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Abstract: Quasi-diffusion imaging (QDI) is a novel quantitative diffusion magnetic resonance imag-
ing (dMRI) technique that enables high quality tissue microstructural imaging in a clinically feasible
acquisition time. QDI is derived from a special case of the continuous time random walk (CTRW)
model of diffusion dynamics and assumes water diffusion is locally Gaussian within tissue mi-
crostructure. By assuming a Gaussian scaling relationship between temporal (α) and spatial (β)
fractional exponents, the dMRI signal attenuation is expressed according to a diffusion coefficient,
D (in mm2 s−1), and a fractional exponent, α. Here we investigate the mathematical properties of
the QDI signal and its interpretation within the quasi-diffusion model. Firstly, the QDI equation
is derived and its power law behaviour described. Secondly, we derive a probability distribution
of underlying Fickian diffusion coefficients via the inverse Laplace transform. We then describe
the functional form of the quasi-diffusion propagator, and apply this to dMRI of the human brain
to perform mean apparent propagator imaging. QDI is currently unique in tissue microstructural
imaging as it provides a simple form for the inverse Laplace transform and diffusion propagator
directly from its representation of the dMRI signal. This study shows the potential of QDI as a
promising new model-based dMRI technique with significant scope for further development.

Keywords: fractional calculus; continuous time random walk; diffusion magnetic resonance imaging;
non-Gaussian diffusion; quasi-diffusion imaging; quasi-diffusion model

1. Introduction

Quasi-diffusion imaging [1] is a novel diffusion magnetic resonance imaging (dMRI)
technique based on a special case of the continuous time random walk (CTRW) diffusion
model [2–5]. The diffusion dynamics are represented by an effective normal diffusion
where the mean squared-displacement of the diffusing particles is proportional to time,〈

x2〉 ∼ t. This corresponds to the fractional exponents representing the probability density
functions of the waiting times between steps, α, and the step lengths, β, having the Gaussian
scaling relationship,

2α

β
= 1. (1)

Consequently, α and β exponents are not independent and both processes are de-
scribed by related inverse power dependencies for step length (x2(α−1)) and waiting time
(tα−1).

Diffusion MRI provides a probe of tissue microstructure by application of diffusion
encoding gradients that sensitise signals to water diffusion within an image voxel [6–10].
In vivo dMRI voxel sizes are typically on a mm scale, whereas tissue microstructural
properties are measured in microns (µm). Hence, the dMRI signal includes components
from all cells within a voxel, and contributions from the extra-cellular space. When there is

Mathematics 2021, 9, 1763. https://doi.org/10.3390/math9151763 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6908-5079
https://orcid.org/0000-0002-7135-3351
https://doi.org/10.3390/math9151763
https://doi.org/10.3390/math9151763
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9151763
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9151763?type=check_update&version=3


Mathematics 2021, 9, 1763 2 of 23

restriction of water diffusion at surface boundaries, the pulsed gradient spin echo (PGSE)
Nuclear Magnetic Resonance (NMR) diffusion measurement provides a probe of the length
scales of anisotropic microstructures [11].

The observed dMRI signal in tissue is non-Gaussian. This has led to the development
of numerous techniques to infer attributes of the diffusion environment and to several
theories regarding the origin of the non-Gaussian signal [8,9,12,13]. These theories relate
to the effect on diffusion by cell membranes, their internal structures, and the complex
extracellular spaces in tissues being imaged. Early measurements using a Gaussian model
of water diffusion identified that the apparent diffusion coefficient (ADC) in tissue was
lower than for free water diffusion, and was related to cell density, cell size and water
concentration within the tissue. Modern clinical MRI systems have revealed non-Gaussian
behaviour of the dMRI signal creating a need for the development and application of more
complex diffusion models [8,9,12,13].

In the CTRW diffusion model, the underlying diffusion process can be space-
fractional super-diffusion for α = 1, 0 < β ≤ 2 [14–17], time fractional sub-diffusion for
0 < α ≤ 1 [16–18], or governed by the general CTRW model, allowing the characteristics of
the underlying diffusion process to be determined [19–23]. Outside the CTRW model, tech-
niques have been developed that assume the underlying diffusion process to be Gaussian.
These include representing the diffusion signal attenuation as a second moment expansion
known as Diffusional Kurtosis Imaging (DKI) [24,25], or as a signal in the experimentally
acquired “q-space” from which, via application of the inverse Fourier transform leads to
a Mean apparent diffusion propagator (MAP) of molecular displacement [26–28] allow-
ing measurement of the length scale of the diffusion environment. This is of interest in
clinical imaging as models of the diffusion process that enable quantitative assessment of
tissue compartment or cell size can be used to assess pathological change, with potential
applications in aiding diagnosis [29,30], predicting disease outcome [31] and monitoring
treatment effects [32].

The Random Permeable Barriers Model (RPBM) is a prominent theory in dMRI based
on the time-dependence of diffusion coefficients observed in a voxel [33–36]. This model
assumes that diffusion is locally Gaussian and that water can exchange freely between
pores within a disordered medium. The RPBM formulation leads to a power-law time
dependence for the observed signal and a time-varying diffusion coefficient. A limitation
of this technique is that it does not allow derivation of an explicit form in the time domain,
or an overall form for the diffusion signal attenuation.

Other techniques consider non-exchanging [37–40], or exchanging [41,42] diffusion
compartments constructed of different mixtures of geometrical shapes assumed a priori to
represent tissue microstructure. These formulations do not constitute a model of the under-
lying diffusion dynamics and rely instead on developing a highly idealised geometrical
model of the structure of the diffusion environment.

Here we consider the mathematics of quasi-diffusion and quasi-diffusion imaging.
The fundamental solution of the space-time diffusion-wave equation within the CTRW
diffusion model has been extensively studied [43–47], as have the properties of the quasi-
diffusion model [47–50]. In particular, quasi-diffusion is referred to as α-fractional diffusion
by [48,49] who suggest this special case of the CTRW diffusion model represents a natural
fractionalisation of the diffusion process [49].

The quasi-diffusion equation is given by the stretched Mittag–Leffler function [51–53].
We describe its asymptotic properties and Laplace transform, and consider the properties
of the quasi-diffusion propagator. Finally, we show how the quasi-diffusion propagator
can be used in quasi-diffusion MAP imaging to calculate sub-micron measurements of
cell radii. Examples of quasi-diffusion MAP imaging are given in which we show the
technique can be performed using a clinical MR scanner and that dMRI data for analysis of
quasi-diffusion can be acquired in a clinically feasible scan time.
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2. Theory
2.1. Quasi-Diffusion Imaging

Application of the CTRW diffusion model to dMRI was first described by Ingo et al. [19,54].
In the conventional case of particles characterised by Brownian motion in a homogeneous
and isotropic geometry, their unrestricted self-diffusion is described by the second-order
partial differential equation,

∂P(x, t)
∂t

= D
∂2P(x, t)

∂x2 , (2)

where the solution in n-dimensional space is the Gaussian propagator, Pn(x, t), which
defines the probability density of finding a molecule at position, x, at time, t, as,

Pn(x, t) =
1√

2nπDt
exp

(
− x2

2nDt

)
, t ≥ 0, (3)

and D is the diffusion coefficient in mm2 s−1. The extension to the CTRW diffusion model
is provided by the fractional partial diffusion equation,

