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Setd5 is required in cardiopharyngeal mesoderm for heart
development and its haploinsufficiency is associated with
outflow tract defects in mouse

Michelle Yu-Qing Cheung1 | Catherine Roberts1,2 | Peter Scambler1 |

Athanasia Stathopoulou1

1Developmental Biology and Cancer,

University College London Great Ormond

Street Institute of Child Health, 30 Guilford

Street, London, WC1N 1EH, United Kingdom

2Institute of Medical and Biomedical

Education, St. George's, University of London,

Cranmer Terrace, London, SW17 0RE, United

Kingdom

Correspondence

Athanasia Stathopoulou, Developmental

Biology and Cancer, University College London

Great Ormond Street Institute of Child Health,

30 Guilford Street, London, WC1N 1EH,

United Kingdom.

Email: a.stathopoulou@ucl.ac.uk

Funding information

British Heart Foundation, Grant/Award

Numbers: FS/16/61/32740, RG151431880;

Fondation Leducq, Grant/Award Number:

15CDV01

Summary

Congenital heart defects are a feature of several genetic haploinsufficiency syn-

dromes, often involving transcriptional regulators. One property of haploinsufficient

genes is their propensity for network interactions at the gene or protein level. In this

article we took advantage of an online dataset of high throughput screening of muta-

tions that are embryonic lethal in mice. Our aim was to identify new genes where the

loss of function caused cardiovascular phenotypes resembling the 22q11.2 deletion

syndrome models, that is, heterozygous and homozygous loss of Tbx1. One gene

with a potentially haploinsufficient phenotype was identified, Setd5, thought to be

involved in chromatin modification. We found murine Setd5 haploinsufficiency to be

associated with double outlet right ventricle and perimembranous ventricular septal

defect, although no genetic interaction with Tbx1 was detected. Conditional muta-

genesis revealed that Setd5 was required in cardiopharyngeal mesoderm for progres-

sion of the heart tube through the ballooning stage to create a four-chambered

heart.

K E YWORD S

birth defects, early development, heart, mesoderm

1 | INTRODUCTION

Syndromic congenital heart disease (CHD) encompasses several

haploinsufficiency conditions. Haploinsufficient genes may be pre-

sent at a “hub” of interacting networks (Huang, Lee, Marcotte, &

Hurles, 2010), and phenotypic similarity has been used in human

genetics to cluster syndromes based on the premise that these

groupings inform biological relationships of the genes involved

that is, the underlying genes may function within the same devel-

opmental “module” (Oti & Brunner, 2007). The candidate gene for

22q11.2 deletion syndrome (22q11DS) is TBX1, and is

haploinsufficient in mice (Jerome & Papaioannou, 2001; Merscher

et al., 2001). In mice, Tbx1 heterozygotes present with hypo- or

aplasia of the fourth PAA at embryonic day (E)10.5 which gives rise

to great vessel defects such as interrupted aortic arch type B and

aberrant right subclavian artery at later stages. Other cardiovascu-

lar defects include double outlet right ventricle (DORV) and ven-

tricular septal defect (VSD) (Lindsay et al., 2001; Merscher

et al., 2001).

An initiative entitled Deciphering the Mechanisms of Develop-

mental Disorders (DMDD) aimed to take advantage of embryonic

lethal mouse lines containing insertions that initially offer a gene-
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trap-like reporter allele with heterozygous or hypomorphic effect

(https://dmdd.org.uk/; Mohun et al., 2013). Upon Flpe recombina-

tion, this converts to a conditional allele offering the potential for

tissue-specific studies of heart and brain development. Thus, the

DMDD browser provides an online database of mutants where

standard phenotype ontology terms can be used to search for genes

with phenotypes related to known birth defect syndromes. The

database contains high-resolution episcopic microscopic (HREM)

images of embryos at E9.5 and E14.5 allowing local rephenotyping.

The database contained 209 genes analysed at E9.5 and E14.5.

Querying the online browser with key phenotype ontology terms

that define the Tbx1 haploinsufficient phenotype such as “DORV”
and “VSD” generated a list of genes that caused these defects

when mutated. Out of the 209 total genes, a mutation in only a sin-

gle gene caused DORV and VSD when heterozygous: Setd5 (MGI

allele: 4432631). We concluded Setd5 was a strong candidate for

causing haploinsufficient cardiac defects that are similar to those

observed due to Tbx1 haploinsufficiency. Moreover, there was a

severe loss of function, lethal phenotype in Setd5 nulls (https://

dmdd.org.uk/).

