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Abstract 28 

Classical swine fever virus (CSFV) is the causative agent of classical swine fever, a notifiable 29 

disease of economic importance that causes severe leukopenia, fever and haemorrhagic 30 

disease in domesticated pigs and wild boar across the globe. CSFV has been shown to 31 

antagonise the induction of type I IFN, partly through a function of its N-terminal protease 32 

(Npro) which binds IRF3 and targets it for proteasomal degradation. Additionally, Npro has been 33 

shown to antagonise apoptosis triggered by the dsRNA-homolog poly(I:C), however the exact 34 

mechanism by which this is achieved has not been fully elucidated. In this study we confirm the 35 

ability of Npro to inhibit dsRNA-mediated apoptosis and show that Npro is also able to antagonise 36 

Sendai virus-mediated apoptosis in PK-15 cells. Gene edited PK-15 cell lines were used to show 37 

the dsRNA-sensing pathogen recognition receptors (PRRs) TLR3 and RIG-I specifically respond to 38 

poly(I:C) and SeV respectively, subsequently triggering apoptosis through pathways that 39 

converge on IRF3 and culminate in the cleavage of caspase-3. Importantly, this IRF3-mediated 40 

apoptosis was found to be dependent on transcription-independent functions of IRF3 and also 41 

on Bax, a pro-apoptotic Bcl-2 family protein, through a direct interaction between the two 42 

proteins. Deletion of IRF3, stable expression of Npro and infection with wild-type CSFV were 43 

found to antagonise the mitochondrial localisation of Bax, a key hallmark of the intrinsic, 44 

mitochondrial pathway of apoptosis. Together, these findings show that Npro’s putative 45 

interaction with IRF3 is involved not only in its antagonism of type I IFN, but also dsRNA-46 

mediated mitochondrial apoptosis.   47 
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Importance 48 

Responsible for severe haemorrhagic disease in domestic pigs and wild boar, classical swine 49 

fever is recognised by the World Organisation for Animal Health (OIE) and European Union as a 50 

notifiable disease of economic importance. Persistent infection, immunotolerance and early 51 

dissemination of the virus at local sites of infection have been linked to the antagonism of type I 52 

IFN induction by Npro. This protein may further contribute to these phenomena by antagonising 53 

the induction of dsRNA-mediated apoptosis. Ultimately, apoptosis is an important innate 54 

mechanism by which cells counter viruses at local sites of infection, thus preventing wider 55 

spread and dissemination within the host, potentially also contributing to the onset of 56 

persistence. Elucidation of the mechanism by which Npro antagonises the apoptotic response 57 

will help inform the development of rationally-designed live-attenuated vaccines and antivirals 58 

for control of outbreaks in typically CSFV-free countries.  59 
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Introduction  68 

Classical swine fever virus (CSFV), a Pestivirus within the Flaviviridae family of positive-sense 69 

RNA viruses, is the causative agent of classical swine fever (CSF), a notifiable disease of 70 

domesticated pigs and wild boar. Recent and historic outbreaks have been associated with 71 

significant economic losses and concurrently animal welfare is severely affected (1, 2). CSFV 72 

virulence and clinical outcome is multifactorial, being both age and strain-dependent (3, 4). 73 

Infection of piglets less than 12 weeks of age manifests as an acute disease associated with 74 

severe leukopenia, fever, haemorrhagic disease and a host of neurological complications 75 

(ataxia, convulsions) and death follows 1-3 weeks later. Disease is less acute in older pigs, often 76 

resulting in chronic infection, a phenomenon also observed prenatally in piglets infected 50-70 77 

days into gestation (5). Paradoxically, chronic and prenatal infection is always lethal while 78 

recovery from acute infection is possible (2). Together, these observations suggest a complex 79 

interplay between the virus and the host immune system. 80 

As with IFN, apoptosis of infected cells ultimately serves as yet another mechanism by which 81 

the intracellular innate immune system is able to counter the viruses at the local site of 82 

infection and prevent their wider dissemination within the host (6). Leukopenia in CSFV-83 

infected pigs is thought to occur as a consequence of cell death (7, 8), however these cells 84 

rarely contain virus (9). Taking into account the high titres of virus detected in acutely infected 85 

