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ABSTRACT 

Interleukin-6 (IL-6) is a multifunctional cytokine with both pro- and anti-

inflammatory properties with a heritability estimate of up to 61%. The circulating 

levels of IL-6 in blood have been associated with an increased risk of complex disease 

pathogenesis. We conducted a two-staged, discovery, and replication meta genome-

wide association study (GWAS) of circulating serum IL-6 levels comprising up to 

67,428 (ndiscovery=52,654 and nreplication=14,774) individuals of European ancestry. The 

inverse variance fixed-effects based discovery meta-analysis, followed by replication 

led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on 

Chromosome (Chr) 2q14, (pcombined= 1.8×10
-11

), HLA-DRB1/DRB5 rs660895 on 
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Chr6p21(pcombined=1.5×10
-10

) in the combined meta-analyses of all samples. We also 

replicated the IL6R rs4537545 locus on Chr1q21 (pcombined=1.2×10
-122

). 

Our study identifies novel loci for circulating IL-6 levels uncovering new 

immunological and inflammatory pathways that may influence IL-6 pathobiology.  
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INTRODUCTION 

Interleukin-6 (IL-6) is a multifunctional cytokine, which is involved in a wide range 

of immunomodulatory processes, from cellular migration and adhesion to 

proliferation and maturation (1, 2). Interleukins are involved in immune cell 

differentiation and activation (3). IL-6 is synthesized by a variety of different immune 

cells such as monocytes (4), B-cells (5) and T-cells (6) and also non-immune cells 

such as epithelial and smooth muscle cells (7), adipocytes (8), endothelial cells (9), 

and osteoblasts (10). 

Several factors have been implicated in circulating IL-6 levels. We have 

previously demonstrated that IL-6 levels decrease with age in children and increase 

with age in adults (11). Also, increased levels of IL-6 have been observed in various 

diseases, not surprisingly in autoimmune diseases such as rheumatoid arthritis (12) 

and systemic juvenile idiopathic arthritis (13), but also cardio-metabolic diseases like 

type 2 diabetes (14), heart failure, coronary heart disease (15), and atherosclerosis 

(16), as well in cancers (17), atopic dermatitis (18), and psychological disorders like 

depression (19). Due to its implications in the pathogenesis of different disorders, Il-6 

has been used as an appropriate choice for drug targeting and used as a monitoring 

biomarker of disease progression and response to treatments (20). The most illustrious 

IL-6 inhibitor is tocilizumab (21), a monoclonal antibody binding the IL-6 receptor, 

which is already in use for treating patients with allergic asthma (22), and immune 

system disorders like rheumatoid arthritis (23) and systemic juvenile idiopathic 

arthritis (24), with high efficacy with some initial benefits towards respiratory 

illnesses like COVID-19 (25). 

IL-6 baseline levels are heritable with estimates from twin studies ranging 

between 15-61% (26-29). However, efforts to identify genetic variants associated 
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with levels of IL-6 constituted relatively small-scale GWAS (30-33) or sequencing-

based candidate gene association studies (34). To date, variants in the IL-6 receptor 

gene (IL-6R) and the gene encoding histo-blood group ABO system transferase (ABO) 

have been identified as statistically significant for an association to IL6-levels. Also, 

the genetic risk score constructed of IL-6 variants identified in the study by Shah and 

colleagues explained up to 2% of the variation in IL-6 levels (33), leaving a 

substantial part of its heritability unexplained. These seemingly sparse results and 

limited findings could be due to limitations in the study power caused by low sample 

size or a great inter-individual variability of IL-6 levels. One may speculate a 

substantial increase in the study size by increasing the number of participants, which 

would very likely lead to the identification of additional variants explaining IL-6 

levels (35-37). 

The current study is the (till date) largest meta GWAS study including 67,428 

individuals of European ancestry to identify genetic variants explaining the levels of 

circulating IL-6 and to understand underlying genetic mechanisms implicated in the 

pathophysiology of this cytokine.  
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RESULTS 

A total of 52,654 individuals of European descent from 26 cohorts were included in 

the discovery GWAS meta-analysis with up to 2,454,025 autosomal SNPs passing 

quality control. Four cohorts (ALSPAC, MONICA/KORA, NTR, and SardiNIA), 

identified genome-wide significant associations in the ABO region, whereas none of 

the other 22 cohorts did, either individually or combined. These cohorts conditioned 

their results on their relevant top-SNP in ABO, the results of which were included in 

the discovery meta-analyses. The overall genomic control inflation factor (λGC after 

correction) at the discovery stage meta-analysis was 1.0.  