Setd5, a ubiquitously expressed gene (Osipovich, Gangula, Vianna, &

Magnuson, 2016), is thought to act as a histone modifier. Unlike other

SET-domain proteins, SETD5 appears to lack histone methyltransferase

activity (Deliu et al., 2018; Osipovich et al., 2016). Immunoprecipitation

and mass spectrometry studies indicate SETD5 associated with HDAC3,

a protein complex containing histone-deacetylating activity; however,

there is conflicting evidence on whether SETD5 is required for

HDAC3 recruitment (Deliu et al., 2018; Nakagawa et al., 2020;

Osipovich et al., 2016). Clinical reports reveal the implications of

SETD5 haploinsufficiency in human intellectual disability, with some

patients presenting with cardiac abnormalities (Fernandes et al., 2018;

Grozeva et al., 2014; Szczałuba et al., 2016). Furthermore, CHD is

present in up to 50% of patients with deleterious mutations in chro-

matin modification proteins underlying neurodevelopmental or

psychiatric syndromes (Zaidi & Brueckner, 2017). Despite this, the

role of Setd5 in cardiac development has not been extensively

investigated.

Osipovich et al showed that mice lacking Setd5 (MGI allele:

5576778) die before E10.5 and were developmentally delayed;

embryos were severely underdeveloped with many presenting

with hemorrhaging compared to littermate heterozygous controls

(Osipovich et al., 2016). Interestingly, unlike the heterozygous

embryos presented in the DMDD browser, Osipovich et al

reported heterozygous mice as viable and indistinguishable from

the wild-type embryos. Furthermore, the embryonic lethality of

Setd5 nulls by E10.5 limits the full assessment of the cardiac phe-

notype. The purpose of our study was, primarily, to more fully

delineate the cardiac phenotype caused by the disruption of

Setd5 expression, and secondarily to explore whether there was

any genetic interaction between Setd5 and Tbx1. Currently,

attempts to understand the Setd5 function are focused on neuro-

nal contexts; here we show the importance of this protein during

heart development.

2 | MATERIALS AND METHODS

2.1 | Mouse strains, breeding, and genotyping

All animal husbandry, maintenance, and procedures were carried out

in accordance to the UK Home Office regulations. All mice were

maintained on the C57Bl/6 background.

The Setd5Fl/Fl line was derived from the targeted mouse line

(Setd5tm1a[EUCOMM]Wtsi MGI:4432631) (Wellcome Trust Sanger Insti-

tute) and kindly donated by the Basson laboratory (KCL). Setd5 heterozy-

gotes were generated by crossing the floxed line with mice expressing Actin-

Cre (Lewandoski, Meyers, & Martin, 1997). F1 mice harboring the Actin-Cre

were backcrossed with wild-type mice in order to generate mice without the

Actin-Cre for use in downstream experiments. Generation of double hetero-

zygotes involved breeding Setd5+/� with Tbx1lacZ/+ heterozygotes, described

previously (Lindsay et al., 2001). To generate Tbx1-cKOs, Setd5Fl/Fl mice were

crossed with Tbx1Cre/+ heterozygous mice, described previously (Huynh,

Chen, Terrell, & Baldini, 2007). To delete Setd5 in the cardiopharyngeal

mesoderm, Setd5Fl/Fl mice were bred with mice expressing Mesp1-Cre,

described previously (Saga et al., 1999). Timed matings for embryo collection

involved pairing sexually mature mice overnight and checking the presence

of a copulation plug the following morning, which indicated 0.5 days post

copulation. The PCR strategies for genotyping are available upon request.

2.2 | Tissue processing, whole-mount analysis, and
histological analysis

Whole embryos were fixed in 4% paraformaldehyde overnight at 4�C

and then stored in PBS until required. For histological analyzes, whole

embryos or hearts were dehydrated in ethanol, and then processed in

Histoclear and several washes in wax. Samples were embedded in par-

affin and cut into 10 μm sections, air-dried overnight and then

rehydrated through a decreasing gradient of ethanol and stained with

hemotoxylin and eosin. Whole-mount embryo pictures were taken

using the Zeiss Lumar V12 Stereoscope. Histological sections were

imaged using the Zeiss Axioplan or the slide scanning facility at UCL

IQPath. Stage-matching was performed by assessment of the limb

buds and pharyngeal arches (Boehm et al., 2011; Musy et al., 2018).