pigs, infected cells resistant to virus-induced apoptosis likely have a role to play in determining 86 

the overall clinical outcome (10, 11).  87 
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Apoptosis is an orderly programme of cell death employed by multicellular organisms to 88 

eliminate damaged, aberrant or infected cells (12). Intracellular stimuli such as DNA damage 89 

utilise a mitochondrial pathway of cell death regulated by Bcl-2 family proteins that serves to 90 

trigger release of cytochrome c from the mitochondria into the cytosol (13). Subsequently, 91 

cytochrome c associates with Apaf-1 to form a heptametric complex called the apoptosome, 92 

enabling the cleavage of caspase-9 and the effector caspases 3 and 7 (14). Death receptor-93 

mediated cell death is triggered in response to death factor ligands of the TNF family (TNFα, 94 

FasL, TRAIL). Upon ligand binding, a death-inducing signalling complex (DISC) is formed, cleaving 95 

caspase-8 which can either cleave effector caspases directly or by cleaving Bid (tBid) to activate 96 

mitochondrial apoptosis (15). Viral antagonism of apoptosis is well documented: African swine 97 

fever virus A179L achieves this by directly binding tBid and Bax (16, 17) while vFLIP of γ-98 

herpesviruses prevents interaction of caspase-8 with the DISC (18). Homology of viral proteins 99 

with host anti-apoptotic factors is often responsible for this antagonism.    100 

The CSFV genome encodes four structural and seven non-structural proteins that are initially 101 

translated as a single polyprotein (19). Npro, a cysteine autoprotease, undergoes autocatalytic 102 

cleavage from the polyprotein (20, 21) and has been demonstrated to interact with proteins in 103 

order to modulate the intracellular innate immune response comprised primarily of type I 104 

interferon (IFN-α/β) and apoptosis. Npro interacts with interferon regulatory factor 3 (IRF3) 105 

resulting in its proteasomal degradation and the elimination of host cell capacity to induce IFN 106 

in response to the pathogen-associated molecular pattern (PAMP) dsRNA, a replication 107 

intermediate of RNA viruses (22, 23). The ability of Npro to antagonise dsRNA-mediated 108 

apoptosis is, however, not well characterised and the mechanism remains to be properly 109 
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elucidated (24, 25). In addition, the pathways through which agonists such as dsRNA induce 110 

apoptosis in porcine cell lines routinely used to study CSFV require examination.  111 

Herein we confirm the ability of Npro to inhibit dsRNA-mediated apoptosis and also show that 112 

Npro is able to antagonise Sendai virus-mediated apoptosis. Gene edited PK-15 cell lines were 113 

used to show the dsRNA-sensing pathogen recognition receptors (PRRs) TLR3 and RIG-I 114 

specifically mediated apoptotic responses to poly(I:C) and SeV respectively. We demonstrate 115 

that CSFV Npro’s interaction with porcine IRF3 is responsible not only for the antagonism of IFN 116 

induction but also the innate apoptotic response and is mediated by an inhibition of the IRF3 117 

dependent mitochondrial translocation of Bax, a pro-apoptotic Bcl-2 family protein.   118 
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Results 119 

Npro antagonises poly(I:C) and Sendai virus-mediated apoptosis in PK-15 cells 120 

To confirm previous reports of Npro’s ability to antagonise dsRNA-mediated apoptosis, a porcine 121 

kidney cell line (PK-15) stably expressing His-tagged Npro was treated with poly(I:C) before 122 

whole cell lysates were examined by Western blot for cleaved caspase-3, a terminal indicator of 123 

apoptosis. As expected, Western blot analysis showed that caspase-3 was cleaved in parental 124 

PK-15 cells treated with poly(I:C) (FIG 1A). In contrast, the His-Npro cell line exhibited a 125 

comparatively reduced level of cleaved caspase-3 following poly(:C) treatment, confirming 126 

antagonism of the innate apoptotic response (FIG 1A). As expected for cell lines that showed 127 

reduced levels of IRF3, the interferon stimulated genes (ISGs) Mx1, ISG15 and RIG-I were not 128 

upregulated in Npro-expressing lines following the treatment (FIG 1A). Poly(I:C) is thought to be 129 

an agonist of TLR3-mediated signalling when added to cell culture media. The His-Npro cell line 130 

was next treated with Sendai virus (SeV, Cantell strain), a reported agonist of RIG-I-mediated 131 

signalling. Similar to that observed for poly(I:C) treatment (FIG 1A), Western blot analysis of 132 

whole cell lysates confirmed that SeV was able to induce the cleavage of caspase-3 in control 133 