 We identified 94 variants that were genome-wide significantly (pdiscovery < 

5.0×10
−8

; Supplementary table 1) associated with IL-6 levels, representing two 

independent genetic loci on chromosomes 1q21 and 6p21. Two common SNPs 

(rs4537545 and rs660895), one per locus, Chr. 1q21 (IL6R), and Chr. 6p21 (HLA-

DRB1/HLA-DRB5), showed the most significant association with IL-6 levels (index 

SNPs) and the third SNP (rs6734238) mapped on Chr. 2q14 (IL1F10/IL1RN) locus 

showed suggestive (5.0×10
−8

 <  pdiscovery < 1.0×10
−5

) association in addition to 5 other 

loci (LHFPL3, LZTS1, GPC5/GPC6, USP32/APPBP2, STAU1; Supplementary table 

2).  

The minor alleles of IL6R rs4537545*T (β=0.091; pdiscovery =8.39×10
-85

), 

IL1F10/IL1RN rs6734238*G (β=0.025; pdiscovery =1.45×10
-7

) and HLA-DRB1/5 

rs660895*G (β=0.036; pdiscovery=1.80×10
-9

) associated with increased circulating IL-6 

levels (Table 1). Two additional genome-wide significant SNPs in the IL1R locus,  

rs11265618 (β=0.047; pdiscovery=1.21×10
-15

) and rs10796927 (β=0.034; 

pdiscovery=1.24×10
-11

), in low LD (r
2
<0.25) with the lead SNP rs4537545 were carried 
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forward for replication, and later conditional analysis as they seemed potential 

candidates as independent signals.  

 Overall, 12 SNPs spanning over 9 loci, at a pdiscovery<1×10
−5

 in the discovery 

GWAS meta-analyses were selected for the replication stage (Supplementary table 2). 

This included the three index SNPs, two additional SNPs from the 1q21 locus (GWS 

but in low LD, r
2
<0.25 with index SNP) plus an additional set of seven statistically 

suggestive SNPs with a p-value of 5×10
−8

 <p<1×10
−5

 in the discovery meta-analyses 

(either in low LD, r
2
<0.25 with the index SNP or independent loci). Additionally, 3 

SNPs as negative controls and 3 SNPs in LD (r
2
>0.25) with the Chr. 1 index SNP, to 

control for possible genotyping errors of index SNP across replication cohorts, were 

also added to the replication list, yielding 18 SNPs for replication stage 

(Supplementary Table 3).  

Three loci including Chr.1q21 IL6R, Chr.6p21 HLA-DRB1/5 and Chr.2q14 

ILF10/IL1RN replicated at preplication<0.05, reaching GWS; 1q21 rs4537545, 

pcombined=1.20×10
−122

; 6p21 rs660895, pcombined=1.55×10
−10

; and 2q14 rs6734238, 

pcombined= 1.84×10
−11

 in the combined meta-analyses (Table 1; Supplementary table 

3). The two additional signals at Chr.1q21 IL6R locus were replicated at preplication= 

1.7×10
−4

 for rs11265618 and p=0.03 for rs10796927, reaching pcombined=2.5×10
−9 

and 

pcombined=4.1×10
−13

, respectively (Supplementary Table 3). The conditional analysis, 

confirmed that rs11265618 and rs10796927 SNPs were not independent from 

(Supplementary table 4) but were driven by the index rs4537545 SNP.  

In both, discovery and replication association analyses, the effect 

directionality was generally consistent across individual studies for GWS variants, 

while there was some evidence of borderline heterogeneity in one of the two novel 

loci (I
2 

(p value) < 0.05) during the discpovery and combined meta analysis (Table 1). 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article/doi/10.1093/hm
g/ddab023/6124523 by guest on 18 February 2021



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

 
 

13 

The imputation quality scores (r
2
) for the GWS (index) SNPs for each cohort 

(discovery and replication) are available in Supplementary table 5. The other seven 

SNPs that showed suggestive association in the discovery stage, and expectedly the 

negative control SNPs did not reach GWS in the combined meta-analyses 

(Supplementary table 3). 

The three GWAS index SNPs when combined, explained approximately 1.06% of the 

variance in circulating levels of IL-6 using data from the NESDA cohort. The 

phenotypic variance explained by all the common variants was estimated to be 4.45% 

using the SumVg method (38). 

Replication of other known/suggestive loci for IL-6  

IL6R was the only IL6 known locus that we replicate at GWS. IL1RN and HLA-

DRB1, our primary findings have been reported as suggestive loci (1×10
-6

 <p <1×10
-

4
) by Shah et al. while some known/suggestive IL6 loci (ABO, BUD13, TRIB3, and 

SEZ6L) did not replicate (pdiscovery>0.05) in the current study. 

