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Abstract 1 

Objective 2 

To investigate which cardiometabolic factors underlie clustering of osteoarthritis with cardiovascular 3 

disease, and the extent to which these mediate an effect of education. 4 

Design 5 

Genome-wide association study (GWAS) of osteoarthritis was performed in UK Biobank (60,800 6 

cases and 328,251 controls) to obtain genetic association estimates for osteoarthritis risk. Genetic 7 

instruments and association estimates for body mass index (BMI), low-density lipoprotein 8 

cholesterol (LDL-C), systolic blood pressure (SBP), smoking and education were obtained from 9 

existing GWAS summary data (sample sizes 188,577-866,834 individuals). Two-sample Mendelian 10 

randomization (MR) analyses were performed to investigate the effects of exposure traits on 11 

osteoarthritis risk. MR mediation analyses were undertaken to investigate whether the 12 

cardiometabolic traits mediate any effect of education on osteoarthritis risk.  13 

Results 14 

MR analyses identified protective effects of higher genetically predicted education (main MR 15 

analysis odds ratio [OR] per standard deviation increase 0.59, 95% confidence interval [CI] 0.54-0.64) 16 

and LDL-C levels (OR 0.94, 95%CI 0.91-0.98) on osteoarthritis risk, and unfavourable effects of higher 17 

genetically predicted BMI (OR 1.82, 95%CI 1.73-1.92) and smoking (OR 2.23, 95%CI 1.85-2.68). There 18 

was no strong evidence of an effect of genetically predicted SBP on osteoarthritis risk (OR 0.98, 95% 19 

CI 0.90-1.06). The proportion of the effect of genetically predicted education mediated through 20 

genetically predicted BMI and smoking was 35% (95%CI 13%-57%). 21 
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Conclusions 1 

These findings highlight education, obesity and smoking as common mechanisms underlying 2 

osteoarthritis and cardiovascular disease. These risk factors represent clinical and public health 3 

targets for reducing multi-morbidity related to the burden these common conditions. 4 

 5 
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Introduction 1 

Osteoarthritis (OA) is the most common form of arthritis worldwide and there are currently no 2 

disease-modifying agents available. It accounts for 2.4% of all years lived with disability (YLD) and 3 

ranks as a leading contributor to global YLDs (1). The prevalence of hip and knee OA worldwide is 4 

close to 5% and is expected to increase further (1). Recent research on modifiable risk factors for OA 5 

have investigated the influence of cardiovascular disease and educational level. An increased 6 

prevalence of cardiovascular disease is found in OA (2). It is also recognised that lower educational 7 

level is associated with increased cardiovascular disease (3, 4). However, the underlying mechanisms 8 

are not well understood.  The effect of education on OA risk may in part be mediated cardiovascular 9 

risk factors that increase OA risk (3, 4), and evaluation of these risk factors could help to optimise 10 

disease prevention at a clinical and public health level. 11 

Assessing causal effects in observational research is difficult due to environmental confounding or 12 

reverse causation. The Mendelian randomization (MR) approach can overcome some of these 13 

limitations by using genetic variants related to the exposure of interest as instrumental variables for 14 

investigating its effects on an outcome (5). Genetic variants are randomly allocated at conception, 15 

and therefore their associations with the outcome are less affected by environmental confounding. 16 

More recently, MR methods have been applied to investigate mediating pathways (6, 7), where use 17 

of genetic variants that capture lifetime exposure also help overcome bias related to measurement 18 

error that can hinder observational research.  19 

The aim of this study was to apply the MR framework to investigate the effects of education and 20 

cardiometabolic risk factors on risk of OA. For cardiometabolic risk factors that the MR analyses 21 

supported to have a causal effect on OA risk, we aimed to further apply MR mediation analyses to 22 

investigate the degree to which these factors might be mediating the effects of educational 23 

attainment. 24 
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Methods 1 

Overall study design 2 

A genome-wide association study (GWAS) for OA was performed in the UK Biobank to obtain genetic 3 

association estimates for OA risk. UK Biobank identification of OA was based on hospital-diagnosed 4 

OA cases (8, 9). Genetic association estimates for cardiometabolic cardiovascular risk factors and 5 

educational attainment (referred to hereafter as education) were selected from published GWASs. 6 

MR analyses were performed to investigate the effects of their respective genetically predicted 7 

levels on OA risk. The considered cardiometabolic risk factors were body mass index (BMI), low-8 

density lipoprotein cholesterol (LDL-C), lifetime smoking (referred to hereafter as smoking) and 9 

systolic blood pressure (SBP). For cardiometabolic risk factors for which there was MR evidence of a 10 

detrimental effect of their genetically predicted levels on OA risk, MR mediation analyses were 11 

performed to investigate the degree to which this mediated any effect of education on OA risk. 12 

Osteoarthritis genome-wide association study 13 

GWAS for OA was performed in the UK Biobank (8, 9), a prospective cohort study of approximately 14 

half a million participants with linked self-reported outcomes, health care records and genetic data. 15 