C
0Dα

t (P(x, t)) = Dα,β
∂βP(x, t)

∂|x|β
, (4)

where C
0Dα

t is the Caputo fractional derivative (which is the αth fractional order time
derivative for 0 < α < 1), and ∂β/∂|x|β is the Reisz fractional derivative (which is the
βth fractional order space derivative for 0 < β < 2) and Dα,β is the effective diffusion
coefficient in units of mmβ s−α. It is assumed that at time, t = 0, all the material is located
at the origin and is given by the Dirac Delta function P(x, 0) = δ(x). In the special case of
quasi-diffusion, the Gaussian scaling relationship, 2α

β = 1, is substituted into (4) to give,

C
0Dα

t (P(x, t)) = Dα,2α
∂2αP(x, t)

∂|x|2α
, x ∈ Rn, t > 0, 0 < α ≤ 1, (5)

where Dα,2α is an effective normal diffusion coefficient in units of mm2α s−α. In the quasi-
diffusion case, a Gaussian diffusion coefficient in mm2 s−1 can be recovered from the
effective normal diffusion coefficient,

D1,2 = (Dα,2α)
1/α. (6)

The fractional partial differential equation in (5) can be solved using the Laplace–
Fourier transform [5]. Firstly, the transform Pn(x, t)→ pn(k, s) is given by,

pn(k, s) =
1

s + Dα,2αs1−α|k|2α
, (7)

then by application of the inverse Laplace transform to (7) we perform the transform
pn(k, s)→ pn(k, t) to obtain the unique characteristic equation, which is a fractional
relaxation curve for each wavenumber, k, given by,

pn(k, t) = Eα(−Dα,2α|k|2αtα), (8)

where Eα(z) is the one-parameter Mittag–Leffler function which we make use of via its
series representation,

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
, (9)

for α > 0 and z ∈ C. For application to dMRI, we make the change of variable from k to q
in (8) to indicate data acquisition by experimentally controlled PGSE parameters in q-space.
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Experimental parameters are set to provide diffusion encoding in different orientations
in q-space where q = 1

2π γgδ (assumed to be in mm−1), γ is the gyromagnetic ratio of
hydrogen (for quantification of water diffusion), and g is the diffusion encoding gradient
strength (in mTm−1). The effective diffusion time of the pulse sequence is denoted as
∆ = ∆− δ

3 (in s) for a given diffusion gradient pulse duration, δ, and separation, ∆. In
clinical applications, dMRI are typically acquired by keeping ∆ constant while altering q
by changing the diffusion encoding gradient strength, g.

Mathematical analysis of diffusion imaging in q-space makes the assumption that
dMRI data are acquired using an infinitely short diffusion gradient pulse duration, δ,
with δ � ∆. This is known as the short pulse approximation. The Fourier relationship
between q-space (in mm−1) and r-space (in mm) is only exact in this limit. In practice,
this assumption is routinely violated on clinical MRI systems due to technical and safety
limitations of in vivo MRI, meaning that gradient pulses have finite duration usually in the
range 20 ms < δ < ∆ < 70 ms.

Equation (8) can also be written with respect to an overall diffusion sensitisation,
b = q2∆. This overall sensitivity is due to the cumulative effect of the diffusion encoding
gradient and the effective diffusion time, ∆. In a radial direction through q-space starting
at the origin, the characteristic equation for quasi-diffusion is given by,

p
(
q, ∆

)
= Eα(−Dα,2α|q|2α∆α

) = Eα(−Dα,2αbα) = Eα

(
−(D1,2b)α) = S(b)

S(0)
, (10)

where S(b) is the diffusion signal intensity at a given diffusion-weighting b (in s mm−2),
and S(0) is the signal intensity at b = 0 s mm−2. Equation (10) is a stretched Mittag–Leffler
function that describes Gaussian diffusion when α = 1 and an effective normal diffusion
for 0 < α < 1. The diffusion coefficient, D1,2, and fractional exponent, α, are independent
parameters that together parameterise a family of decay curves according to the rate of
diffusion signal decay (D1,2) and the shape of the power law tail, α.

A key application of QDI is in imaging of the human body where diffusion of free
water at body temperature is DFW = 3× 10−3 mm2 s−1 and 0.5 < α < 1 in typical healthy
brain tissue [1]. Figure 1 illustrates the family of signal decay curves described by (10).
Figure 1a shows the quasi-diffusion signal attenuation parameterised by b for an arbitrary
diffusion coefficient, D1,2 = 1.5× 10−3 mm2 s−1 for 0.1 ≤ α ≤ 0.99 with Figure 1b showing
the quasi-diffusion signal attenuation parameterised by q.
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Figure 1. The family of quasi-diffusion imaging signal attenuation curves for an arbitrary diffusion coefficient of
D1,2 = 1.5 × 10−3 mm2 s−1 and a range of fractional exponents, 0.1 ≤ α ≤ 0.99. Normalised signal is shown pa-
rameterised by (a) diffusion-sensitisation, b, and (b) q. Graph (c) shows the power law behaviour of the signal decay
parameterised by b on a logarithmic scale.
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The quasi-diffusion model can be demonstrated to provide good quality fits to experi-
mental data. Figure 2 shows QDI maps of D1,2 and α in the brain of a young (age 28 years)
healthy subject for which a comprehensive data acquisition was acquired with 29 b-values
over the range 0 ≤ b ≤ 5000 s mm−2 in 6 non-collinear gradient encoding directions
evenly distributed across the sphere. Experimental diffusion times were δ = 23.5 ms and
∆ = 43.7 ms giving an effective diffusion time of ∆ = 35.9 ms. Data were acquired on a
clinical 3T MR scanner at St George’s, University of London (SGUL) with a voxel size of
1.5 mm ×1.5 mm ×5 mm in 35 min 12 s. Full image acquisition parameters are given
in Appendix A. Data analysis were performed using the technique described in [1] to
estimate D1,2 and α values in each diffusion encoding direction and their mean values
within each image voxel. The top row of Figure 2 shows the exceptional quality of fit of
the quasi-diffusion model to observed data in individual grey (Figure 2a) and white matter
voxels (Figure 2b) across the full range of b-factors. The D1,2 and α maps exhibit similar
mean apparent diffusion coefficients in brain tissue, with the bright signal pertaining to cere-
brospinal fluid-filled (CSF) spaces where diffusion is Gaussian with DFW = 3× 10−3 mm2 s−1.
The bottom row of Figure 2 shows the quality of data reconstruction from three points,
b = {0, 1080, 5000} s mm−2 within the dMRI data acquisition, which were chosen as their
modelled quasi-diffusion signal attenuation closest to that of the full 29 b-value dataset
across the entire image [55]. Overall, Figure 2 highlights how well the quasi-diffusion
model fits acquired data and demonstrates that high quality images can be acquired in a
clinically feasible time of 120 s without the need for an extensive set of different b-value
images to accurately define the signal decay curve.
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Figure 2. Quasi-diffusion model fits to experimental diffusion magnetic resonance imaging data acquired in the brain of a
young, healthy subject (age 28 years). The top row shows the results of fitting the quasi-diffusion model to an acquisition of
29 b-values over the range 0 < b ≤ 5000 s mm−2, with the bottom row showing the results of fitting the quasi-diffusion
model to 3 b-values, b = {0, 1080, 5000} s mm−2. All imaging data were acquired in 6 diffusion encoding directions at an
effective diffusion time of ∆ = 35.9 ms. Normalised signal attenuation is shown for a grey matter voxel indicated by the
blue arrow (graphs (a,e)), and a white matter voxel indicated by the red arrow (graphs (b,f)). Axial slices are shown for
maps of mean D1,2 (images (c,g)) and mean α (images (d,h)).