2.3 | Calculation of double heterozygote expected
frequencies

In the absence of a synergistic genetic interaction, the expected fre-

quency of defects in a double heterozygote in which two genes of

interest are haploinsufficient is calculated as follows:

(A + B[1 – A])*n.

A = percentage of defects observed in one single heterozygote.

B = percentage of defects observed in alternate single

heterozygote. n = total number of double heterozygotes collected.

2 of 9 LETTER

https://dmdd.org.uk/
https://dmdd.org.uk/
https://dmdd.org.uk/


Taking the example of VSDs presented in Table 1,

A = 75% = 0.75; B = 31% = 0.31; n = 14.

(0.75 + 0.31[1–0.75])* 14 = 12.

2.4 | Statistical analysis

To determine whether genetically modified mice or embryos pres-

ented at Mendelian ratios, Chi-squared analysis was performed. To

determine the association of genotype with the frequency of defects

observed, Fisher's exact test was performed. A p value less than .05

was taken to be significant.

3 | RESULTS

3.1 | Setd5 haploinsufficiency leads to outflow
tract rotational defects and VSDs

Setd5Fl/Fl mice were derived from the targeted mouse line (Setd5tm1a

[EUCOMM]Wtsi). The floxed line was then bred with Tmem163Tg(ACTB-

cre)2Mrt (Actin-Cre) mice in order to generate Setd5 heterozygotes

(Setd5 +/�) for use in downstream embryo experiments. At E14.5,

normal heart development results in the septation of the outflow

tract (OFT) into the pulmonary trunk and aorta, with an intact inter-

ventricular septum dividing the left and right ventricles. A rotational

defect, such as DORV or overriding aorta, occurs when the OFT fails

to align with the two future ventricles at the looping stage. Correct

looping of the heart tube is necessary to align the two definitive

outflow vessels with their corresponding ventricular chambers

(Christoffels et al., 2000; Moorman & Christoffels, 2003). If the OFT

is misaligned such that an abnormal amount of aortic blood origi-

nates from the right ventricle, then this is known as an overriding

aorta. If more than 50% of the aortic blood arises from the right ven-

tricle, the result is DORV (Creazzo, Godt, Leatherbury, Conway, &

Kirby, 1998).

We found that wild-type hearts displayed correctly OFT septation

with the outflow vessels originating from separate ventricles

(Figure 1a‑a000). In contrast, despite correct OFT septation, 50% of

Setd5 heterozygotes presented with rotational defects which included

DORV or overriding aorta (Figure 1b‑b000) (p < .05, Fisher's exact test,

Table 1). DORV is always accompanied by a VSD, since the fusion of

the interventricular septum with the OFT cushions is necessary to

complete ventricular septation. If the outflow vessels of the OFT are

misaligned with the ventricular chambers, as in DORV, then this

fusion cannot take place which leads to a perimembranous VSD

(Anderson, 2003; Lin, Lin, Chen, Zhou, & Chang, 2012). Figure 1b00 00

shows a perimembranous VSD, which was observed in 75% of Setd5

heterozygotes (p < .05, Fisher's exact test, Table 1).

Therefore, in alignment with the DMDD browser, our results show

that Setd5 haploinsufficiency causes OFT rotation defects and VSDs.

3.2 | No detectable genetic interaction between
Setd5 and Tbx1, a well-established
haploinsufficient gene

Because some of the phenotypes observed in Setd5 heterozygotes over-

lap with those observed in Tbx1 heterozygotes, the genetic interaction

between Setd5 and Tbx1was investigated by generating double heterozy-

gotes, in which both genes of interest are haploinsufficient. Setd5 hetero-

zygotes were mated with Tbx1lacZ/+ heterozygotes (Tbx1tm1Bld) and

embryos were harvested at E14.5. An exacerbation of defects, that is, an

increased frequency of defects over that expected by additive effects, or

an increase in severity of defects, would be observed in the double het-

erozygotes in the case of synergistic genetic interaction.