OA cases in UK Biobank were defined based on International Classification of Diseases (ICD)-9 coding 16 

(715, 721.0-721.42), ICD-10 coding (M15-M19, M47), and Office of Population Censuses and Surveys 17 

Classification of Interventions and Procedures version 4 (OPCS-4) coding (W37-W42, W52-W54, 18 

W58, W93-W95) and self-report (Supplementary Table 1 and Supplementary Figure 1). For GWAS 19 

analysis, only white British participants defined by the UK Biobank genotyping quality control (QC) 20 

were included (8). Baseline characteristics are provided in Table 1. A total of 60,800 OA cases and 21 

328,251 controls were included in the primary analysis. For GWAS, we used REGENIE (10), a ridge 22 

regression based method using Firth fallback regression correcting for age, sex, the first 20 genetic 23 

principal components, genotyping chip and assessment center. In a sensitivity analysis, we also 24 

included 19,846 OA cases which were of self-report only. 25 
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Exposure genetic association estimates 1 

Genetic association estimates for BMI were obtained from the GIANT Consortium GWAS meta-2 

analysis of 806,834 European-ancestry individuals (11). Genetic association estimates for fasting LDL-3 

C were obtained from the Global Lipids Genetic Consortium GWAS of 188,577 European-ancestry 4 

individuals that were not taking lipid lowering medication (12). Genetic association estimates for SBP 5 

were obtained from a GWAS of 318,417 white British individuals performed in the UK Biobank. The 6 

mean SBP from two automated recordings taken two minutes apart at baseline assessment were 7 

used, and correction for any (self-reported) anti-hypertensive medication use was made by adding 8 

10mmHg (3). Genetic association estimates for smoking were obtained from a GWAS of 462,690 9 

European-ancestry individuals in the UK Biobank (13). A continuous lifetime smoking measure was 10 

constructed from self-reported age at initiation, age at cessation and cigarettes smoked per day (13). 11 

Genetic association estimates for education were obtained from a GWAS of 766,345 European-12 

ancestry individuals (14). Education was measured as the number of years completed in full time 13 

education and was matched across different cohorts using the International Standard Classification 14 

of Education system (15). Full details of GWAS analyses are available in their original publications. 15 

We obtain genetic association estimates for education, BMI, SBP and smoking from studies that 16 

included UK Biobank participants (3, 11, 13, 14), with OA genetic association estimates also obtained 17 

from an overlapping UK Biobank population. Such participant overlap can result in bias of MR 18 

estimates towards the observational estimate in the context of weak instruments (16). For 19 

sensitivity analysis, we conducted the analysis for education and BMI using GWAS summary statistics 20 

from non-overlapping populations (15, 17). For SBP and smoking, if evidence for association in MR 21 

was found, we estimated the potential bias due to sample overlap as previously described (16). 22 

Instrument selection 23 

Instruments for each considered exposure in univariable MR analyses were selected as single-24 

nucleotide polymorphisms (SNPs) that associated with the exposure at genome-wide significance 25 
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(P<5x10
-8

) and were independent, i.e. pairwise linkage disequilibrium (LD) r
2
<0.001. To select 1 

instruments for multivariable MR (MVMR) in analyses investigating mediators of the effect of 2 

genetically predicted education on OA risk, all SNPs related to education or investigated mediators 3 

at genome-wide significance were pooled and clumped to pairwise LD r
2
<0.001 based on the lowest 4 

P-value for their association with any trait. All clumping was performed using the TwoSampleMR 5 

package in R (18). 6 

Genetic association estimates for different traits were aligned to correspond to the same effect 7 

allele. Palindromic variants were excluded in the main analysis and included for sensitivity analysis. 8 

Only genetic variants for which association estimates were present for all traits being studied in a 9 

given analysis were considered, and proxies were not used. 10 

To quantify the ability to detect putative causal associations based on the available summary 11 

statistics, we calculated the minimum detectable odds ratios (OR) for the risk of OA in MR analysis of 12 

each exposure separately, given 80% power, type I error rate = 0.05, exposure GWAS summary 13 

statistics sample size and the total variance explained by the genetic instruments (19). To evaluate 14 

instrument strength, F statistics were calculated for individual genetic instruments. 15 

Univariable Mendelian randomization 16 

Multiplicative random-effects inverse-variance weighted (IVW) MR was used as the main analysis for 17 

estimating the effects of genetically predicted cardiovascular risk factors and education on OA risk 18 

(20). The genetic association estimates for the OA risk were the coefficients from logistic regression 19 