PK-15 cells, but comparatively lower levels of caspase-3 cleavage were observed for the His-Npro 134 

cell line (FIG 1A). Subsequent analyses of ISG levels in the respective whole cell lysates showed 135 

that SeV treatment induced the expression of Mx1, ISG15 and RIG-I in the control PK-15 cells 136 

and to a comparatively lower level in the His-Npro cell line, demonstrating Npro’s ability to 137 

anatgonise SeV-induced ISG upregulation (FIG 1A).  138 
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Using lentivirus, we developed PK-15 cell lines stably expressing EGFP-tagged Npro to further 139 

validate these observations. Indeed, Western blot analyses of three individual cell lines 140 

expressing EGFP-tagged Npro confirmed their ability to anatagonise poly(I:C) and SeV-mediated 141 

cleaved caspase-3 production and ISG upregulation in comparison to a control EGFP cell line 142 

(FIG 1B).  143 

As we have adopted cleaved caspase-3 as our primary readout for apoptosis, Npro and CSFV 144 

were assessed for their capacity to antagonise apoptosis mediated by staurosporine (STS), an 145 

agonist which triggers caspase-3 cleavage through pathways independent of those typically 146 

associated with dsRNA signalling (26, 27). In agreement with past observations (25), when 147 

CSFV-infected PK-15 cells or a PK-15 cell line stably expressing His-Npro were treated with STS, 148 

levels of cleaved caspase-3 were comparable to that observed in uninfected control cells (FIG 149 

1C). 150 

Type I IFN amplifies poly(I:C)-mediated apoptosis in PK-15 and SK6 cells but is 151 

not essential 152 

Since we as well as others have observed Npro’s clear antagonism of poly(I:C)-mediated IFN-153 

induction and ISG upregulation (22-24, 28), we wanted to establish whether IFN had any role in 154 

the induction of apoptosis in response to each agonist – poly(I:C) and SeV. To do this, WT PK-15 155 

cells were treated with either poly(I:C) or SeV in the presence of the JAK-STAT inhibitor 156 

Ruxolitinib (RXT, FIG 2A) and whole cell lysates were then analysed by Western blot for cleaved 157 

caspase-3. Interestingly, a large reduction in cleaved caspase-3 was observed in comparison to 158 

cells treated with poly(I:C) in the absence of RXT (FIG 2B). However, the levels of cleaved 159 
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caspase-3 in cells treated with SeV were unaffected by the presence of RXT. To confim RXT 160 

treatment had efficiently blocked IFN signalling following poly(I:C) treatment, lysates were then 161 

analysed for the ISGs Mx1, ISG15 and RIG-I; as expected, the upregulation of Mx1 and RIG-I was 162 

inhibited in the presence of RXT, while ISG15 upregulation was only partially antagonised since 163 

IRF3 can bind directly to its promoter (29-31).  164 

In order to further elucidate the impact that IFN has on poly(I:C)-mediated apoptosis, PK-15 and 165 

SK6 cells were treated with poly(I:C) in the presence of increasing quantities of porcine IFN-α (0, 166 

100, 1000 IU/ml). For both the PK-15 and SK6 treated cells, subsequent Western blot analyses 167 

revealed a positive correlation between the quantity of IFN-α used and the observed level of 168 

cleaved caspase-3 (FIG 2C). The increase in cleaved caspase-3 was most noticable with SK6 cells, 169 

a cell line known to be incapable of producing endogenous type I IFN (28). Importantly, IFN-α 170 

treatment alone was incapable of triggering levels of caspase-3 cleavage comparable to that 171 

which was observed in cells treated with poly(I:C) alone.  172 

Poly(I:C) and SeV-mediated apoptosis is dependent on TLR3 and RIG-I signalling 173 