We will now explore some properties of the quasi-diffusion model that are relevant to
its application in diffusion magnetic resonance imaging.
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2.2. General Properties of the Mittag–Leffler Function

This section reviews several general properties of the Mittag–Leffler function. For
properties beyond those stated below see [51,56–58]. The Mittag–Leffler function (9) is an
entire function that is convergent in the whole complex plane with a singularity as α→ 0+

such that,

E0(z) =
∞

∑
k=0

zk =
1

1− z
, (11)

for |z| < 1. The Mittag–Leffler function is considered to be a generalisation of the ex-
ponential function and simplifies to mono-exponential decay for the case α = 1, as
E1(z) = exp(z).

The Mittag–Leffler function has complete monotonicity in the negative real axis if and
only if 0 < α ≤ 1 [57]. Consequently, the characteristic equation for quasi-diffusion equation
for Eα(−x) where x = Dα,2αbα and x > 0 with x ∈ R+ is completely monotone [52,57].

2.3. Asymptotic Properties of the Quasi-Diffusion Characteristic Equation

The asymptotic behaviour of the quasi-diffusion characteristic Equation (8) as b→ 0+

and b→ ∞ can be determined from its Mittag–Leffler function series representation (9). In
the low b-value approximation, the behaviour of the quasi-diffusion equation as b→ 0 is
derived from the convergent power series representation of (9),

Eα(−Dα,2αbα) = 1− −(D1,2b)α

Γ(α + 1)
+ · · · ∼ exp

[
−−(D1,2b)α

Γ(α + 1)

]
, b→ 0, bα � Dα,2α (12)

and indicates that as b→ 0 , the function is asymptotic to a stretched exponential function.
In the high b-value approximation, the behavior of the quasi-diffusion equation as b→ ∞+

is derived from the asymptotic power series representation [58],

Eα(−x) ∼ −
m

∑
k=0

(−x)−k

Γ(1− αk)
+ O

(
|x|−1−m

)
, m ∈ N, x → +∞, 0 < α < 1, (13)

and is given by,

Eα(−Dα,2αbα) ∼
∞

∑
k=0

(−1)k−1 (D1,2b)−αk

Γ(1− αk)
, b→ ∞, (14)

with first order approximation,

Eα(−Dα,2αbα) ∼ (D1,2b)−α

Γ(1− α)
, b→ ∞. (15)

In practice, for in vivo tissue microstructural imaging, the diffusion coefficient of
water is finite and unlikely to be less than D1,2 = 1× 10−5 mm2 s−1 and has an upper limit
of DFW for free water at human body temperature. In this case, the behaviour of (12) and
(15) will be dominated by b-value as both b→ 0 and b→ ∞ .

These asymptotic properties show that the quasi-diffusion imaging equation inter-
polates between a stretched exponential at low b-values and a negative power law at
high b-values. This is consistent with the fast diffusion signal decay at low b-values and
slow signal attenuation at high b-values which are observed in Figure 2. The asymptotic
representations of the quasi-diffusion equation in tissue microstructural imaging can be
stated as,

Eα(−Dα,2αbα) ∼

 exp
[
− bα

Γ(α+1)

]
, b→ 0, bα � Dα,2α

b−α

Γ(1−α)
= sin(απ)

π
Γ(α)

bα , b→ ∞, bα � Dα,2α

(16)
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after substitution of Γ(1− α)Γ(α) = π
sin(απ)

. The behaviour of the quasi-diffusion equation
is in contrast to the Mittag–Leffler function (9) which tends to an exponential function
as z→ 0+ . The quasi-diffusion equation is a stretched Mittag–Leffler function that has
the same form and behaviour as the fractional relaxation equation which has been ex-
tensively studied in application to several physical systems including fractional linear
viscoelasticity [53,59,60] and dielectric models [60]. The negative power law behaviour
of the quasi-diffusion characteristic equation is highlighted in Figure 1c over the range
101 ≤ b ≤ 105 for an arbitrary diffusion coefficient, D1,2 = 1.5 × 10−3 mm2 s−1 and
0.1 ≤ α ≤ 0.99.

2.4. The Laplace Transform of the Quasi-Diffusion Characteristic Equation

The Laplace transform and inverse Laplace transform of the quasi-diffusion character-
istic equation are of interest in quasi-diffusion imaging. For instance, the inverse Laplace
transform of (8) provides a decomposition of the quasi-diffusion signal into a probability
density function of Fickian diffusion coefficients, as will be seen later. The mathematics
of the Laplace transform of the stretched Mittag–Leffler function have been described
in detail [53,58–60]. The Laplace transform of the Mittag–Leffler function (9) is given by
e.g., [56],

1
1− z

=
∫ ∞

0
Eα(uαz) e−u du, α > 0, |z| < 1, (17)

which is fundamental in the evaluation of the Laplace transform of the fractional relaxation
curve. In our case, the form of the fractional relaxation curve is given by Eα

(
−(D1,2b)α)

with D1,2 ∈ R+. Substituting u = sb and uαz = −(D1,2b)α into (17) gives,

∫ ∞

0
Eα

(
−(D1,2b)α)e−sb db =

sα−1

sα + D1,2
α
=

s−1

1 + D1,2
αs−α

. (18)

As D1,2 is positive, then Eα

(
−(D1,2b)α) is completely monotonic for b > 0 when

0 < α ≤ 1. The inverse Laplace transform can be formulated as a Laplace inverse integral
along a Hankel path, Ha, as shown by, e.g., [59,60],

Eα

(
−(D1,2b)α) = 1

2πi

∫
Ha

sα−1

sα + D1,2
α

esbds, (19)

where α > 0 and z ∈ C. The Hankel path is the integration around a loop that starts and
ends at −∞ and encircles the disc |s| ≤ |D1,2|1/α in the positive sense: −π ≤ arg s ≤ π,
e.g., [53,59,60]. The result of this integration is the normalised spectrum of quasi-diffusion
signal decay in b, which is a non-negative probability density function that is locally
integrable in R+ given by [53,59,60],

Kα(y) =
sin(απ)

π

yα−1

1 + 2yα cos(απ) + y2α
≥ 0, (20)

and is analogous to the normalised spectrum of relaxation in time [53,59]. The spectrum of appar-
ent diffusion coefficients is given when y = σ/D1,2 such that Kα(σ/D1,2) = ηα(σ)D1,2 [53,59],

Eα

(
−(D1,2b)α) = ∫ ∞

0
ηα(σ)e−σb dσ, 0 < α < 1, (21)

and represents the quasi-diffusion signal as a distribution of Gaussian diffusion signals, σ
(in mm2 s−1). This provides further support for quasi-diffusion being a natural generalisa-
tion and fractionalisation of diffusion dynamics when the process occurs within complex
structures that hinder or restrict free diffusion.