(i.e. log odds ratios) for each genetic variant. The resulting MR estimate was exponentiated to obtain 20 

the OR estimate given by MR. 21 

When using multiple genetic variants as instrumental variables in MR, a potential source of bias is 22 

horizontal pleiotropy, where the genetic variants affect the risk of OA through pathways 23 

independent of the considered exposure. To assess the robustness of the findings to the potential 24 

bias due to horizontal pleiotropy, we used contamination-mixture method, MR-Egger and weighted 25 
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median MR as sensitivity analyses (21-23). The contamination-mixture model assumes that MR 1 

estimates from valid instruments follow a normal distribution centered on the true causal effect 2 

estimate and that those calculated from invalid instrument variants follow a normal distribution with 3 

their effect estimates centered on zero (22). A likelihood function is then maximized for allocating 4 

each variant to one of the two mixture distributions (22). MR-Egger performs a regression of the 5 

variant-outcome genetic association estimates on the variant-exposure genetic association 6 

estimates, weighted for the precision of the variant-outcome genetic association estimates (23). The 7 

slope of the regression line represents the MR estimate, and evidence for directional pleiotropy can 8 

be evaluated by testing whether the intercept differs from zero (23). In weighted median MR, the 9 

MR estimates from individual variants are ordered by their magnitude weighted for their precision, 10 

and the median is selected as the overall MR estimate, with standard errors calculated by 11 

bootstrapping (21). The MendelianRandomization package of R was used for performing all these 12 

univariable MR analyses (24). The discrepancy between the main IVW MR analysis and sensitivity 13 

analysis was used to assess for the potential presence of bias related to pleiotropic variants.  14 

All MR estimates were calculated per one standard deviation (SD) unit increase in the exposure 15 

under consideration, with SD estimates derived from UK Biobank data. For BMI this was 4.77kg/m
2
, 16 

for LDL-C this was 0.87mmol/l, for SBP this was 18.68mmHg and for education this was 3.6 years. For 17 

smoking, a one standard deviation increase was equivalent to an individual smoking 20 cigarettes 18 

per day for 15 years and stopping 17 years ago, for example (13). 19 

Multivariable Mendelian randomization 20 

The genetically predicted cardiovascular risk factors that showed evidence for a detrimental effect 21 

on the risk of OA in univariable MR were taken forward for MVMR mediation analysis (7, 27). We 22 

aimed to estimate the degree to which the effect of education on the risk of OA is mediated by the 23 

cardiovascular risk factors. 24 
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In MVMR, the total effect of each exposure is decomposed to direct and indirect effects. This allows 1 

for estimation of potential mediating effects and the proportion of the effect of the main exposure 2 

of interest on the outcome that acts via other considered exposures (28, 29). Specifically, variant-OA 3 

genetic association estimates (on the log odds ratio scale) were regressed on variant-education and 4 

variant-cardiovascular risk factor genetic association estimates, weighted for the precision (i.e. the 5 

inverse of their variance) of the variant-OA genetic association estimates and with the intercept 6 

fixed at zero (27). The considered cardiovascular risk factors were included in this model both 7 

individually and all together. The final OR estimate of the effect of education on the risk of OA from 8 

MVMR was obtained by exponentiating the corresponding effect estimate. To estimate the 9 

proportion of the effect of genetically predicted education on OA risk that was mediated through the 10 

considered cardiovascular risk factors, the MR estimate for the effect of genetically predicted 11 

education on OA risk after adjusting for genetically predicted levels of the cardiovascular risk factors 12 

was divided by the total effect of education on OA risk estimated in the IVW univariable MR and 13 

subtracted from 1, with standard errors estimated using the propagation of error method (6, 7). 14 

Measuring the strength of evidence 15 

No formal P value threshold for statistical significance was used. Instead, we interpret the evidence 16 

provided by the results by looking at the effect size of interest and the width of its confidence 17 

interval, combined with the consistency of the results across the different methods used(30). 18 

Ethical approval, data availability and reporting 19 

All data used in this work are publicly available and the studies from which they were obtained had 20 

previously obtained relevant ethical approval and participant consent (8, 9, 11, 12). All data and 21 

results generated in this work are presented in the main manuscript and the related supplementary 22 

files. The reporting of this MR study follows the recommendations of the STROBE-MR Guidelines 23 

(31), as detailed in the Supplementary Checklist. The codes for analysis are available from the 24 

authors upon request. 25 
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Results 1 

All genetic association estimates and their F statistics used in the univariable and multivariable MR 2 

analyses are provided in Supplementary Tables 2-9 and visualized in Supplementary Figures 2-9. The 3 

minimum detectable ORs on the risk of OA for each outcome are given in Supplementary Table 10. 4 

In the univariable MR, there was evidence of a protective effect of genetically predicted education 5 

and LDL-C on OA risk in the main IVW analyses (education: OR 0.59, 95% confidence interval [CI] 6 

0.54-0.64; LDL-C: OR 0.94, 95%CI 0.91-0.98), with consistent findings in sensitivity analyses (Figure 7 

1). There was evidence of an unfavourable effect of genetically predicted BMI and smoking on OA 8 

risk in the main IVW MR analyses (BMI: OR 1.82, 95%CI 1.73-1.92; smoking: OR 2.23, 95%CI 1.85-9 