pathways converging on IRF3 in PK-15 cells 174 

In order to identify the innate cell signalling pathways through which poly(I:C) and SeV induce 175 

apoptosis in PK-15 cells, and to help elucidate the mechanism that Npro uses to achieve the 176 

observed antagonism of apoptosis, PK-15 cell lines were developed that had been gene edited 177 

to knockout the expression of TLR3 (TLR3-/-) and RIG-I (RIG-I-/-). For each targeted gene, 178 

individual cell lines were generated and validated by PCR, sequencing and, when a suitable 179 

antibody was available, by Western blot. Each cell line was screened by Western blot for 180 
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responsiveness to poly(I:C) and SeV in the presence or absence of RXT. Cleaved caspase-3 was 181 

undetectable in TLR3-/- cells following poly(I:C) treatment, whereas the cleavage of caspase-3 182 

induced by SeV infection was unaffected by the loss of TLR3 (FIG 3A, 3B). In contrast, RIG-I-/- cell 183 

lines displayed the opposite phenotype, namely loss of cleavage of capsase-3 in response to 184 

SeV but normal cleavage in response to poly(I:C) (FIG 3C, 3D). These results confirmed that 185 

poly(I:C) and SeV trigger apoptosis in PK-15 cells specifically via TLR-3 and RIG-I, respectively.  186 

Since TLR3 and RIG-I signalling pathways are classically known to converge on IRF3 to activate 187 

the IFN-β promoter, we next investigated if IRF3 is also required for the induction of apoptosis. 188 

To facilitate this, PK-15 cell lines gene edited to knockout IRF3 (IRF3-/-) were prepared and 189 

validated (manuscript submitted for publication, Jackson et al. 2020). Interestingly, no cleaved 190 

caspase-3 was observed when IRF3-/- PK-15 cells were treated with either poly(I:C) or SeV (FIG 191 

3E, 3F). In each case, absence of caspase-3 cleavage was associated with an absence of ISG 192 

upregulation, highlighting that the pathways responsible for IFN induction are also responsible 193 

for induction of the innate apoptotic response to these antagonists. The presence of RXT had 194 

no observable effect on caspase-3 cleavage in the knockout PK-15 cell lines.  195 

Bax directly mediates apoptosis in a manner that depends upon transcription-196 

independent functions of IRF3  197 

Having shown that IRF3 is required for the induction of TLR3 and RIG-I-mediated apoptotic 198 

responses, it was important to determine the mechanism of IRF3 function. IRF3 has been 199 

reported to play a role in a transcription-independent pathway of apoptosis that relies upon an 200 

interaction with the pro-apoptotic protein Bax and its subsequent translocation to the 201 



11 
 

mitochondrial membrane in murine and human cells (32-34). To establish whether porcine IRF3 202 

interacts with porcine Bax, the yeast two-hybrid (Y-2-H) system was employed. In agreement 203 

with previous reports (35-37), we found full-length Bax expression toxic in yeast, but a 204 

truncated mutant lacking the C-terminus transmembrane domain (Bax∆C) exhibited less toxicity 205 

(38-40) and was used to successfully confirm the interaction (FIG 4A). Further Y-2-H analyses 206 

confirmed Npro’s ability to interact with porcine IRF-3, but no direct interaction between Npro 
207 

and Bax∆C was observed (FIG 4A). To validate the physiological significance of this interaction, 208 

additional PK-15 cell lines were developed that had been gene edited to knockout the 209 

expression of Bax (Bax-/-); successful knockout was confirmed by Western blot. Subsequently, 210 

Bax-/- cells were screened by live-cell bright-field microscopy (FIG 4B) and Western blot (FIG 4C) 211 

for their responsiveness to poly(I:C) and SeV, identified as specific ligands for TLR3 and RIG-I 212 

respectively in PK-15 cells (FIG 3). Unedited PK-15 cells displayed significant rounding and 213 

detachment following both poly(I:C) and SeV treatment, indicative of apoptosis. In contrast, 214 