The quasi-diffusion spectral function is illustrated in Figure 3a for unit D1,2 = 1 mm2 s−1

and 0.1 < α < 0.99. At α close to unity (e.g., α = 0.99), the probability density function tends
towards the Dirac delta function with a characteristic ADC equivalent to the resultant mean
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of an unrestricted Gaussian diffusion process. This indicates that diffusion dynamics within
the structure being studied are Gaussian with no boundaries that hinder or restrict diffusing
particles. As α decreases (from 0.9 to 0.7), the probability density function broadens to
include significant contributions at low ADCs representing characteristics of diffusion in a
restricting environment and increasing tissue heterogeneity. For α < 0.65, the probability
density function smoothly deforms to a hyperbolic shape that becomes dominated by large
contributions from restriction and greater tissue heterogeneity. It should be noted that in
practice for dMRI in brain tissue, we are typically in the range 0.5 < α ≤ 1 [1].
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fractional exponents, 0.1 ≤ α ≤ 0.99. Spectra are shown for axial, radial and mean D1,2 and α values in (b) cerebrospinal
fluid, (c) grey matter and (d) white matter. D1,2 and α values used to calculate the spectra are from Barrick et al. [1].

Spectra of ADCs are shown for healthy brain tissue in CSF (Figure 3b), grey matter
(Figure 3c) and white matter (Figure 3d). The spectra were calculated based on mea-
surements of mean, axial and radial D1,2 and α from Barrick et al. [1]. Axial measure-
ments are calculated along the direction parallel to tissue microstructure, with radial
measures being perpendicular to the tissue microstructural axis. Figure 3b shows that
diffusing water molecules in CSF-filled spaces exhibit isotropic diffusion with an ADC of
3.0× 10−3 mm2 s−1. The slight apparent anisotropy in measurements is likely related to
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partial volume effects with brain tissue that are not fully removed in the CSF segmentation,
combined with the effects of noise which have broadened the distribution from being a
Dirac-delta function. In grey matter (Figure 3c), which contains layers of neurons, the
probability density functions represent an almost isotropic diffusion within a heteroge-
neous tissue microstructure. In white matter (Figure 3d), which consists of axons that
provide the wiring of the brain, there is anisotropic diffusion such that diffusion parallel to
tissue microstructure is through a more homogeneous diffusion environment (i.e., along
axons surrounded by myelin sheaths) than diffusion perpendicular to axons which is more
hindered and/or restricted by tissue microstructural boundaries. The white matter spectra
indicate considerable anisotropy in the axial and radial ADCs, with large contributions of
restricted diffusion to the radial quasi-diffusion coefficient, D1,2, representing a low α.

2.5. The Quasi-Diffusion Propagator

Here we describe mathematical results for deriving and understanding the behaviour
of the n-dimensional quasi-diffusion propagator. We use notation whereby the Green’s
function in n-dimensional space for the solution of (5) is given by Pn(x, t). Equations for
the propagator in one-, two- and three-dimensions are presented in integral form, or closed
form where possible. The following is given in greater detail by [48].

The inverse Fourier transform of the quasi-diffusion characteristic Equation (9) is
given by,

Pn(x, t) =
∫
Rn

e2πiqxEα(−Dα,2α|q|2α∆α
) dq. (22)

As this function belongs to the functional space L1(Rn) with respect to q, the inverse Fourier
transform can be written as [61],

Pn(x, t) =
1

(2π)n

∫
Rn

eiqxEα(−Dα,2α|q|2α∆α
) dq, x ∈ R, t > 0, 0.5 < α ≤ 1. (23)

The Mittag–Leffler function (9) is axially symmetric in q and is a radial function, so by the
formula [62],

1
(2π)n

∫
Rn

ϕ(k) dk =
|x|1−

n
2

(2π)
n
2

∫ ∞

0
ϕ(τ) τ

n
2 J n

2−1(τ|x|) dτ, (24)

where Jv denotes the Bessel function of index v, Equation (24) can be written as the n-
dimensional quasi-diffusion propagator,

Pn(x, t) =
|x|1−

n
2

(2π)
n
2

∫ ∞

0
Eα(−Dα,2αq2α∆α

) q
n
2 J n

2−1(q|x|) dq, |x| 6= 0, (25)

whenever the integral converges absolutely or conditionally. For |x| 6= 0, by use of
the asymptotic formulae for the Mittag–Leffler function (13) and for the Bessel function,
Equation (25) is absolutely convergent for n < 4α− 1 and conditionally convergent for
n < 4α + 1. In the one-dimensional case, it is absolutely convergent for 0.25 < α ≤ 1 and
conditionally convergent for 0 < α ≤ 1. In two-dimensions, (25) is absolutely convergent
for 0.75 < α ≤ 1 and conditionally convergent for 0.25 < α ≤ 1. Conditional convergence
is guaranteed for the one-, two-, and three-dimensional cases for 0.5 < α ≤ 1.

We now consider the case of zero net displacement where |x| = 0. From (22) we have,

Pn(0, t) =
1

(2π)n

∫
Rn

Eα(−Dα,2α|q|2α∆α
) dq, (26)

which by the formula [62],

∫
Rn

f (|x|) dx =
2π

n
2

Γ
( n

2
) ∫ ∞

0
τn−1 f (τ) dτ, (27)
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can be expressed as,

Pn(0, t) =
1

(2π)n
2π

n
2

Γ
( n

2
) ∫ ∞

0
qn−1Eα

(
−Dα,2αq2α∆α

)
dq. (28)

Using the asymptotic formula for the Mittag–Leffler function (13) it can be seen
that Equation (28) is absolutely convergent if n < 2α and, consequently, only in the one-
dimensional case when 0.5 < α ≤ 1. For the one-dimensional case we have,

P1(0, t) =
1
π

∫ ∞

0
Eα

(
−Dα,2αq2α∆α

)
dq, (29)

with a closed form for P1(0, t) given by [47,48],

P1(0, t) =
1√

4πD1,2t α sin
(

π
2α

) , t > 0, 0.5 < α ≤ 1, (30)

which simplifies to the Gaussian solution, P1(0, t) = 1/
√

4πD1,2t, when α = 1.
For |x| 6= 0, the quasi-diffusion propagator, Pn(x, t), given by (25) cannot be written in

simple closed form for the one-dimensional and three-dimensional cases, however, a closed
form has been derived in the two-dimensional case. In one-dimension, the quasi-diffusion
propagator (25) is given by the integral, e.g., [47,48],

P1(x, t) =
1
π

∫ ∞

0
cos(qx)Eα

(
−Dα,2αq2α∆α

)
dq, (31)

as the Bessel function of order −1/2 is,

J− 1
2
(z) =

√
2

πz
cos(z). (32)

Although (31) cannot be written in a simple closed form, it can be written in closed form
using the Fox H-function [19,63]. In two-dimensions, the closed form of (25) is given by
e.g., [46–48],