2.68), with consistent results obtained in sensitivity analyses (Figure 1). Similar results were obtained 10 

when using non-overlapping summary statistics for BMI and education (Supplementary Table 11; 11 

Supplementary Figure 10). The bias due to sample overlap in the log odds ratio for smoking and the 12 

risk of OA under the null hypothesis was estimated at 0.012 and the expected Type I error rate for a 13 

two-sided test with alpha = 0.05 was estimated at 0.053. There was no evidence of an effect of 14 

genetically predicted SBP on OA risk in the main IVW (OR 0.98, 95%CI 0.90-1.06) or any MR 15 

sensitivity analysis (Figure 1). The MR-Egger intercept tests did not give evidence for the presence of 16 

directional pleiotropy  for education (P=0.79), LDL-C: (P=0.21), and SBP (P=0.25). There was weak 17 

evidence for directional pleiotropy for BMI (P=0.10) and smoking: (P=0.09), however in both cases 18 

MR-Egger estimate was consistent with the IVW estimate (Figure 1, Supplementary Table 11). Given 19 

the identified effects of higher genetically predicted BMI and higher genetically predicted smoking 20 

on increasing OA risk, multivariable MR mediation analyses were performed to investigate the 21 

degree to which these traits were mediating the effect of genetically predicted education on OA risk. 22 

The protective effect of genetically predicted education on OA risk attenuated from OR of 0.59 23 

(95%CI 0.54 - 0.64) in IVW univariable analysis to OR of 0.66 (95%CI 0.60 - 0.73) after adjusting for 24 

genetically predicted BMI in MVMR analysis, to OR of 0.67 (95%CI 0.61 - 0.74) after adjusting for 25 

Jo
urn

al 
Pre-

pro
of



8 

 

genetically predicted smoking in MVMR analysis, and to OR of 0.71 (95%CI 0.64 - 0.79) after 1 

adjusting for both genetically predicted BMI and genetically predicted smoking in MVMR analysis 2 

(Figure 2).  3 

The proportion of the effect of genetically predicted education mediated through genetically 4 

predicted BMI, smoking, and both BMI and smoking together was estimated as 23% (95%CI 1%-5 

44%), 25% (95%CI -3%-47%) and 35% (95%CI 13%-57%), respectively (Figure 3). The results obtained 6 

by using genetic variant estimates from non-overlapping data sources showed similar directions of 7 

the mediated proportions, albeit with higher uncertainty in the estimates (Supplementary Table 12). 8 

Discussion 9 

Our work uses large-scale GWAS data to investigate the effect of genetically predicted education and 10 

cardiometabolic risk factors on OA risk within the MR framework, and provides evidence supporting 11 

protective effects of education and LDL-C and unfavourable effects of BMI and smoking. These 12 

findings add insight into causal mechanisms underlying OA, its clustering with the risk factors of 13 

cardiovascular disease, and disparities related to educational attainment.  14 

Our results are consistent with previous MR analyses identifying a protective effect of genetically 15 

predicted education and LDL-C, and a detrimental effect of genetically predicted BMI on OA risk (32-16 

34). However, our current study goes further to identify a novel association of genetically predicted 17 

smoking with OA risk, and additionally quantify mediation of the effect of genetically predicted 18 

education on OA risk through genetically predicted BMI and smoking. As higher education is 19 

associated with lower LDL-C (4), this would not be consistent with LDL-C mediating the effect of 20 

education on the risk of OA and therefore LDL-C was not considered in the mediation analysis. A 21 

number of mechanisms have been proposed by which obesity and smoking might lead to increased 22 

risk and severity of OA (35, 36). In contrast to our current findings, a meta-analysis of observational 23 

studies has identified an inverse association between smoking and risk of knee OA (37). This 24 
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discrepancy may be attributable to limitations of conventional observational research for identifying 1 

causal effects (38). Our current work also improves on a previous MR study exploring the causality of 2 

smoking on OA risk, which only incorporated a single genetic variant to proxy smoking and found an 3 

inverse association with risk of total joint replacement (39). This discrepancy may be explained by 4 

our use of a greater number of instruments for smoking, to offer greater robustness against possible 5 

violations of the MR modelling assumptions. Furthermore, our current study also considered OA 6 

related to any joint, while the previous study only considered cases requiring hip or knee 7 

replacement (39). As the pathophysiology of OA varies at different sites, this may also be 8 

contributing to the observed differences in findings. 9 

The findings of our study are relevant in both clinical and public health terms. Smoking and obesity 10 

have widespread implications on human health that extend far beyond cardiovascular disease. 11 