SNP functionality 

We looked up SNPs in LD with the index SNPs from the immunologically associated 

loci including IL-6R, rs4537545, 1q21; IL1F10, IL1RN, rs6734238, 2q14, intergenic; 

and HLA-DRB1/DRB5, rs660895, 6p21, intergenic. The search for 

functional/missense variants in high LD (r
2
>0.8) with the lead SNPs led to the 

identification of only one nonsynonymous rs2228145 SNP in LD (r
2
=0.95) with the 

rs4537545 index SNP from the IL6R locus. We used the Combined Annotation-

Dependent Depletion (CADD) database to identify the functionality,  ie. deleterious, 

disease causal, pathogenicity, of rs2228145 in IL6R. CADD is an integrative 

annotation based on multiple genomic features scored into a single metric (39). IL6R 
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missensethe  rs2228145 variant has a CADD score of 15.98 

(https://cadd.gs.washington.edu).   

Associations with other traits and gene expression data  

Genome-wide significant associations between IL6 associated top SNPs and other 

traits, and gene expression, data were mined using the Pheno Scanner v2 database 

(accessed, October 2020).  

GWAS based IL1F10/IL1RN rs6734238*G allele has been associated with increased 

levels of serum C reactive protein (CRP) and decreased fibrinogen levels, and blood 

cell traits in recent GWAS reports (40, 41) (PMID:27863252; Supplementary table 6).   

HLA-DRB1/DRB5 rs660895*G allele is associated with increased risk of Rheumatoid 

arthritis (RA) in Europeans and Asians (42), IgA nephropathy in Asians (43), while 

the decreased risk of Ulcerative colitis and Inflammatory Bowel Disease (IBD) (44). 

IL-6R rs4537545*T allele has been associate with increased circulating CRP levels 

(45), a decreased risk of RA (42) in mixed ancestries, while an increased risk of 

diabetes and asthma from the UK Biobank Neale’s lab rapid GWAS (See Web 

Resources; Supplementary table 6). IL6R rs4537545T* allele is also associated with C 

reactive protein, allergic disease, rheumatoid arthritis, and coronary artery disease 

(Supplementary table 6). 

Gene expression: IL1F10/IL1RN rs6734238 is associated with IL1F10/IL1RN 

expression levels in the skin, peripheral blood, and whole blood (p<5.0×10
-8

; 

Supplementary table 7). HLA-DRB1/DRB5 rs660895 has been associated with HLA-

DRB1/DRB5/DRB6/DQB1/DQB2 expression levels in multiple tissues including 

peripheral blood, whole blood, monocytes, adipose tissue, thyroid, tibial artery, 

coronary artery, heart, lung, brain, colon, skeletal muscle, tibial nerve, skin, and, 

lymphoblastoid cell lines (p<5.0×10
-8

; Supplementary table 7). IL6R rs4537545 SNP 
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is also associated with IL6R expression levels in peripheral and whole blood 

(p<5.0×10
-8

; Supplementary table 7).  

Power estimates 

Based on power calculator and assumptions mentioned under methods section, the 

estimated power for the 2 novel index SNPs was 98.3% rs6734238 (Effect allele 

frequency, EAF: 0.42), and 76.9% rs660895 (EAF: 0.19), respectively. 

 

DISCUSSION 

We performed the largest (to date) GWAS meta-analysis for circulating IL-6 levels, 

which includes 66,341 individuals of European ancestry. We identified three loci 

associated with levels of circulating of IL-6 in the general population amongst which 

two are novel (Chr6p21, and Chr2q14), located in/nearby genes (HLA-DRB1 and 

IL1RN/IL-38) with inflammatory roles explaining up to 1.06 % variance.  

The strongest associated SNP, interleukin-6 Receptor (IL-6R) rs4537545 at the 

1q21 locus, is in high LD (r
2
=0.95) with a missense IL-6R SNP rs2228145 (D358A) 

that results in an amino acid substitution at position 358 (Asp→Ala) on the 

extracellular domain of IL-6R and a high CADD score suggesting that the variant is 

pathogenic or functional or deleterious (among top 10% variants of the genome). The 

missense SNP is known to impair the responsiveness of cells targeted by IL-6 (46) by 

reducing IL-6R expression on cell surfaces (47), and increasing levels of soluble IL-