P2(x, t) =
1

4πD1,2t

(
|x|

2
√

D1,2t

)α−1

Eα,α

−( |x|
2
√

D1,2t

)2α
, (33)

where Eα,α(z) is the two parameter Mittag–Leffler function (see [61] for properties of the
two-parameter Mittag–Leffler function),

Eβ,γ(z) =
∞

∑
k=0

zk

Γ(βk + γ)
, β > 0, γ ∈ C, z ∈ C. (34)

In the Gaussian case, when α = 1, Equation (34) takes the conventional form,

P2(x, t) =
1

4πD1,2t
exp

(
−|x|2

4D1,2t

)
. (35)

Finally, in three dimensions, by substituting the Bessel function of order 1/2,

J 1
2
(z) =

√
2

πz
sin(z), (36)
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into Equation (25), we have the integral form of the three-dimensional quasi-diffusion
propagator for |x| 6= 0 which is given by, e.g., [47,48],

P3(x, t) =
1

2π2|x|

∫ ∞

0
q sin(q|x|) Eα(−Dα,2αq2α∆α

) dq. (37)

The quasi-diffusion propagator has also been investigated using subordination prin-
ciples [45–47] (see [5] for a general description of subordination processes in the CTRW
model). Subordination principles in stochastic processes involve the definition of a stochas-
tic process in time (the subordinating function) that is within another stochastic process
(the subordinated stochastic process). In the case of the diffusion propagator, this allows
subordination formulae to be constructed that include, for example, Gaussian [47] or
Poisson [45] distributions. Here we present the subordination equations for the Gaussian
distribution [47],

Pn(x, t) =
∫ ∞

0
t−1/2Kα

(
st−1/2

)
Gn(x, s) ds, 0 < α ≤ 1, (38)

where the fundamental solution to the conventional diffusion equation is,

Gn(x, t) =
1(√

4πD1,2t
)n exp

(
− |x|

2

4D1,2t

)
, (39)

and the function Kα(τ) is the inverse Laplace transform of the stretched Mittag–Leffler
function,

Eα(−µα) =
∫ ∞

0
Kα(τ)e−µτdτ. (40)

As Eα(−µα) is a stretched Mittag–Leffler function, the inverse Laplace transform is a
spectral probability density function, for this case, in time given by,

Kα(τ) =
sin(απ)

π

τα−1

1 + 2τα cos(απ) + τ2α
. (41)

Equations (38) to (41) show that the quasi-diffusion propagator is the integral of a mul-
tiplication of the conventional Gaussian probability density function and a spectral prob-
ability density function in time. The quasi-diffusion propagator is unimodal. Figure 4 il-
lustrates the one-dimensional quasi-diffusion propagator in space, x, in microns for an
effective diffusion time of 35.9 ms (Figure 4a) and time, t, in seconds for a distance of 5 µm
(Figure 4b) for a diffusion coefficient of D1,2 = 1.5× 10−3 mm2 s−1 and fractional exponents
in the range 0.5 < α ≤ 0.99, which cover the range of α typically found in the human
brain. The propagator was calculated based on Equation (38). The shape of the propagator
in space (Figure 4a) is such that the probability density function becomes more kurtotic
as α decreases from the Gaussian case (α = 1) corresponding to a higher probability of
both smaller and larger step lengths, in correspondence with greater heterogeneity of the
diffusion environment. This is consistent with assumptions made in DKI [24,25]. The shape
of the propagator in time (Figure 4b) is also consistent with quasi-diffusion representing an
effective normal diffusion process as it is unimodal and Gaussian-like.

Several interesting mathematical results have been derived from the Green’s function
in the special case of the CTRW model for 2α/β = 1. It has been shown that the one-
and two-dimensional quasi-diffusion propagators are probability density functions that
evolve spatially in time [48–50]. Furthermore, the entropy production rate of the quasi-
diffusion propagator in the one-dimensional and two-dimensional cases is the same as
for Gaussian diffusion process [48–50]. However, in the one-dimensional case, the second
spatial moment of the probability density function, P1(x, t), does not exist and the mean
squared displacement of the diffusing particles is not finite, indicating the diffusion process
is anomalous [48–50]. Similarly, for the two-dimensional case, the second moment of
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P2(x, t), does not exist for 0.5 < α ≤ 1 and the diffusion is anomalous with long-tailed
waiting time and jump lengths. In the three-dimensional case, the interpretation of the
process governed by (5) is different. Instead of a spatial probability density function for
an anomalous diffusion process evolving in time, it has been suggested to represent an
anomalous damped wave propagating with a time-dependent phase velocity [48,50].
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Figure 4. The one-dimensional quasi-diffusion propagator for an arbitrary diffusion coefficient, D1,2 = 1.5× 10−3 mm2 s−1

for 0.5 ≤ α ≤ 0.99. The one-dimensional probability density function is shown (a) in space at an effective diffusion time of
∆ = 35.9 ms, and (b) in time at x = 5 µm.

2.6. Application of Quasi-Diffusion MRI to Mean Apparent Propagator Imaging

In this section, we consider how the quasi-diffusion propagator can be applied to esti-
mate the mean apparent propagator and an effective pore size within a dMRI voxel. Several
techniques have been previously described for computing effective pore size measurements
from dMRI data, e.g., [11,28,37–39,64], but here we consider the Mean apparent propagator
(MAP) imaging technique [28] as this uses the inverse Fourier transform for dMRI data
acquired in q-space and provides molecular displacements in mm. Our formulation differs
from [28] by applying the functional form of the quasi-diffusion propagator rather than
using Hermite functions to represent the diffusion propagator in q-space.

MAP imaging provides measures of the three-dimensional return-to-the-origin prob-
ability (RTOP), the two-dimensional return-to-the-axis probability (RTAP) and the one-
dimensional return-to-the-plane probability (RTPP). These maps represent the zero net
displacement probabilities for molecular displacement and can be used to provide estima-
tions of effective measurements of mean pore volume, 〈V〉, mean pore cross-sectional area,
〈A〉, and mean pore axial length scale, 〈L〉.

In tissue microstructural dMRI, the “pores” under measurement are cells. In MAP
imaging, the tissue microstructure is assumed to consist of isolated pores with a distribution
of arbitrary shapes, sizes and orientations. In the brain, for example, the cortex and deep
grey matter consist of neurons, whereas the connections between cortical regions are
provided by axons in white matter. Grey matter may be considered to contain spheres with
a distribution of radii (i.e., neurons) [26]. White matter consists of bundles of axons that
are surrounded by a myelin sheath and may be considered as cylinders with a distribution
of radii (i.e., axons) [26]. Diffusion parallel to axons is not free, but is greater than in axonal
cross-section. Along axons, the presence of the nodes of Ranvier (where the myelin sheath
periodically narrows), and astrocytes (which hold axonal bundles together) are considered
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to hinder diffusing water molecules. This may be considered as consecutive slabs with a
distribution of spacings [26].