Smoking increases risk of chronic lung disease and many cancers, while obesity is a major 12 

contributor towards risk of diabetes (40). Targeting of these risk factors therefore represents an 13 

opportunity to simultaneously reduce risk of multiple distinct disease processes and thus ease the 14 

burden of multi-morbidity on individuals and health systems alike (40). The identification of smoking 15 

and obesity as downstream mediators of education supports that policies intended to increase 16 

educational attainment should continue (4, 41). Educational attainment is known to be heritable, 17 

and using variants robustly associated with the trait, we were able to explore associations with OA 18 

risk. Previous work has suggested that it is the experience of being in education for longer 19 

specifically, rather than related cognitive ability, that is likely deterministic of consequent health 20 

outcomes (42). 21 

Our results suggest that the protective effect of education on OA risk is mediated through smoking 22 

and BMI. However, there was high uncertainty in the estimates, our data being consistent with the 23 

mediated proportion being between 13% and 57%. For comparison, approximately half of the 24 

protective effect of education on cardiovascular disease has previously been estimated to be 25 

Jo
urn

al 
Pre-

pro
of



10 

 

mediated together through blood pressure, obesity and smoking (3). Thus for OA more than 1 

cardiovascular disease, education may be having a protective effect through pathways other than 2 

downstream cardiometabolic mediators. Potential mechanisms underlying this may relate to 3 

superior self-management and healthcare engagement practices afforded to those with greater 4 

education (43, 44). Finally, our analyses also highlighted a potential protective effect of higher LDL-C 5 

levels on OA risk. However, given the small magnitude of this, and particularly in relation to the 6 

larger effect estimates seen for education, BMI and smoking (Figure 1), it is not clear that this is of 7 

any clinical relevance. 8 

Our study has limitations. Firstly, the MR approach uses the cumulative lifelong effect of genetic 9 

variants and should not be extrapolated to presume the effect of a clinical intervention (45). 10 

Secondly, the possibility of reverse causation that OA causes increased BMI or liability to smoking 11 

cannot be completely ruled out. We did not examine the bidirectional associations because OA was 12 

treated as a binary phenotype, and using such binary exposure is unlikely to capture the true causal 13 

relationship in MR analysis (46). Thirdly, the OA and smoking genetic association estimates we use 14 

were obtained using self-reported data, which may be subject to recall bias that could affect the MR 15 

estimates generated (48). Fourthly, the UK Biobank cohort used to obtain many of the genetic 16 

association estimates in this study represents a select group that may not be representative of more 17 

general populations, and in particular non-European populations (49, 50). Fifthly, mediation analysis 18 

crucially depends on the correct formulation of the causal relationships of the exposures a priori, as 19 

mediation and confounding cannot be statistically distinguished(51). We assume adult BMI and 20 

smoking mediate the effect of education, as supported by earlier literature (52, 53). Also, 21 

interpreting mediation analysis results for a binary outcome is not straightforward due to the non-22 

collapsibility of the odds ratio, as the estimate for the mediated proportion may be biased (7). 23 

Finally, we considered OA at any site in these analyses, and it is possible that the determinants of OA 24 

vary across different anatomical locations (54).  25 
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In conclusion, this study uses genetic data in MR analyses to generate evidence supporting a 1 

protective effect of education and detrimental effects of BMI and smoking on OA risk, with evidence 2 

that the effect of education is mediated through BMI and smoking. These findings highlight 3 

education, obesity and smoking as common mechanisms underlying clustering of OA with risk 4 

factors of cardiovascular disease, which may represent clinical and public health targets for reducing 5 

multi-morbidity and the burden of these common conditions. 6 

Acknowledgements 7 

This research has been conducted using the UK Biobank Resource, and GIANT and GLGC genome-8 

wide association study summary data.  9 

Author contributions 10 

DG, and NS designed the study. DG, RM and VK performed statistical analyses. All authors 11 

interpreted the results. DG, RM and NS drafted the manuscript. All authors edited the manuscript for 12 

intellectual content. All authors take responsibility for the integrity of the study. 13 

Funding 14 

DG is funded by the Wellcome Trust 4i Clinical PhD programme (Grant No. 203928/Z/16/Z) and the 15 

British Heart Foundation Centre of Research Excellence (RE/18/4/34215) at Imperial College London. 16 

NS is supported by a Wellcome Trust Institutional Support Fund (ISSF), Grant No. 204809/Z/16/Z. 17 

This project has received funding from the European Union’s Horizon 2020 research and innovation 18 

programme (666881), SVDs@target (to MD; 667375), CoSTREAM (to MD); the DFG as part of the 19 

Munich Cluster for Systems Neurology (SyNergy, EXC EXC 2145 SyNergy – ID 390857198 ), the CRC 20 

1123 (B3; to MD) and project DI 722/13-1; the Corona Foundation (to MD); the LMUexcellent fond 21 

(to MD); the e:Med program (e:AtheroSysMed; to MD) and the FP7/2007-2103 European Union 22 

project CVgenes@target (grant agreement number Health-F2-2013-601456; to MD).  23 

Jo
urn

al 
Pre-

pro
of



12 

 