6R in individuals homozygous for this mutation (48, 49). Recently it has been 

demonstrated that increased levels of sIL-6R induced by this variant, can be explained 

by ectodomain shedding off IL-6R, a mechanism in which membrane-associated 

proteins are rapidly converted into soluble effectors whereby simultaneously cell 

surface expression of the same protein is reduced (50). Increased levels of sIL-6R 

may act as a counter-balance to limit exaggerated IL-6 signaling and may explain the 
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protective effect of the 358A allele for various cardiovascular diseases including 

coronary artery disease (CAD) (51-53), atrial fibrillation (54), lung function in 

asthmatics (55), and abdominal aortic aneurysm (56) as well as RA (57). However in 

contrast with this finding, the IL-6-sIL-6R complex itself is capable of transducing 

IL-6 signaling to non-IL-6R expressing cells, known as trans-signaling (58), and it is 

this mechanism, as opposed to classic signaling, that is linked to chronic 

inflammatory disorders including IBD and RA (59). Blocking IL-6 signaling cascades 

can be achieved by using an IL-6R specific inhibitor in the form of a monoclonal 

antibody, tocilizumab, which is a widely used therapy in the treatment of RA. Several 

variants in IL-6R, including rs2228145, may assist in the prediction of patient 

response to tocilizumab in RA (60). The rs4537545*T allele which is associated with 

IL6 levels is known to associate with increased circulating CRP levels (61)  and a 

decreased risk of RA (42) in studies comprising mixed ancestries. Moreover, this SNP 

has been associated with IL6R expression in peripheral blood, skin, brain, and adipose 

tissue (Supplementary table 7). The causal involvement of IL-6 levels in disease 

remains to be elucidated, but a recent study using a Mendelian randomisation (MR) 

approach did demonstrate that by using this SNP as instrumental variable, modelling 

the effects of tocilizumab, that IL-6R signalling has a causal effect on CAD (52). On 

the other hand, pleiotropic nature of the IL-6R locus, influencing IL-6, CRP, and 

fibrinogen levels, prohibits instrumental variable analysis and attribution of causality 

to one particular intermediate. Finally, several other genes encompass the 1q21 locus, 

including Src Homology 2 Domain Containing E (SHE), and Tudor Domain 

containing 10 (TDRD10), but have been ruled out to play a role at this locus (33).  

At the identified chromosome 2 locus the lead SNP, rs6734238, is intergenic 

and has also been associated with circulating CRP and fibrinogen levels (40, 41, 62). 
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The nearest genes to this locus are the Interleukin 1 Family Member 10 (IL1F10, 

distance=7.6 kB, currently known as IL-38) and Interleukin 1 Receptor Antagonist 

(IL1RN, distance=34.4 kB). IL1F10/IL-38 and IL1RN variants (rs6759676 and 

rs4251961) in partial LD with the lead SNP (r
2

LD:0.10 and 0.61) have been recently 

reported to be protective against the development of insulin resistance (63). This 

further supports the molecular mechanisms behind IL-6 mediated insulin secretion via 

glucagon-like peptide 1 (GLP-1) (64) contributing to type 2 diabetes (T2D) 

pathophysiology. For IL-6 specifically, it has been found that synthesis increases 

when dendritic cells are stimulated by bacterial lipopolysaccharides (LPS) in the 

presence of IL1F10 (65). IL-1RN is another member of the interleukin 1 cytokine 

family, with suggestive evidence for involvement in determining IL-6 levels in the 

blood. One study found significant associations of IL-1RN rs4251961 with plasma 

CRP and IL-6 levels, albeit not independently replicated and not genome-wide 

significant (p=1×10
-4

 and p=0.004) (66). Our lead SNP was not in high LD (r
2 

<0.8) 

with variants in either neighboring genes and therefore in conjunction with its 

intergenic position, identifying a causal variant in this locus remains non-trivial. 

The 6p21 rs660895, which was identified, resides within the HLA region, 

which forms one of the most complex genomic regions to study due to its large LD 

blocks and sequence diversity. This region has some population substructure in 

Europeans which may have influenced the results however 1) each cohort population 

substructure adjustment was applied, followed by genomic correction for overall 

discovery stage meta-analyses. Thus, we reduced the chances that the population 

substructure may have had on this locus. The nearest genes to the index SNP, HLA-

DRB1 (distance=19.8 kB), and HLA-DQA1 (distance=27.8 kB) are both 

histocompatibility complex genes encoding proteins that form cell surface complexes 
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for certain immune system cells helping in antigen presentation to trigger an immune 

response. It is noteworthy that variations at this locus code for antigen-presenting 

complexes (APCs) which have been previously associated with diseases having a 

dysfunctional immune system; while we report for the first time that there exists also 

a strong association of this locus with circulating cytokine levels. Therefore, the 

association of this locus with the disease may corroborate through its effect through 

