia or spread on fibrinogen under basal 

conditions (D) or activated with -thrombin (E). The data represent the mean ± SEM and was 

analyzed using two-way ANOVA followed by Sidak’s multiple comparison test; p>0.05. Fib.:fibrinogen; 

plt.: platelets; act.: -thrombin-activated. Also see Figure 4A-G. 
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Figure S4: Truncation of the GPIb intracellular tail does not greatly influences CLEC-2 

mediated signaling. (A) Western blot analyzing tyrosine kinase phosphorylation in platelets from 

GpIb+/+ and GpIbsig/sig mice, following 5 min stimulation with rhodocytin (RC; 30 and 300nM), 

(representative of n=3). (B) Western blot and (C) bar graph analyzing the levels of phosphorylated 

and non-phosphorylated SYK in platelets from GpIb+/+ and GpIbsig/sig mice, after 5 mins 

stimulation with RC (representative of n=3). (D-E) Flow cytometric analysis of surface expression of 

activated IIb3 (D) and P-selectin (E) in GpIb+/+ and GpIbsig/sig platelets (n≥3) after stimulation 

with rhodocytin (RC, 30-300nM). Data is shown as mean ± SEM and analyzed using two-way ANOVA 

followed by Sidak’s multiple comparison test; **p<0.001. Also see Figure 4H-L. 
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Video 1 (separate file). Laser-induced thrombus formation in a GpIb+/+ and GpIbsig/sig 
mouse: Representative videos of fluorescently-labeled platelets (green) and fibrin(ogen) (red) 

accumulating at the site of laser-induced injury in a cremaster muscle arteriole of a GpIb+/+ and 

GpIbsig/sig mouse. Thrombus formation was studied using a combination of brightfield and 
fluorescence microscopy. Results are presented in Figure 3. A timer is shown in the top left corner 
(hh:mm:ss:000) and a 10 μm scale bar in the bottom left corner. 

Video 2 (separate file). Platelet capture on murine VWF-coated microchannels. Representative 

videos of hirudin-anticoagulated blood from a GpIb+/+ and GpIbsig/sig mouse perfused over mouse 
VWF. Thrombus formation was visualized over 3 minutes of perfusion at 1000s-1. Results are 
presented in Figure 2D-F. A timer is shown in the top left corner (hh:mm:ss:000) and a 10 μm scale 
bar in the bottom left corner.  

Video 3 (separate file). Formation of platelet aggregates on collagen-coated microchannels at 

3000s-1. Representative video of hirudin-anticoagulated blood from a GpIb+/+ and GpIbsig/sig 

mouse over fibrillar collagen type I. Thrombus formation was visualized over 3 minutes of perfusion 
at 3000s-1. Results are presented in Figure 5. A timer is shown in the top left corner (hh:mm:ss:000) 
and a 10 μm scale bar in the bottom left corner. 

Video 4 (separate file). Formation of platelet aggregates on collagen-coated microchannels at 

1000s-1. Representative video of hirudin-anticoagulated blood from a GpIb+/+ and GpIbsig/sig 

mouse over fibrillar collagen type I. Thrombus formation was visualized over 3 minutes of perfusion 
at 1000s-1. Results are presented in Figure 6. A timer is shown in the top left corner (hh:mm:ss:000) 
and a 10 μm scale bar in the bottom left corner. 

 
Video 5 (separate file). Formation of platelet aggregates on collagen-coated microchannels at 

200s-1. Representative video of hirudin-anticoagulated blood from a GpIb+/+ and GpIbsig/sig mouse 
over fibrillar collagen type I. Thrombus formation was visualized over 3 minutes of perfusion at 200s-
1. Results are presented in Figure 7. A timer is shown in the top left corner (hh:mm:ss:000) and a 10 
μm scale bar in the bottom left corner. 
 
 