Bax-/- PK-15 cells remained largely unchanged following each treatment (FIG 4B). Cleaved 215 

caspase-3 was undetectable in Bax-/- cells following each treatment while Mx1 and ISG15 were 216 

detected at comparable levels in both unedited and Bax-/- PK-15 cells (FIG 4C). These results 217 

confirmed that IRF3-mediated apoptosis is Bax-dependent.  218 

IRF3 is best known for its function as a transcription factor, mediating the upregulation of not 219 

only type I IFN but also a small subset of “IFN-independent” ISGs (29-31). In order to determine 220 

whether apoptosis requires IRF3 transcriptional activity, IRF3-/- PK-15 cells stably expressing a 221 

FLAG-tagged transcriptionally inactive IRF3 mutant termed “S1” (S394A, S396A) (32, 41) were 222 

generated using lentivirus (FIG 4D). These serine residues are potentially required for the 223 
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interaction between IRF3 and CREB-binding protein (CBP), a prerequisite for the binding of IRF3 224 

to gene promoters (42-44), and are also highly conserved across multiple species (FIG 4D). In 225 

mice, the S1 mutations eliminate the ability of IRF3 to stimulate transcription while preserving 226 

its pro-apoptotic functions (32). As a control, an IRF3-/- PK-15 cell line stably expressing FLAG-227 

tagged WT IRF3 was also generated. Both cell lines were then subjected to poly(I:C) treatment 228 

and whole cell lysates were examined by Western blot for the presence of Mx1 as an indicator 229 

of IRF3 transcriptional activity, as well as cleaved caspase-3 to determine the induction of 230 

apoptosis. Mx1 was undetectable in S1 samples following poly(I:C) treatment, confirming the 231 

loss of transcriptional activity and ability to induce type I IFN. In contrast, Mx1 was observed in 232 

the corresponding WT samples.  However, cleaved caspase-3 was observed in both the WT and 233 

to a lesser extent the S1 IRF3 samples (FIG 4E), confirming that the transcriptionally inactive S1 234 

mutant could still mediate apoptosis. Similar experiments using SeV treatment led to 235 

comparable levels of caspase-3 cleavage (FIG 4E) in WT and S1 IRF3-expressing IRF3-/- PK-15 cell 236 

lines. Together, these results confirmed that IRF3 mediates a Bax-dependent pathway of 237 

apoptosis, even when devoid of its ability to act as a transcription factor.  238 

Npro blocks poly(I:C) and Sendai virus-mediated mitochondrial localisation of Bax 239 

In the present work, IRF3 has been shown to coordinate a TLR3 and RIG-I-mediated Bax-240 

dependent pathway of apoptosis independent of its activity as a transcription factor, supporting 241 

previous observations made by Chattopadhyay et al. (32-34). However, the exact nature of 242 

porcine Bax’s role in this process remains to be determined. CSFV Npro has previously been 243 

shown to antagonise poly(I:C)-mediated mitochondrial release of cytochrome c and caspase-9 244 

cleavage (25). Furthermore, Npro’s ability to target IRF3 for ubiquitin-dependent proteasomal 245 
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degradation has been well documented (22). We therefore decided to investigate if Bax can 246 

localise to the mitochondrial membrane following the induction of apoptosis in the presence of 247 

Npro and in the absence of IRF3.  248 

Experiments using PK-15 cells and immunofluorescence confocal microscopy were performed 249 

to confirm the localisation of endogenous Bax to the mitochondria following exposure to the 250 

agonists poly(I:C) or SeV. In both poly(I:C) or SeV-treated PK-15 cells Bax localisation was 251 

undetectable prior to treatment, in agreement with published literature (32-34). However, 252 

following treatment with either poly(I:C) or SeV, Bax was detectable, appearing as distinct, 253 

condensed puncta that co-localised with the mitochondrial membrane, but did not appear to 254 

have been internalised (FIG 5A, 5B). In PK-15 cells that had been treated with either agonist the 255 

mitochondria exhibited a condensed morphology characteristic of apoptosis. Bax localistaion 256 

was also investigated in PK-15 cell lines stably expressing Npro and in the PK-15 IRF3-/- cell lines. 257 