IL6 levels. One high-LD SNP (rs9272422, r
2
=0.82 with our index SNP, rs660895) 

residing in the promoter region of HLA-DQA1, support this hypothesis and has been 

identified previously for Systemic Lupus Erythematosus (67) and Ulcerative Colitis 

(68). rs660895*G allele is associated with increased risk of RA in Europeans and 

Asians (42), IgA nephropathy in Asians (43), while the decreased risk of Ulcerative 

colitis and IBD. (44) 

Various studies aimed to identify genetic variation underlying levels of IL-6 

(22-26) have found genome-wide significant associations in the IL-6R and ABO 

genes. The study performed by Shah and colleagues
 
(33) found suggestive evidence 

(non-GWS; p=3.8×10
-6

 respectively) for additional loci, including ABO, BUD13, 

TRIB3, and SEZ6L, none of which replicate in the current study (pdiscovery>0.05) 

indicating that these might be false-positive findings due to low sample size (~7800) 

or loci with sex-specific effects (associations based on women dominant population) 

or due to technical shortcomings with measurement assay (ABO locus).  

It is surprising that even with increased statistical power (ndiscovery=52,654; 

nreplicaiton=14,774) in the current study (compared to the previous IL6 GWAS) (33), we 

could identify three genetic loci (1q21, 2q14, and 6p21) accounting for ~ 1% of the 

genetic variance for circulating IL-6 levels. According to the current estimates, the 

heritability levels for IL6 levels range between 15 to 61%, suggesting that an 
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enormous increase in sample sizes would be required to identify additional variants 

explaining this remaining heritability. Multiple explanations for this so-called missing 

heritability phenomenon have been proposed in the past, which can be sought in rare 

or low frequency coding variants as observed for a similar metabolic quantitative trait 

by us (69) or can be explained by non-additive effects which may cause inflated 

estimates of heritability. Plausible evidence for other sources of unexplained 

heritability that have been found are epigenetic changes, and haplotypes of common 

SNPs.  

Collectively, our results provided additional insights into the biology of 

circulating IL-6. We identify new loci, limited by common variants in the Hap Map 

Reference panel. Albeit this is comparable to the 1000 genomes reference panel (70) 

but narrower compared to some newly available panels that show greater variant 

coverage in numbers and frequency range. Future studies are recommended to aim for 

identification of additional common but also rare variants, by firstly using richer 

imputation panels, such as UK10K project or the Haplotype Reference Consortium, a 

strategy that holds great promise, and secondly by making use of genetically isolated 

populations. Thirdly, we would like to stress the importance of phenotype 

harmonization. As we identified genome-wide variants in the ABO locus, in four 

studies participating in the discovery, but not in the remaining 22 cohorts, there is a 

strong indication that this locus may be assay-specific. However, a proper 

demonstration of this hypothesis would require further testing, including repeating the 

GWAS in ABO positive cohorts using a different IL-6 assay. Indeed it is emerging 

that the ABO locus has pleiotropic effects on many different traits and diseases (71), 

which would suggest a more thorough analysis before disregarding this signal. Also, 

conventionally increasing sample sizes without correction for population 
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substructures may raise heterogeneity within populations (72), likely concealing the 

SNPs that affect particular subgroups. Future specific studies should counter the 

widely held assumption of unconditional risk alleles of complex traits and focus on 

the importance of studying more homogenous subgroups to, for example, investigate 

the age-dependent effect of genetic variants (73, 74). Here while further exploring the 

pleiotropic effect of IL-6-related variants, we identified phenotypes differentially 

regulated by diverse variants in the 1q21 locus. Biologic systems are dynamic 

complex networks and are evolving through lifespan and investigating the 

interrelationships existing between phenotypes as well as between genetic variations 

and phenotypic variations has the potential for uncovering the complex mechanisms. 

This is the case here for IL-6 and tailored methodologies should be devoted to the 

study of such traits, hopefully resulting in clinically significant breakthroughs. Future 

collaborative efforts therefore should strive to use well-calibrated assays, z-

standardized protocols for sample handling, and processing
75

, though this will be 

difficult to achieve in practice. Lastly, we have attempted to perform formal 

association based causal analysis to identify the likely causal loci, using the DEPICT 

approach; unfortunately, instead with only 2 novel GWS findings, our analyses were 

underpowered and thus not included. We also mine the gene expression and eQTL 

data for the identified SNPs using established databases, however we were unable 

control for random co-localization signals or other confounders as we had limited 

access to summary level data. In conclusion, we identify two novel common genetic 

variants associated with circulating IL-6 levels that may influence the 

pathophysiology of complex cardio-metabolic, psychiatric and immunological traits, 

among individuals of European ancestry. This is a step further towards unravelling 

new biological pathways and potential therapeutic targets that can be developed for 
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the IL-6 related disorders, while suggesting looking deeper into the genome for 

coding variants (rare and common) having larger individual effects. 
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MATERIAL AND METHODS 

Discovery Stage 

Study populations  

The overall study design (Supplementary figure 1) involved the discovery cohorts 

with 53,893 individuals. After overlapping individuals with available genotype and 

phenotype data, the discovery stage included 52,654 individuals from 26 cohorts of 

European ancestry listed under Supplementary table 8, described in Supplementary 

text S1 and, study summary characteristics in Supplementary table 9. Only 

population-based samples or healthy controls from case-control studies were included 

in the final analyses.  