Role of the funding sources 1 

The funding sources were not involved in study design, acquisition of data, analysis, interpretation or 2 

manuscript write up.  3 

Conflicts of interest 4 

DG is employed part-time by Novo Nordisk, outside the submitted work. NS has received 5 

consultancy fees from Pfizer and Eli Lilly, but has no direct conflicts of interest relating to this 6 

project. The remaining authors have no conflicts of interest to declare. 7 

References 8 

1. OARSI. Osteoarthritis: A Serious Disease 2016 [cited 2020 February]. Available from: 9 

https://www.oarsi.org/education/oarsi-resources/oarsi-white-paper-oa-serious-disease. 10 

2. Wang H, Bai J, He B, Hu X, Liu D. Osteoarthritis and the risk of cardiovascular disease: a 11 

meta-analysis of observational studies. Sci Rep. 2016;6:39672. 12 

3. Carter AR, Gill D, Davies NM, Taylor AE, Tillmann T, Vaucher J, et al. Understanding the 13 

consequences of education inequality on cardiovascular disease: mendelian randomisation study. 14 

BMJ. 2019;365:l1855. 15 

4. Tillmann T, Vaucher J, Okbay A, Pikhart H, Peasey A, Kubinova R, et al. Education and 16 

coronary heart disease: mendelian randomisation study. BMJ. 2017;358:j3542. 17 

5. Davey Smith G, Ebrahim S. Mendelian randomization: can genetic epidemiology contribute 18 

to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1-22. 19 

6. Burgess S, Thompson DJ, Rees JMB, Day FR, Perry JR, Ong KK. Dissecting Causal Pathways 20 

Using Mendelian Randomization with Summarized Genetic Data: Application to Age at Menarche 21 

and Risk of Breast Cancer. Genetics. 2017;207(2):481-7. 22 

Jo
urn

al 
Pre-

pro
of



13 

 

7. Carter AR, Sanderson E, Hammerton G, Richmond RC, Smith GD, Heron J, et al. Mendelian 1 

randomisation for mediation analysis: current methods and challenges for implementation. bioRxiv. 2 

2019:835819. 3 

8. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource 4 

with deep phenotyping and genomic data. Nature. 2018;562(7726):203-9. 5 

9. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: An Open 6 

Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old 7 

Age. PLOS Med. 2015;12(3):e1001779. 8 

10. Mbatchou J, Barnard L, Backman J, Marcketta A, Kosmicki JA, Ziyatdinov A, et al. 9 

Computationally efficient whole genome regression for quantitative and binary traits. bioRxiv. 10 

2020:2020.06.19.162354. 11 

11. Pulit SL, Stoneman C, Morris AP, Wood AR, Glastonbury CA, Tyrrell J, et al. Meta-analysis of 12 

genome-wide association studies for body fat distribution in 694 649 individuals of European 13 

ancestry. Hum Mol Genet. 2019;28(1):166-74. 14 

12. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and 15 

refinement of loci associated with lipid levels. Nat Genet. 2013;45(11):1274-83. 16 

13. Wootton RE, Richmond RC, Stuijfzand BG, Lawn RB, Sallis HM, Taylor GMJ, et al. Evidence for 17 

causal effects of lifetime smoking on risk for depression and schizophrenia: a Mendelian 18 

randomisation study. Psychol Med. 2019:1-9. 19 

14. Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. Gene discovery and 20 

polygenic prediction from a genome-wide association study of educational attainment in 1.1 million 21 

individuals. Nat Genet. 2018:50(8):1112-21. 22 

15. Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA, et al. Genome-wide 23 

association study identifies 74 loci associated with educational attainment. Nature. 24 

2016;533(7604):539-42. 25 

Jo
urn

al 
Pre-

pro
of



14 

 

16. Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample 1 

Mendelian randomization. Genet Epidemiol. 2016;40(7):597-608. 2 

17. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass 3 

index yield new insights for obesity biology. Nature. 2015;518(7538):197-206. 4 

18. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform 5 

supports systematic causal inference across the human phenome. eLife. 2018;7. 6 

19. Burgess S. Sample size and power calculations in Mendelian randomization with a single 7 

instrumental variable and a binary outcome. International Journal of Epidemiology. 2014;43(3):922-8 

9. 9 

20. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple 10 

genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658-65. 11 

21. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian 12 

Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet 13 

Epidemiol. 2016;40(4):304-14. 14 

22. Burgess S, Foley CN, Allara E, Staley JR, Howson JMM. A robust and efficient method for 15 

Mendelian randomization with hundreds of genetic variants. Nat Commun. 2020;11(1):376. 16 

23. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: 17 

effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512-25. 18 

24. Yavorska OO, Burgess S. MendelianRandomization: an R package for performing Mendelian 19 

randomization analyses using summarized data. Int J Epidemiol. 2017;46(6):1734-9. 20 

25. Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-21 

Egger method. Eur J Epidemiol. 2017;32(5):377-89. 22 

26. Slob EAW, Burgess S. A Comparison Of Robust Mendelian Randomization Methods Using 23 

Summary Data. bioRxiv. 2019:577940. 24 

27. Burgess S, Dudbridge F, Thompson SG. Re: "Multivariable Mendelian randomization: the use 25 

of pleiotropic genetic variants to estimate causal effects". Am J Epidemiol. 2015;181(4):290-1. 26 

Jo
urn

al 
Pre-

pro
of



15 

 

28. Burgess S, Thompson SG. Multivariable Mendelian Randomization: The Use of Pleiotropic 1 

Genetic Variants to Estimate Causal Effects. American Journal of Epidemiology. 2015;181(4):251-60. 2 

29. Sanderson E. Multivariable Mendelian Randomization and Mediation. Cold Spring Harbor 3 

Perspectives in Medicine. 2020. 4 

30. Wasserstein RL, Schirm AL, Lazar NA. Moving to a World Beyond “p < 0.05”. The American 5 

Statistician. 2019;73(sup1):1-19. 6 

31. Davey Smith G, Davies NM, Dimou N, Egger M, Gallo V, Golub R, et al. STROBE-MR: 7 

Guidelines for strengthening the reporting of Mendelian randomization studies. 8 

https://doi.org/10.7287/peerj.preprints.27857v1. PeerJ Preprints. 2019;7:e27857v1. 9 

32. Zhu ZH, Zheng ZL, Zhang FT, Wu Y, Trzaskowski M, Maier R, et al. Causal associations 10 

between risk factors and common diseases inferred from GWAS summary data. Nat Commun. 11 

2018;9(1):224. 12 

33. Hindy G, Akesson KE, Melander O, Aragam KG, Haas ME, Nilsson PM, et al. Cardiometabolic 13 

Polygenic Risk Scores and Osteoarthritis Outcomes: A Mendelian Randomization Study Using Data 14 

From the Malmo Diet and Cancer Study and the UK Biobank. Arthritis Rheumatol. 2019;71(6):925-15 

34. 16 

34. Zengini E, Hatzikotoulas K, Tachmazidou I, Steinberg J, Hartwig FP, Southam L, et al. 17 

Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of 18 

osteoarthritis. Nat Genet. 2018;50(4):549-58. 19 

35. Amin S, Niu J, Guermazi A, Grigoryan M, Hunter DJ, Clancy M, et al. Cigarette smoking and 20 

the risk for cartilage loss and knee pain in men with knee osteoarthritis. Ann Rheum Dis. 21 

2007;66(1):18-22. 22 

36. Powell A, Teichtahl AJ, Wluka AE, Cicuttini FM. Obesity: a preventable risk factor for large 23 

joint osteoarthritis which may act through biomechanical factors. Br J Sports Med. 2005;39(1):4-5. 24 

37. Kong L, Wang L, Meng F, Cao J, Shen Y. Association between smoking and risk of knee 25 

osteoarthritis: a systematic review and meta-analysis. Osteoarthr Cartilage. 2017;25(6):809-16. 26 

Jo
urn

al 
Pre-

pro
of



16 

 

38. Felson DT, Zhang Y. Smoking and osteoarthritis: a review of the evidence and its 1 

implications. Osteoarthritis Cartilage. 2015;23(3):331-3. 2 

39. Johnsen MB, Vie GA, Winsvold BS, Bjorngaard JH, Asvold BO, Gabrielsen ME, et al. The causal 3 

role of smoking on the risk of hip or knee replacement due to primary osteoarthritis: a Mendelian 4 

randomisation analysis of the HUNT study. Osteoarthr Cartilage. 2017;25(6):817-23. 5 

40. Stewart ST, Cutler DM, Rosen AB. Forecasting the effects of obesity and smoking on U.S. life 6 

expectancy. N Engl J Med. 2009;361(23):2252-60. 7 

41. Di Chiara T, Scaglione A, Corrao S, Argano C, Pinto A, Scaglione R. Association between low 8 

education and higher global cardiovascular risk. J Clin Hypertens. 2015;17(5):332-7. 9 

42. Gill D, Efstathiadou A, Cawood K, Tzoulaki I, Dehghan A. Education protects against coronary 10 

heart disease and stroke independently of cognitive function: evidence from Mendelian 11 

randomization. Int J Epidemiol. 2019;48(5):1468-77. 12 

43. Gustafsson K, Kvist J, Eriksson M, Dahlberg LE, Rolfson O. Socioeconomic status of patients in 13 

a Swedish national self-management program for osteoarthritis compared with the general 14 

population-a descriptive observational study. BMC Musculoskelet Disord. 2020;21(1):10. 15 

44. Luong ML, Cleveland RJ, Nyrop KA, Callahan LF. Social determinants and osteoarthritis 16 

outcomes. Aging health. 2012;8(4):413-37. 17 

45. Gill D, Walker VM, Martin RM, Davies NM, Tzoulaki I. Comparison with randomized 18 

controlled trials as a strategy for evaluating instruments in Mendelian randomization. Int J 19 