In dMRI, under the short pulse approximation, the zero net displacement probability
can be computed to provide estimates of RTOP in units of mm−3, RTAP in mm−2 and
RTPP in mm−1 from which pore characteristics may be calculated. For the one-dimension
quasi-diffusion case, RTPP is given by (29) as,

RTPP = P1(0, t) =
1
π

∫ ∞

0
Eα

(
−Dα,2αq2α∆α

)
dq. (42)

Although the quasi-diffusion propagator for |x| = 0 is only convergent in the one-
dimensional case, it is possible to provide estimations of the probability of zero net dis-
placement in two- and three-dimensions. Such a calculation is of interest as estimation
of RTAP and RTOP maps are sensitive to tissue microstructure and its alteration with
disease [29–31]. To ensure consistency in estimation of the two- and three-dimensional
estimations we perform integration over a predefined range of q-space. Here we perform
integration up to a pre-defined limit of qmax = 5000 mm−1, far higher than the capability
of any MR scanner or NMR system. RTAP and RTOP are then given by (28) as,

RTAP = P2(0, t) =
1

2π

∫ qmax

0
qEα

(
−Dα,2αq2α∆α

)
dq, (43)

RTOP = P3(0, t) =
1

2π3

∫ qmax

0
q2Eα

(
−Dα,2αq2α∆α

)
dq. (44)

The details of the relationship between zero net displacement probability and pore size
in dMRI have been previously described in detail [11,26–28]. These amount to the following
simple relationships for estimating effective mean pore volume, 〈V〉, cross-sectional area
〈A〉, and axial length scale, 〈L〉,

〈V〉 = RTOP−1, (45)

〈A〉 = RTAP−1, (46)

〈L〉 = RTPP−1. (47)

To enable calculation of quasi-diffusion MAP images, there is a requirement to firstly
estimate D1,2 and α values parallel to the tissue microstructure (i.e., axial D1,2 and α),
perpendicular to the tissue microstructure (i.e., radial D1,2 and α) and obtain their mean
isotropic characteristics (i.e., mean D1,2 and α) within the voxel. In practice, the axial,
radial and mean D1,2 and α values are calculated using techniques described by Barrick
et al. [1]. In addition to the effective pore size estimates given by (46) to (48), the effective
mean spherical pore radius, 〈R〉, and effective mean cylindrical pore radius, 〈R⊥〉, may be
obtained from (45) and (46) as,

〈R〉 = 3

√
3

4πRTOP
, (48)

〈R⊥〉 =
√

1
πRTAP

. (49)

In MAP imaging, the effective diffusion time of the dMRI acquisition is required to be
long enough to allow the pores to be fully explored by the diffusing water molecules [28].
In practice, the effective diffusion times are between 20 and 40 ms on clinical and research
MR scanners and are sufficient for this purpose. However, according to Equation (30),
quantification of the zero net displacement quasi-diffusion propagators at the effective
diffusion time of the dMRI experiment will overestimate pore sizes. To avoid this problem,
the quasi-diffusion propagators may be calculated at the time at which diffusing molecules
first interact with the tissue microstructural environment. This is referred to as the short
time limit, ts. In quasi-diffusion imaging, we define this as the time at which the ensemble
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of diffusing molecules within a voxel ceases to be Gaussian, but is instead represented by
an effective normal diffusion. This corresponds to the time at which the mean-squared
displacement,

〈
x2〉

n = 2nD1,2∆, is equivalent to the mean-squared displacement for free
water at body temperature, i.e., DFW = 3× 10−3 mm2 s−1. Consequently, the short time
limit is,

ts =
D1,2∆
DFW

, (50)

and can be substituted into the quasi-diffusion propagators to provide a more accurate
estimate of apparent mean pore size characteristics. A further observation is that, as in the
case of Gaussian diffusion, the ratio, χs, of the length scales at the effective diffusion time
over the short time limit is given by both the diffusion times and diffusion coefficients as,

χs =

√
ts

∆
=

√
D1,2

DFW
. (51)

3. Examples
3.1. Quasi-Diffusion Mean Apparent Propagator Imaging of the Corpus Callosum

The corpus callosum is a large commissural white matter bundle that connects cortical
regions in the left and right cerebral hemispheres of the brain. The structure of the corpus
callosum is such that it does not intersect with other white matter bundles through the
interhemispheric fissure (which is in the mid-sagittal plane of the brain). This means that
dMRI measurements obtained where the corpus callosum crosses the interhemispheric
fissure are only indicative of white matter tissue microstructure in the corpus callosum.
In this example, we apply quasi-diffusion MAP imaging to estimate axon radii within a
mid-sagittal section of the corpus callosum.

Diffusion MRI data were acquired on a healthy 27-year-old subject using a 3T clinical
MR scanner at SGUL. Images were acquired with isotropic voxel size of 2 mm in 10 min 48 s.
Data were acquired at b = {0, 1100, 4000} s mm−2 in 32 non-collinear diffusion encoding
directions equally spaced on the sphere with δ = 28.7 ms and ∆ = 43.9 ms, giving an
effective diffusion time of ∆ = 34.33 ms. Full data acquisition details are provided in
Appendix A.

Axial, radial and mean D1,2 and α values were estimated using quasi-diffusion tensor
imaging (QDTI) [1]. QDTI uses a Levenberg–Marquardt algorithm and Padé approxima-
tion of the Mittag–Leffler function and its partial derivatives to estimate D1,2 and α values
in radial lines through q-space [1,65]; 3× 3 tensors are fitted to the estimated D1,2 and α
values to provide matrix representations of D1,2 and α as closed quadric surfaces in R3

(i.e., ellipsoids or spheres) [1,66]. Eigenvalues (λ ∈ R, λ1 > λ2 > λ3) and eigenvectors
(v ∈ R3) are then calculated for the D1,2 and α tensors within each voxel. The eigenvector
corresponding to λ1 is considered to be parallel with the gross orientation of tissue mi-
crostructure within the voxel, with the remaining eigenvectors providing the orientation of
the microstructural cross-section. Axial, radial and mean values for D1,2 and α can then
be calculated. For example, for the diffusion coefficient we have: axial D1,2 = λ1, radial
D1,2 = (λ2 + λ3)/2 and mean D1,2 = (λ1 + λ2 + λ3)/3. RTOP, RTAP, RTPP and effective
mean pore radius were then computed.

Figure 5 shows RTOP (Figure 5a), RTAP (Figure 5b) and RTPP (Figure 5c) maps in an
axial slice through the corpus callosum. A sagittal cross-section through the mid-plane of
the corpus callosum is shown in Figure 5d. The pseudo colour map indicates estimated
axon radii in microns. A histogram of axon radii through a 10 mm thick sagittal section of
the corpus callosum is shown in Figure 5e. This indicates axon radii are between 0.25 µm
and 3.5 µm (mean 1.03 µm, standard deviation 0.5 µm, median 0.91 µm) with larger radii
in the body than the genu and splenium. These measurements are in accordance with
histological studies [67].
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Figure 5. Quasi-diffusion mean apparent propagator imaging results for a young, healthy subject (age 27 years). The top
row shows axial slices through (a) 3
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RTOP, (b)
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RTAP, and (c) RTPP maps. The bottom row shows (d) effective pore

radius estimates in a cross-section through the mid-sagittal plane of the corpus callosum, and (e) a probability density
function of micron radii for the analysed 10 mm thick section of the corpus callosum (graph (e)). The location of the corpus
callosum is identified by red arrows. The red and blue lines in graph (e) indicate the mean and median, respectively.