Serum IL-6 measurements  

Each study typically collected venous blood samples stored below -80°C until the 

time of measurement using various types of immunoassays and expressed as pg/ml as 

presented in Supplementary table 10. The trait transformation and phenotype data 

quality control (QC) were presented by Supplementary text S3.  (Supplementary text 

S3.1 and S3.2). In brief, participating cohorts have checked for the percentage of 

missingness in IL6 measurements and evaluated for indices of QC (Supplementary 

text S3.2), yielded the final number of participants with available validated IL6 levels, 

of whom those with available genotype data were included in the study as 

characterized in Supplementary table 9 and in Supplementary text S1 and S2. 

Genotyping and imputation  

Each participating cohort performed genome-wide genotyping using a variety of 

genotyping platforms, and applied a predefined quality control (QC) of genotype data 

(Supplementary table 11) followed by performing imputation of non-genotyped 

genetic variants, on the backbone of haplotypes inferred from the Hapmap Phase II 
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reference panel (NCBI Build 36), and using statistical software such as IMPUTE (75), 

MACH, Minimac (76), or BIMBAM (77) (Supplementary table 11). Each cohort was 

recommended a set of general SNP quality filters including MAF<0.01; Hardy 

Wienberg Equilibrium (HWE) p<=10
-6

; imputation quality r
2 

≤ 0.3; and genotyping 

call rate<0.95 (Supplementary figure 1). Once we received summary results from 

each participating study, we ran a series of QC checks. Firstly these included a set 

standard checks, including the imputation quality filters (basis the imputation program 

used and/or r
2

imputation<0.3 were excluded), and then checks for genomic inflation 

(quantile-quantile or QQ plots). We adapted filter thresholds per cohort to reduce any 

observed deviation from the null while missing SNP loss due to the QC process. 

Finally ~2.45 million (2,454,025) common SNPs, were part of the discovery meta-

analysis. 

Statistical methods 

GWAS analysis 

Each study conducted an independent GWAS analysis between SNPs and natural log-

transformed values of serum IL-6 levels following a predefined analysis plan 

(Supplementary methods S4). Association analyses were conducted using linear 

regression model, or linear mixed effect models to account for familial correlation 

when warranted, with additive genetic effects, accounting for imputation uncertainty 

while adjusting for age, sex, population sub-structure (through study-specific 

principal components), and/or study-specific site, when necessary. GWAS summary 

result obtained from each cohort underwent a series of QC checks using the 

QCGWAS package in R (78) (Supplementary text S3 and Supplementary figure 1). 

Being aware of the potential false-positive association in the ABO region on 

chromosome 9 (28, 30), while using an R&D systems high-sensitivity assay kit to 
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measure IL6 levels (R&D systems, Minneapolis, MN, USA), four (out of 22) 

discovery cohorts that observed genome-wide significant results in the ABO locus, 

were asked to rerun the GWAS analysis conditional on the top ABO SNP (ie. 

rs8176704) before including them in the final discovery meta-analysis 

(Supplementary text S3.3).  

 
Discovery GWAS meta-analyses  

Individual GWAS results from 26 European studies were meta-analyzed using the 

inverse variance weighted, fixed-effects method as implemented in GWAMA while 

applying the double genomic control (GC) correction for population stratification i.e. 

first to each study individually and subsequently also to the pooled results after meta-

analysis(79).  

 Regional association plots for the discovered loci were generated through the 

LocusZoom (78) tool. We used the SNAP tool (80) to perform the pairwise LD 

checks (HapMap release 22 data) and to verify low LD with secondary signals. All 

SNPs selected for the replication stage had to fulfill the following criteria: (i) having 

an association pdiscovery ≤ 1×10
-5 

and
 
being in very low LD with the index SNP 

(r
2
<0.2), and (ii) available in at least 50% of study cohorts.  