There was no difference in the number of embryos at E14.5 based

on the genotypes (Table STable 1, Chi-squared, p > .05). Gross morpho-

logical analysis during embryo dissection and internal assessment by

histological methods revealed no exacerbation or increased frequency

of defects in double heterozygotes, suggesting that there was no

detectable synergistic genetic interaction between Setd5 and Tbx1 and

that these two genes are not functionally interdependent (Table 1).

TABLE 1 Summary of heart defects observed in WT, Setd5 heterozygotes (Setd5 +/�), Tbx1 heterozygotes (Tbx1lacZ/+) and double
heterozygotes (Setd5+/�; Tbx1lacZ/+) at E14.5

H&E analysis

WT(n = 8) Setd5+/� (n = 12) Tbx1lacZ/+ (n = 13)

Setd5+/�; Tbx1lacZ/+ (n = 14)

Observed Expected n number

CAT 0 0 0 0 0

Rotational defects 0 6 (50%)* 1 (8%) 8 (57%) 8

VSD 1 (13%) 9 (75%)* 4 (31%) 12 (86%) 12

Great vessel defects

AbRS 0 0 1 (8%) 3 (21%) 1

Note: A Fisher's exact test was performed to determine whether the defects observed in Setd5 +/� were statistically significant compared to wild-type

control embryos (*p < .05 compared with WT). The expected frequency of defects in double heterozygotes (Setd5+/�; Tbx1lacZ/+) was calculated as

described in the methods. Rotational defects encompass both double outlet right ventricle and overriding aorta.

Abbreviations: AbRS, aberrant right subclavian artery; CAT, common arterial trunk; VSD, ventricular septal defect.
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3.3 | Conditional mutagenesis of Setd5 reveals a
role in cardiogenic mesoderm

Our results show that the haploinsufficiency of Setd5 led to rotational

defects and VSD. These defects are reminiscent of the second heart

field (SHF)-specific defects seen in Tbx1 mutants. To investigate

whether Setd5 has a specific role in the SHF, and/or pharyngeal epi-

thelia, Setd5 was deleted using a Tbx1-Cre driver known to be active

in these tissues (Huynh et al., 2007). Figure 2 presents the gross mor-

phology of control and several Tbx1 conditional knockout (Tbx1-cKO)

F IGURE 1 Rotational defects,
including DORV was observed in
50% of Setd5 heterozygotes
(Setd5+/�) and VSD were observed
in 75% of Setd5+/� embryos at
E14.5. In the WT heart, the
pulmonary trunk and aorta open into
separate ventricles: the right and left
ventricle, respectively (a‑a000). In
Setd5+/� hearts, DORV was
observed. In panel B0 the aorta and
pulmonary trunk are juxtaposed, and
in posterior sections b000, the aorta
eventually opens into the right
ventricle; both the pulmonary trunk
and aorta open into the right
ventricle. A perimembranous VSD is
observed in Setd5+/� (panel b00 00). Ao,
aorta; DORV, double outlet right
ventricle; LA, left atrium; LV, left
ventricle; PT, pulmonary trunk; RA,
right atrium; RV, right ventricle; VSD,
ventricular septal defects; WT, wild-
type. Scale bars = 400 μm
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hearts at E15.5. Minor abnormalities such as retroesophageal right

subclavian artery were observed (one in both Tbx1 conditional hetero-

zygote and knockout); this was likely due to the effect of the Cre

knock-in to the Tbx1 locus. Similarly, assessment of internal heart

morphology revealed no obvious differences between the genotypes

(Figure SFigure 1). Therefore, we concluded Setd5 likely exerts its role

earlier during cardiac development, or in other lineages, or both.

Indeed, the DMDD browser revealed an embryonic lethality of

homozygous Setd5 mutation (no surviving embryos at E14.5), and

Osipovich et al., showed that mice constitutively null for Setd5 die

before E10.5, and are severely underdeveloped. Hearts at E9.5 were

swollen with a single ventricular chamber (Osipovich et al., 2016). The

embryonic lethality of Setd5 constitutive null embryos by E10.5 limits

analysis of the importance of Setd5 in cardiac development. Lineage

tracing experiments show that the majority of cardiac cells are derived

from Mesp1-expressing progenitor cells (Saga et al., 1999). Therefore,

we used the Mesp1-Cre driver to delete Setd5 in mesoderm

encompassing both the first heart field (FHF) and SHF, as well as the

F IGURE 2 No obvious heart
malformations were observed
when Setd5 was homozygously
deleted using the Tbx1-Cre at
E15.5. No great vessel defects
were observed across the
genotypes (n = 19 conditional
mutants analysed). AA, aortic
arch; LA, left atria; LCC, left
common carotid; LSA, left
subclavian artery; LV, left
ventricle; RA, right atria; RCC,
right common carotid; RSA, right
subclavian artery; RV, right
ventricle; T, thymus. Scale
bars = 1 mm
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pharyngeal mesoderm through which the (non-Mesp1-expressing)