While a large proportion of WT PK-15 cells displayed mitochondrial localisation of Bax, there 258 

was a complete absence in both the Npro and IRF3-/- PK-15 cell lines tested (FIG 5A). These 259 

experiments were performed in the presence of Z-VAD(OMe)-FMK (Bachem), an inhibitor of the 260 

effector caspases, in order to maximise the number of cells for visualisation by 261 

immunofluorescence following treatment with each apoptosis agonist. Collectively, these 262 

observations highlight the role of Bax in IRF3-medated apoptosis and confirm its antagonism by 263 

Npro.   264 

Having shown that the presence of Npro inhibited the mitochondrial localisation of Bax, 265 

experiments were conducted to determine whether Npro can also modulate Bax expression in a 266 

similar manner to that observed for IRF3. Western blot analysis of whole cell lysates prepared 267 
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from untreated WT and Npro-expressing PK-15 cells indicated that Bax is not targeted by Npro for 268 

degradation (FIG 5C). Interestingly, poly(I:C) treatment led to an increase in the level of Npro 269 

protein compared to untreated cells, raising a possibility of stabilisation in the presence of a 270 

target protein.  271 

Antagonism of SeV-mediated apoptosis in CSFV-infected cells is dependent on 272 

the expression of Npro    273 

In order to investigate whether CSFV infection has the same antagonistic effect on apoptosis as 274 

stably-expressed Npro, SK6 cells were infected (MOI of 0.2) with either CSFV Alfort, CSFV Brescia, 275 

a recombinant CSFV (rCSFV) Alfort or an Npro-deleted (ΔNpro) rCSFV Alfort; infections were 276 

allowed to continue until most cells had been infected (as determined by CSFV E2 expression). 277 

Infected cells were then treated with SeV prior to analysis by immunofluorescence microscopy 278 

(FIG 6A). Due to the inability of ΔNpro rCSFV Alfort to efficiently replicate in PK-15 cells (28), SK6 279 

cells were instead used as they lack the capacity to produce type I IFN and are sensitive to 280 

dsRNA-mediated apoptosis (24, 28). The SK6 cells that were infected with either CSFV Alfort, 281 

CSFV Brescia or rCSFV Alfort prior to SeV treatment displayed significantly reduced Bax 282 

localisation to the mitochondria (p<.001), however those infected with ΔNpro rCSFV Alfort 283 

displayed levels of localisation comparable to uninfected control cells (FIG 6A, 6B). CSFV was 284 

not assessed for its capacity to antagonise poly(I:C)-mediated apoptosis as the ΔNpro  virus still 285 

encodes the soluble and secretable endoribonuclease Erns which acts as a scavenger receptor 286 

for dsRNA (45, 46); a double mutant ΔNpro ΔErns virus was unavailable.  287 
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We subsequently infected (MOI of 0.2) PK-15 cells with either CSFV Alfort or CSFV Brescia in 288 

order to validate the capacity of CSFV infection to antagonise induction of apoptosis in a more 289 

relevant, IFN-competent cell line. As with the SK6 infections, PK-15 cells infected with either 290 

CSFV Alfort or CSFV Brescia displayed reduced Bax localisation to the mitochondria (p<.001) 291 

(FIG 6A, 6C). In summary, these results confirm that CSFV is indeed capable of antagonising 292 

SeV-mediated mitochondrial Bax localisation in multiple porcine kidney endothelial cell lines, 293 

suggesting a clear capacity to antagonise induction of apoptosis dependent on the expression 294 

of Npro. 295 

Discussion 296 

Generated as replication intermediates of the RNA virus genome, dsRNA triggers the induction 297 

of innate responses such as type I IFN and apoptosis. The apoptosis triggered by dsRNA as a 298 

consequence of infection is thought to have a protective role, serving to limit further virus 299 

dissemination within the host (6).  When expressed stably and during infection, CSFV Npro has 300 

been shown to antagonise both of these responses (22-25, 28). While Npro’s putative interaction 301 

with IRF3 has been identified as the source of IFN antagonism, the mechanism by which Npro 302 

antagonises the induction of dsRNA-meditated apoptosis has yet to be identified. Using a 303 

combination of CRISPR-Cas9 gene-editing technology and confocal microscopy, we report that 304 

in porcine kidney endothelial cells IRF3 coordinates the induction of RIG-I and TLR3-mediated 305 

apoptosis in an IRF3-dependent IFN-independent manner, culminating in the localisation of pro-306 

apoptotic Bax to the mitochondrial membrane and induction of caspase-3 cleavage, a key 307 

hallmark of apoptosis.   308 
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Initially we identified the pathways that Npro is able to antagonise and thereafter identified the 309 