 

Replication and Combined Meta-analysis 

Study population, phenotyping and QC  

The overall study (Supplementary figure 1) comprised 15,785 individuals for 

replication. After removing individuals with missing data, the replication analyses 

were performed using a combination of in silico and de novo genotyping in 14,774 

individuals from 12 cohorts of European ancestry as described in Supplementary text 
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S2. Similar QC (Supplementary text S3, and Supplementary table 11) and statistical 

checks were made as in the discovery stage.  

Venous blood samples (serum or plasma) were collected and stored at -80°C. 

Serum/plasma IL-6 levels (pg/ml) were measured using various immunoassay 

methods described in Supplementary table 10. Each cohort tested the selected SNPs 

using the same statistical model as for the discovery association analyses 

(Supplementary figure 1). Effect size estimates of all replication SNPs from each 

replication study were compared with the effect size estimates from the discovery 

meta-analyses. When effect sizes from individual cohorts did not align, we excluded 

these cohorts from the replication meta-analyses (ncohorts=3). To account for the inter-

study assay differences insensitivity, we combined results across the replication 

studies using a fixed effect sample-size weighted Z-score meta-analysis as 

implemented in the METAL package (https://genome.sph.umich.edu/wiki/METAL) 

(81).  

 The summary GWAS meta-analyses result from the discovery and replication 

stages were then used to perform a combined (discovery + replication) GWAS meta-

analysis using a sample-size weighted Z-score method. Test for heterogeneity was 

also performed as part of the meta-analysis package using METAL where I
2 

statistic 

denoting the percentage of variation across studies was estimated (I
2
 = 100% × (Q-

df)/Q) where Q is the Chi-Square statistic. Significance for heterogeneity was denoted 

by the heterogeneity (or Hetp) p values. . Variants that were significant in the 

replication meta-analysis at p<0.05 and had an overall pcombined <5×10
-8

 in the 

combined meta-analysis were considered statistically GWS. SNPs within the range of 

1 Mb (or 10
6
 bases) on either side of the most significant (ie. index) SNP (with LD, 
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r
2
>0.25) were considered part of the same locus whereas those in low LD (r

2
<0.25) 

were tested if they were independent using conditional analysis.  

Conditional analysis 

 

We performed an approximate joint conditional analysis to identify distinct signals in 

a specific chromosomal region as implemented in GCTA (82) using high quality 

genome-wide genotyped/imputed reference data from two studies (NEtherlands Study 

of Depression and Anxiety (NESDA) from the Netherlands and/or Genetics of 

Obesity in Young Adults (GOYA) from Denmark) to estimate linkage disequilibrium 

(LD) (83) between SNPs.  

Conditional analysis  for identification of independent signals was performed 

on GWS SNPs (+/- 1 Mb to the index SNP and having low LD, r
2
<0.2 with the index 

SNP) using summary statistics from the discovery GWAS meta-analysis data (--

COJO option in GCTA) after confirming the GWS loci from the combined meta-

analysis.  

 

Heritability estimates  

We approximated the variance explained by all distinct lead SNPs from the meta-

analysis using the following formula: 

∑
βi
2 ∙ 2 ∙ EAFi ∙ (1 − EAFi)

σ2(residuals(ln(IL6)))

n

i=1

 

where EAF is the effect allele frequency, and 𝛽𝑖 the effect size of the individual 

variants and n is the total number of lead variants. The current formula may 

overestimate the variance to a small extent as some level of SNP correlation was 

existent (LD r
2
<0.25). The variance of the residuals of ln(IL-6) was calculated using 

data from the NESDA cohort (n=2,517). The total common SNP heritability of serum 
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IL-6 levels explained by all GWAS variants was estimated using the observed Z-

statistics from the discovery analyses for a subset of pruned SNPs. Following the 

original method (SumVg) (38), we pruned the imputed (based on the 1000G Phase1 

Integrated Release, Version 3, 2012.04.30 reference panel) genotypes of the NESDA 

cohort using PLINK v1.07 (84), by removing correlated SNPs at r
2
>0.25 within a 

100-SNP sliding window, and with a step size of 25 SNPs per forwarding slide. This 

resulted in a pruned set of 163,459 SNPs. 

SNP mapping and functionality 

We searched for variants in high LD (r
2
>0.8) within a 1 Mb region on either side of 

the lead SNPs using 1000 Genomes sequence data (Phase1 Integrated Release, 

Version 3, 2012.04.30), utilizing tools available in Liftover (85), VCFtools (86), and 

clumping in PLINK (84). We subsequently annotated these variants using 

ANNOVAR (87) with the RefSeq (88) database for variant function and genic 

residence or distance. We used the Combined Annotation-Dependent Depletion 

(CADD) database to identify the functionality,  ie. deleterious, disease causal, 

pathogenicity, for the index SNPs. 