neural crest migrates. Homozygous deletion in this cardiopharyngeal

mesoderm lineage led to embryonic lethality before E12.5. At E10.5,

Mesp1-cKO embryos were harvested at the expected Mendelian ratio

(Table S2) but exhibited varying degrees of abnormal cardiac morpho-

genesis compared to stage-matched control embryos (p < .05,

Table 2). 90% of Mesp1-cKOs displayed abnormal cardiac chamber

ballooning, with 25% of these exhibiting a dumbbell-shaped heart

(Figure 3b), while others displayed right ventricular hypoplasia and

abnormal atrial ballooning (p < .05, Figure 3d). We assessed the inter-

nal heart morphology by histological techniques and found that 100%

of Mesp1-cKO embryos presented with a short OFT, indistinct ven-

tricular chambers, and poorly developed atria, revealing the impor-

tance of Setd5 in OFT elongation and cardiac chamber ballooning

(Figure 4). These defects were accompanied by a statistically signifi-

cant growth delay, determined by the crown-to-rump length (p < .05,

Figure SFigure 2). The OFT length was further assessed by quantifying

the number of paraffin sections containing the OFT and expressing

this as a ratio to the crown-to-rump length, confirming the shorter

OFT in Mesp1-cKO compared to control embryos (Figure SFigure 3).

Morphological analysis of Mesp1-Cre conditional heterozygotes

(n = 6) did not reveal any OFT phenotype, and histological analysis

revealed only a single embryo as having poorly developed cardiac

chambers.

4 | DISCUSSION

Our results indicate that haploinsufficiency of Setd5, a gene impli-

cated in human intellectual disability (Fernandes et al., 2018;

Grozeva et al., 2014; Szczałuba et al., 2016) with reported histone-

modifying activity (Deliu et al., 2018; Nakagawa et al., 2020;

Osipovich et al., 2016), leads to cardiac defects in mice. It is worth

noting that only one Mesp1-Cre conditional heterozygote presented

with poorly developed cardiac chambers. The remaining embryos

exhibited normal cardiac morphology, highlighting the fact that

deleting one allele of Setd5 in the Mesp1 lineage does not fully reca-

pitulate the global heterozygotes and that haploinsufficiency of

Setd5 requires constitutive heterozygosity. Since haploinsufficient

genes exist in hubs or networks and are more likely to interact with

other haploinsufficient genes (Huang et al., 2010), and because

haploinsufficiency of Setd5, and of Tbx1 lead to similar cardiac

defects, one of our initial aims were to investigate their genetic

interaction. However, our findings did not reveal a detectable syner-

gistic genetic interaction, suggesting that Setd5 and Tbx1 are not

functionally interdependent. Nevertheless, homozygous deletion of

Setd5 in the cardiopharyngeal mesoderm revealed a novel role of

Setd5 in cardiac development: its importance in OFT elongation and

cardiac chamber ballooning.

In humans, loss of function mutations in SETD5 lead to moderate

or severe intellectual disability (Fernandes et al., 2018; Grozeva

et al., 2014; Powis et al., 2018; Rawlins, Stals, Eason, &

Turnpenny, 2017; Szczałuba et al., 2016). It is also one of three genes

within the candidate region of 3p25 microdeletion syndrome which is

characterized by developmental delay, intellectual disability, low birth

weight, microcephaly and craniofacial abnormalities, and some obser-

vations of CHD (Grozeva et al., 2014; Kuechler et al., 2015; Szczałuba

et al., 2016). Mutations of SETD5 have been reported in other condi-

tions. For instance, one deletion and two mutations were described in

patients clinically diagnosed with KBG syndrome without a mutation

in ANKRD11, which is usually observed in these cases (OMIM

148050). One such patient presented with mitral stenosis (Crippa

et al., 2020). Interestingly, ANKRD11 recruits HDACs and is mutated

in autism (Gallagher et al., 2015). Recently, SETD5 has been implicated

in moyamoya angiopathy, which is the occlusion of large cerebral

arteries leading to childhood stroke (Pinard et al., 2020). Our results

TABLE 2 Summary of defects observed in Setd5Fl/Fl, Setd5Fl/WT, Setd5Fl/WT; Mesp1Cre/+, and Setd5Fl/Fl; Mesp1Cre/+ embryos at E10.5