3.2. Quasi-Diffusion Imaging of Brain Tumour

As quasi-diffusion imaging can be acquired in 120 s with high signal to noise ra-
tios [1], it could be feasibly acquired in the clinic. Here we consider an application of
quasi-diffusion imaging to a high-grade glial tumour, the glioblastoma multiforme (GBM).
Clinical assessment of glial tumour grade and genetic subtype is relevant for predicting
patient survival time and treatment strategy which includes surgical resection, chemo- and
radiotherapy, and the need for accurate delineation of tumour tissue boundaries [68,69].

Diffusion MRI data were acquired using a 3T clinical MR scanner at SGUL. Images
were acquired with a voxel size of 1.5 mm ×1.5 mm ×5 mm in 120 s. Data were acquired
at b = {0, 1100, 5000} s mm−2 in 6 non-collinear diffusion encoding directions equally
spaced on the sphere with δ = 23.5 ms, and ∆ = 43.7 ms, giving an effective diffusion
time of ∆ = 35.9 ms. Full patient and data acquisition details are provided in Appendix A.
Image analysis was performed using the same techniques as Section 3.1 with the exception
that effective mean spherical pore radius was calculated.

In Figure 6, we compare the standard clinical Gadolinium contrast-enhanced T1-
weighted (T1wGd) image with parameters derived from quasi-diffusion imaging. In the
T1wGd image (Figure 6a), the hyperintense region is typical for GBM and indicates the
high-grade tumour core region (where there is angiogenesis and breakdown of the blood-
brain barrier) that would be the target for resection and/or highest radiotherapy dose;
the central dark region is necrotic tissue. Surrounding this region is the area of tumour
infiltration and oedema that is hypointense on the T1wGd image, and is more clearly seen
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as elevated D1,2 values (Figure 6b). This region plus a 2 cm margin would be the target
for radiotherapy. The quasi-diffusion imaging maps provide different image contrasts
with potential to distinguish these regions from a single image modality. Elevated α is
evident across the whole lesion (Figure 6c) indicating that the oedema and tumour core are
less structured than normal white matter. In addition, α and RTOP1/3 (Figure 6d) allow
distinction between grey and white matter for which contrast is present in the T1wGd
image but not the D1,2 map. Within the RTOP1/3 hypointense region that delineates tumour
oedema/infiltration, there is an area of elevated signal relating to T1wGd enhancement,
which is a result of the presence of a greater density of tumour microstructure. Within the
T1wGd enhancing region, the effective pore size is approximately 2.5 µm (Figure 6e).
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Diffusion magnetic resonance imaging data were acquired at b = {0, 1100, 5000} s mm−2 in 6 diffusion encoding directions
at an effective diffusion time of ∆ = 35.9 ms. Imaging data were acquired in a clinically feasible time of 120 s. Image
(a) shows a T1-weighted image acquired after injection of gadolinium contrast agent, with maps of (b) mean D1,2, (c) mean
α, (d) 3

√
RTOP and (e) effective mean pore size, 〈R〉, (which in the absence of oedema or necrosis will relate to cell

size). Arrows indicate the following regions: white—tumour core, red—necrosis, blue—oedema, yellow—grey matter,
green—white matter.

4. Discussion

We have described the mathematical properties of quasi-diffusion, a special case of the
CTRW diffusion model and presented the form of its Laplace and Fourier transforms. These
functional forms provide insight into the behaviour and interpretation of quasi-diffusion as
a model of effective normal diffusion dynamics within a dMRI voxel. The quasi-diffusion
equations provide a functional form describing diffusion in MRI. Together, the diffusion
coefficient and fractional exponent of the quasi-diffusion characteristic equation define the
form of the inverse Laplace transform which provides a spectrum of Fickian diffusivities,
and an explicit form for the propagator.

In dMRI, there have been several attempts to describe the functional form of the
signal attenuation [8,9,12,13]. Unlike quasi-diffusion, these applied representations and
models have not previously provided a simple functional form from which both the inverse
Laplace transform and inverse Fourier transform of the signal can be derived. The quasi-
diffusion model is compatible with previous frameworks and models that consider the
underlying diffusion process in tissue microstructure to be locally Fickian [33–35] and lead
to a signal that decays with a negative power law [13,19,33–35,67]. In the CTRW model,
the assumption of a Gaussian scaling relationship between the fractional exponents of
time, α, and space, β, leads to a mean-squared displacement that is linearly proportional
to time. This leads to the quasi-diffusion model, that is valid in an image voxel beyond
the short diffusion time limit, and prior to the long diffusion time limit where tortuosity
effects will dominate signal behaviour. For accurate measurement of quasi-diffusion,
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there is a requirement that diffusing molecules have had sufficient time to explore the
microstructural environment.

We consider quasi-diffusion to be the effect of a locally Gaussian diffusion that, within
an image voxel, leads to observation of non-Gaussian characteristics due to the ensemble
of diffusing molecules being within a heterogeneous environment containing pores with
a distribution of structures and radii. The quasi-diffusion model makes no assumptions
regarding the shape and distribution of the pores or that diffusing molecules are restricted
to locations in the microstructural environment during the diffusion time.

The quasi-diffusion model predicts the existence of dMRI signal at extremely high
b-values due to the negative power law behaviour of the stretched Mittag–Leffler function
as b→ ∞+ . This prediction is consistent with experimental results that observe signal and
power law decay at high diffusion sensitisations of b = 10,000 s mm−2 in human white
matter in vivo [70], and b = 100,000 s mm−2 in rat and human ex vivo corpus callosum [67].
Furthermore, the quasi-diffusion model predicts a stretched exponential form of the signal
as b→ 0+ consistent with low b-values (b < 300 s mm−2) containing a significant signal
proportion attributable to blood perfusion and a potentially super-diffusive dynamic [71].

The quasi-diffusion signal can be decomposed into a spectrum of Fickian apparent dif-
fusion coefficients via the inverse Laplace transform. Such a transform has been suggested
to relate to specific length scales within the diffusion environment [72,73]. Visualisation
of the dMRI signal as a diffusion spectrum was first introduced by Yablonskiy et al. [72],
where a Gaussian probability density function was assumed. More recently, the assumption
of a gamma variate distribution [74] has indicated spectral regions related to pathological
changes in disease [74–76]. However, each of these studies make assumptions as to the
functional form of the probability distribution without supporting evidence. In contrast,
the quasi-diffusion model provides a functional form for the spectrum with the D1,2 and α
parameters together providing an indication of heterogeneity and restriction within the
diffusion environment.

The long diffusion times afforded by clinical MR scanners and the complexity of the
tissue environment ensure that diffraction patterns from groups of similar pores [11,77]
cannot be observed from the dMRI signal [8,78]. Instead, the signal is a relaxation curve
with few inherent features. The quasi-diffusion model provides a functional form for the
signal which offers an opportunity for developing new quantitative model-based dMRI
analysis techniques. We have shown here that the assumption of quasi-diffusion leads
to model-based power law and ‘kurtosis’ information, and that the propagator can be
applied to obtain MAP images. Possible further applications include use of the diffusion
spectrum to provide model-based Multi-dimensional Diffusion MRI [79,80], and use of the
propagator to obtain model-based three-dimensional orientation distribution functions of
tissue microstructure (similar to those described by [28,81–83]) that could be employed
within multi-tissue constrained spherical deconvolution techniques for identifying white
matter fibre crossing [84].