Epidemiol. 2019. 20 

46. Burgess S, Labrecque JA. Mendelian randomization with a binary exposure variable: 21 

interpretation and presentation of causal estimates. European Journal of Epidemiology. 22 

2018;33(10):947-52. 23 

47. Palmer TM, Lawlor DA, Harbord RM, Sheehan NA, Tobias JH, Timpson NJ, et al. Using 24 

multiple genetic variants as instrumental variables for modifiable risk factors. Stat Methods Med 25 

Res. 2012;21(3):223-42. 26 

Jo
urn

al 
Pre-

pro
of



17 

 

48. Pulcu E. Self-report distortions of puffing topography in daily smokers. J Health Psychol. 1 

2016;21(8):1644-54. 2 

49. Batty GD, Gale CR, Kivimaki M, Deary IJ, Bell S. Comparison of risk factor associations in UK 3 

Biobank against representative, general population based studies with conventional response rates: 4 

prospective cohort study and individual participant meta-analysis. BMJ. 2020;368:m131. 5 

50. Haworth S, Mitchell R, Corbin L, Wade KH, Dudding T, Budu-Aggrey A, et al. Apparent latent 6 

structure within the UK Biobank sample has implications for epidemiological analysis. Nat Commun. 7 

2019;10(1):333. 8 

51. MacKinnon DP, Krull JL, Lockwood CM. Equivalence of the Mediation, Confounding and 9 

Suppression Effect. Prevention Science. 2000;1(4):173-81. 10 

52. Böckerman P, Viinikainen J, Pulkki-Råback L, Hakulinen C, Pitkänen N, Lehtimäki T, et al. Does 11 

higher education protect against obesity? Evidence using Mendelian randomization. Preventive 12 

Medicine. 2017;101:195-8. 13 

53. Gage SH, Bowden J, Davey Smith G, Munafò MR. Investigating causality in associations 14 

between education and smoking: a two-sample Mendelian randomization study. International 15 

Journal of Epidemiology. 2018;47(4):1131-40. 16 

54. Yucesoy B, Charles LE, Baker B, Burchfiel CM. Occupational and genetic risk factors for 17 

osteoarthritis: a review. Work. 2015;50(2):261-73. 18 
Jo

urn
al 

Pre-
pro

of



18 

 

Table 1. Descriptive characteristics for the participants included in this study. 1 

Variables 

Osteoarthritis (including 

self report) 

Osteoarthritis (excluding 

self report) 
Controls 

N=80,646 N=60,800 N=328,250 

Age, mean (SD), years 60.2 (6.7) 60.4 (6.8) 56.1 (8.1) 

Sex, N (%) 
   

Male 33,084 (41.0) 26,073 (42.9) 154,802 (47.2) 

Female 47,562 (59.0) 34,727 (57.1) 173,448 (52.8) 

Never smoked, N (%) 39,876 (49.7) 29,697 (49.1) 182,523 (55.8) 

Former smoker, N (%) 32,283 (40.2) 24,643 (40.7) 111,456 (34.1) 

Current smoker, N (%) 8,086 (10.1) 6,149 (10.2) 33,234 (10.2) 

BMI, mean (SD), kg/m
2
 28.9 (5.3) 29.1 (5.3) 27.0 (4.6) 

Incident cardiovascular events, N (%) 11,410 (14.1) 9,574 (15.7) 25,185 (7.7) 

Diabetes diagnosed, N (%) 5,485 (6.8) 4,432 (7.3) 14,287 (4.4) 

Systolic blood pressure, mmHg (SD) 140.6 (18.4) 140.6 (18.4) 137.8 (18.7) 

Diastolic blood pressure, mmHg (SD) 82.5 (9.9) 82.6 (9.9) 82.3 (10.2) 

 2 
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Figure legends 1 

Figure 1. Effects of genetically predicted education, body-mass index (BMI), low-density lipoprotein 2 

cholesterol (LDL-C), systolic blood pressure (SBP) and lifetime smoking respectively on risk of 3 

osteoarthritis. Inverse-variance weighted (IVW), contamination mixture (Con-Mix), Egger and 4 

weighted median represent different Mendelian randomization models. Confidence intervals could 5 

not be generated for the Con-Mix analysis considering SBP, and hence this result is not presented. 6 

Figure 2. The effect of genetically predicted education on osteoarthritis risk after adjusting for 7 

genetically predicted body-mass index and lifetime smoking, either separately or in the same model. 8 

The y-axis details the adjustment made. CI: confidence interval; OR: odds ratio; SD: standard 9 

deviation. 10 

Figure 3. The percentage of the effect of genetically predicted education on osteoarthritis risk that is 11 

mediated through genetically predicted body-mass index (BMI) and lifetime smoking, separately and 12 

when considered together in the same model. The y-axis details the mediating pathway considered. 13 

CI: confidence interval. 14 
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