Abnormal external morphology

Setd5Fl/Fl(n = 17) Setd5Fl/WT (n = 23)
Setd5Fl/WT; Mesp1Cre/+

(n = 17)
Setd5Fl/Fl; Mesp1Cre/+

(n = 19)

Hemorrhage 0 0 0 3 (16%)

Pericardial effusion* 0 3 (13%) 0 14 (74%)

Abnormal cardiac chamber ballooning* 0 0 0 18 (95%)

H&E analysis

Setd5Fl/Fl (n = 2) Setd5Fl/WT (n = 4) Setd5Fl/WT; Mesp1Cre/+

(n = 6)

Setd5Fl/Fl; Mesp1Cre/+

(n = 6)

Short OFT* 0 0 0 6 (100%)

Abnormal ventricular ballooning* 0 0 1 (17%) 6 (100%)

Abnormal atrial ballooning* 0 0 0 6 (100%)

Note: The upper part of the table describes the defects observed during the dissection stage. The abnormal external cardiac morphology was further

delineated by sectioning and H&E analysis. Fisher's exact test was used to determine the association between the genotype and the frequency of any

defects observed.

*p < .05.
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reveal that Setd5, a gene implicated in neurodevelopmental disorders,

is also important in cardiac development, and may provide some

explanation to the clinical observations of CHD when SETD5 is

haploinsufficient in humans. Taken together, these data suggest con-

siderable pleiotropy of SETD5 function.

The genetic underpinnings of CHD remain unknown in over 50%

of cases, highlighting the importance of identifying novel genes that

may be involved in orchestrating cardiac development. Furthermore,

genome sequencing CHD studies present an overrepresentation of

genes involved in neurodevelopmental disorder (Sigmon, Kelleman,

F IGURE 3 Mesp1-cKO
(Setd5Fl/Fl; Mesp1Cre/+) embryos
displayed abnormal cardiac
chamber ballooning and
pericardial effusion at E10.5. At
E10.5, Mesp1-cKO embryos
presented with abnormal cardiac
morphogenesis in 90% of the
cases with 25% of these

exhibiting a dumbbell shaped
heart: a single atria and single
ventricle (b,b0) compared with
control embryos (Setd5Fl/Fl or
Setd5Fl/WT). Pericardial effusion
was observed in 70% of Mesp1-
cKO embryos (red arrow, b0).
(d,d0) show a Mesp1-cKO embryo
with a short outflow tract, right
ventricular hypoplasia, and
abnormal atrial ballooning (red
arrow). A, atrium; LA, left atrium;
LV, left ventricle; lb, limb bud;
OFT, outflow tract; PE,
pericardial effusion; PAA,
pharyngeal arch artery. Scale
bars = 1 mm
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Susi, Nylund, & Oster, 2019; Watkins et al., 2019). As such, screening

for mutations in SETD5 during genetic testing could potentially pro-

vide some knowledge to families to better understand if there could

be recurrent risks of CHD to other family members, or provide infor-

mation for neurodevelopmental outcome.

Thus, our results provide the basis for further exploration of Setd5

in cardiac development. It will be interesting to investigate how this

histone modifier plays a role in orchestrating cardiac development in

conjunction with other known cardiac-relevant genes. Setd5 can now

be placed within a growing number of genes encoding chromatin

modifiers whose alleles are associated with both neurodevelopmental

defects on the one hand, and heart dysmorphogenesis on the other.
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phenotype than in B. Embryo presents with a short OFT and no evidence of the interventricular groove, and thickened atrial wall. Sections
presented are from top to bottom of the dashed box in whole embryo photograph. AV, atrioventricular; IV, interventricular; LV, left ventricle;
OFT, outflow tract; PE, pericardial effusion; P, pericardium; PAA, pharyngeal arch artery; RA, right atrium; RV, right ventricle. Scale bars = 1 mm
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