Advanced diffusion MRI techniques, such as DKI, have been shown to be a sensitive
probe of the tissue microstructural environment in healthy and diseased tissue [21,85–88]. We
expect D1,2, α and quasi-diffusion MAP images to show a similar sensitivity to disease to
previous clinical studies of DKI and MAP imaging. Our examples highlight the potential
for quasi-diffusion imaging in clinical research and demonstrate that effective mean pore
size measurements may be obtained. Our initial pore size estimations appear to be more
accurate in the white matter of the corpus callosum, where the high density of myelinated
axons can be considered as isolated pores, than in grey matter and tumour tissue, where
more complex distributions of cell structures and shapes are present with permeable
membranes, potentially leading to a breakdown of the assumption of isolated pores.
Further research is required to determine the efficacy of the quasi-diffusion MAP approach
and its clinical potential.

A significant advantage of quasi-diffusion imaging over current dMRI techniques is
its ability to provide robust and accurate fits to minimal imaging data [1,55]. This allows
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acquisition of D1,2 and α maps with high signal to noise ratios in a clinically feasible time.
New dMRI analysis techniques developed using the quasi-diffusion model will benefit
from this advantage, which will potentially enable rapid translation of new techniques
from large scale clinical feasibility studies into clinical practice.

There are limitations to the quasi-diffusion imaging technique. For instance, assump-
tion of the short pulse approximation in q-space imaging is generally violated in practice,
and the effect of this on measurements is currently unclear. However, the quasi-diffusion
model is unique in anomalous dMRI techniques as it does not undermine the Gaussian
phase approximation (GPA) [8,11]. Further studies are required to understand the con-
ditions under which quasi-diffusion dynamics emerge within a voxel. In particular, the
relationship of the signal to the underlying microstructure, and the effect of the PGSE δ and
∆ on the signal are not well-understood. It is also not yet clear whether the quasi-diffusion
model provides imaging measures that are invariant to diffusion time. Nevertheless, the
quasi-diffusion model provides a well-defined mathematical basis for further research to
elucidate characteristics of the diffusion environment.

5. Conclusions

We have described the mathematics and initial interpretation of the quasi-diffusion
model in application to dMRI. This new model of the diffusion dynamics within MRI voxels
provides a functional form for the signal from which a diffusion spectrum and propagator
can be derived. The quasi-diffusion model is consistent with current understanding of
diffusion in tissue microstructure and can be used to provide high quality images of
parameters relating to non-Gaussian diffusion in clinically feasible time. The functional
form of the quasi-diffusion model represents a novel focus for future mathematical and
imaging research. This study shows the potential of quasi-diffusion imaging as a promising
new dMRI technique with significant scope for further development.

6. Patents

The quasi-diffusion imaging technique is covered by the patent, “A method and
apparatus for quasi-diffusion magnetic resonance imaging”, by inventors Dr. T.R. Barrick,
Prof. F.A. Howe, Dr. M.G. Hall, Dr. C. Ingo and Prof. R.L. Magin, WO2021005363A1, filed
8 July 2019, published 14 January 2021.
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Appendix A. Diffusion Magnetic Resonance Imaging Data

Several examples of dMRI data were used to highlight the potential utility of the
quasi-diffusion imaging technique. These included data acquired from human participants
and patients. The following sections provide information regarding the participants and
the dMRI data acquisition parameters in each example.

Appendix A.1. Human Participants

Healthy subjects: Two healthy participants were recruited (1 male, age 27 and 1 fe-
male, age 28 years). Ethics approval was obtained (East London 3 REC 10/H0701/36) and
written informed consent was obtained from each participant prior to MR scanning.

Brain tumour patient: A brain tumour patient (age 58 years) with a World Health
Organisation (WHO) Grade IV glioblastoma was recruited as part of the “Tissue-type
magnetic resonance imaging of brain tumours” study at SGUL for which ethical approval
was obtained (South Central Hampshire REC 17/SC/0460). Written informed consent was
obtained prior to MR scanning.

Appendix A.2. Acquisition of Diffusion Magnetic Resonance Imaging Data

Diffusion MRIs were acquired on a 3T Philips Achieva Dual TX MR scanning system
(Philips Healthcare, Best, Netherlands) using a 32-channel head coil at St George’s Hos-
pital, London, UK. Patient MRI acquisition was performed as part of a multimodal MRI
protocol. Whole brain axial dMRI were acquired using a diffusion-sensitised spin-echo
planar imaging (EPI) sequence in enhanced gradient mode (80 mTm−1 at a slew rate of
100 mTm−1 ms−1). Fat suppression was achieved using Spectral Presaturation by Inversion
Recovery (SPIR) and Slice Selection Gradient Reversal (SSGR). A SENSE factor of 2 in
the anterior-posterior direction and a half-scan factor of 0.891 were applied to minimise
echo-train length and overall acquisition time.

Acquisition of imaging data illustrated in Figure 2: Quasi-diffusion tensor imaging
data were acquired with: Echo Time (TE) = 90 ms, Repetition Time (TR) = 6000 ms,
δ = 23.5 ms, ∆ = 43.9 ms, field of view 210 mm × 210 mm with 22.5 mm thick slices
acquired at 2.3 mm × 2.3 mm × 5 mm resolution that were zero-filled (by use of the
Fourier transform) to provide 1.5 mm × 1.5 mm × 5.0 mm voxels. dMRI were acquired
twice in 29 b-values with b = {0, 180, 360, . . . step 180 . . . , 4860, 5000} s mm−2. Images
without diffusion-sensitisation (b = 0 s mm−2) were acquired 16 times. Diffusion encoding
gradients were applied in 6 non-collinear directions. Data were acquired in 35 min 12 s.

Acquisition of imaging data illustrated in Section 3.1 and Figure 5: Quasi-diffusion
tensor imaging data were acquired with: TE = 90 ms, TR = 9000 ms, δ = 28.7 ms,
∆ = 43.9 ms, field of view 224 mm × 224 mm with 50.2 mm thick slices acquired at
3 mm × 3 mm × 2 mm resolution that were zero-filled (by use of the Fourier trans-
form) to provide 2 mm isotropic voxels. dMRI were acquired once in 3 b-values with
b = {0, 1100, 4000} s mm−2. Images without diffusion-sensitisation were acquired
8 times. Diffusion encoding gradients were applied in 32 non-collinear directions. Data
were acquired in 10 min 48 s.

Acquisition of imaging data illustrated in Section 3.2 and Figure 6: Quasi-diffusion
tensor imaging data were acquired with: TE = 90 ms, TR = 6000 ms, δ = 23.5 ms,
∆ = 43.9 ms, field of view 210 mm × 210 mm with 22.5 mm thick slices acquired at
2.3 mm× 2.3 mm× 5 mm resolution that were zero-filled (by use of the Fourier transform)
to provide 1.5 mm × 1.5 mm × 5 mm voxels. dMRI were acquired once in 3 b-values
with b = {0, 1100, 5000} s mm−2. Images without diffusion-sensitisation were acquired
8 times. Diffusion encoding gradients were applied in 6 non-collinear directions. Data
were acquired in 120 s.
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