Associations with other traits and gene expression data 

PhenoScanner v2 (89) data mining tool was used (Access date October 2020) to 

identify existing GWS (at p<5×10
-8

) associations between IL6 identified SNPs and 

other traits, and gene expression/eQTLs data.  

Power calculation 

We used GWAs power estimator (see Web Resources) by assuming a relative risk of 

1.10, given N = 66,000, alpha (p-value) =5×10
-8

.  
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WEB RESOURCES 

 

QCGWAS, https://cran.r-project.org/web/packages/QCGWAS/index.html 

GWAMA, http://www.well.ox.ac.uk/gwama/  

METAL, http://csg.sph.umich.edu//abecasis/metal/ 

GCTA, http://www.complextraitgenomics.com/software/gcta/ 

LocusZoom, http://csg.sph.umich.edu/locuszoom/ 

1000 Genomes, ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/ 

PLINK, http://pngu.mgh.harvard.edu/~purcell/plink/ 

VCFtools, http://vcftools.sourceforge.net/ 

ANNOVAR, http://www.openbioinformatics.org/annovar/ 

PhenoScanner, http://www.phenoscanner.medschl.cam.ac.uk/phenoscanner 

Power calculations: 

http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/index.html 

The UK Biobank Neale’s lab rapid GWAS: 

(http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-

phenotypes-for-337000-samples-in-the-uk-biobank) 
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Figure Legends: 

 
 

Figure 1.  

Manhattan, QQ and LocusZoom plots of the discovery GWAS meta-analyses. 

A) Manhattan plot showing the association of SNPs with IL-6. Loci coloured in red or blue, 

three in total, represent those for which the lead SNPs reached genome-wide significance 

(P=5×10
−8

). Horizontal axis: relative genomic position of variants on the genome, vertical 

axis : -log10 p-value of each SNP; B) Quantile-quantile plot for p-values obtained from the  

meta-analysis. The horizontal and vertical axes represents the expected distribution of -log10 

(P-values) under the null hypothesis of no association, whereas the vertical axis shows the 

observed -log10 (P-values). The blue dashed line represents the null, and λgc value represents 

the genomic inflation factor lambda. Each data point represents the observed versus the 

expected p-value of a variant included in the association analyses; C-E) Regional association 

plots for each of the three genome-wide significant loci, 1q21, 2q14, and 6p21, respectively. 

Pairwise LD (r
2
) with the lead SNP is indicated following a color-coded scale. Horizontal 

axis: relative genomic position of variants within the locus, vertical axis: -log10 p-value of 

each SNP. 
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Figure 2. Combined discovery and replication forrest plots for the GWAS Index SNPs. 

Forrest plots for A) IL6R rs4537545 (chr. 1q21), B) IL1RN rs6734238 (chr. 2q14) , C) HLA-

DRB5 rs660895 (chr. 6p21) with discovery, replication and combined effect estimates, 

95%CI and weights based on the fixed effects inverse variance meta-analyses. 
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Table 1: Novel and replicated loci associated with circulating IL-6 levels at p < 

5.0 × 10
-8 

in the combined GWAS meta analyses 
 

Chr 
Lead SNP 

(rsID) 

BP 

(Hg19) 

Effec

t/Oth

er 

allele 

EA

F 

Beta 

(SE) 
Pdiscovery Preplication Pcombined 

Annotati

on 

Nearest 

Genes 
Phet (I

2) 

Novel Loci  

2q14 rs6734238 113841030 G/A 0.42 
0.025 

(0.005) 
1.45×10

-7
 3.24×10

-5
 1.84×10

-11
 intergenic 

IL1F10/IL1R
N 

0.03 (32) 

6p21 rs660895 32577380 G/A 0.19 
0.036 

(0.006) 
1.80×10

-9
 3.38×10

-2
 1.55×10

-10
 intergenic 

HLA-

DRB5/DRB1 
0.08 (26) 

Replicated Known Locus  

1q21 rs4537545 154418879 T/C 0.39 
0.091 
(0.005) 

8.39×10
-85

 
7.88×10

-

37
 

1.20×10
-122

 intronic IL6R < 0.01 (72) 

Index SNPs that reached p < 5×10−8 in the combined analysis from each locus are reported here. Sample sizes: discovery cohorts, 

n=52,654; replication cohorts, n=14,774; combined, n=67,428. The effect sizes (β) in the discovery phase, given for the effect allele. 

EAF: Effect Allele Frequency; Effect sizes and standard error (SE) values are based on natural log transformed IL6 (pg /ml) levels.  Phet: 

Combined Meta-analysis heterogeneity P value; I2: Heterogeneity measure 
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