PRRs through which agonists were sensed in order to elucidate the mechanism of apoptosis 310 

inhibition used by Npro. In addition to antagonising apoptosis mediated by poly(I:C), a reported 311 

TLR3 agonist and dsRNA homolog, we report that Npro expressed stably in cell culture and 312 

during infection can also antagonise SeV-mediated apoptosis. This finding was interesting since 313 

SeV copy-back defective interfering (cbDI) RNA is widely reported to be an agonist of the RIG-I 314 

signalling pathway (47-49) and showed that Npro is capable of targeting pro-apoptotic signalling 315 

triggered by multiple pathways. CRISPR-Cas9 knockouts of both TLR3 and RIG-I subsequently 316 

confirmed them to be essential in PK-15 cells for the induction of caspase-3 cleavage in 317 

response to poly(I:C) and SeV respectively and found IRF3 to be indispensable in each case.  318 

Since Npro’s putative interaction with IRF3 and its consequent antagonism of type I IFN 319 

induction are well published, we intended to determine whether IFN has any role in the 320 

caspase-3 cleavage observed in response to TLR3 and RIG-I agonists poly(I:C) and SeV. 321 

Pharmacological inhibition of the JAK-STAT pathway using RXT and subsequent treatment of 322 

cells with porcine IFN-α revealed the apoptosis mediated by poly(I:C), but not SeV, to be 323 

amplified while IFN-α alone appeared to cause no detectable caspase-3 cleavage. The type I IFN 324 

response is required for the upregulation of a diverse range of ISGs, a number of which are pro-325 

apoptotic. In light of this, it is possible that components of the TLR3 signalling pathway might be 326 

upregulated by type I IFN, thus explaining the observed amplification of caspase-3 cleavage. 327 

Shaw et al. reported upregulation of TLR3, caspase-8, Noxa and TRAIL expression in ex vivo 328 

porcine skin fibroblast cultures following IFN treatment (50) while Renson et al. found elements 329 

of the Fas and TRAIL signalling pathways to be upregulated in uninfected bystander peripheral 330 
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blood mononuclear cells (PBMC) during in vivo infection with a related Pestivirus, BVDV (51). 331 

Direct amplification of poly(I:C)-mediated apoptosis by IFN-α has also been described (52), 332 

however the capacity of each to modulate the innate apoptotic response likely varies 333 

depending on tissue and cell type. SeV encodes C-protein, an antagonist of STAT1 334 

phosphorylation, which likely explains the apparent absence of ISG upregulation or subsequent 335 

effect from the RXT treatment (53). 336 

The apparent importance of IRF3 in coordinating the induction of pro-apoptotic TLR3 and RIG-I 337 

mediated responses proved insightful since IRF3 has previously been implicated in the induction 338 

of a dsRNA-mediated IRF3/Bax dependent pathway of apoptosis termed RIPA (RLR-induced 339 

IRF3 mediated Pathway of Apoptosis) that also culminates in cleavage of caspase-3 (32-34). 340 

Through a putative BH3-like domain, IRF3 has been shown to mediate its pro-apoptotic activity 341 

through a direct interaction with Bax, facilitating its localisation to the mitochondrial membrane 342 

(33). In this study, we have confirmed the interaction of porcine IRF3 and Bax using the Y-2-H 343 

system, corroborating past observations (33). We have also shown that the aforementioned 344 

IRF3/Bax dependent pathway of apoptosis is active in porcine kidney endothelial cells and 345 

shown that IRF3-mediated apoptosis is dependent on the presence of Bax and does not require 346 

IRF3’s activity as a transcription factor. Importantly, apoptosis was actively antagonised by both 347 

stable expression of Npro and infection with CSFV as seen by the absence of, or significant 348 

reduction in, mitochondrial Bax localisation and associated cleavage of caspase-3. Bax staining 349 

in apoptotic cells appeared as distinct puncta associated with the mitochondria, likely 350 

corresponding to the formation of homodimeric pores in the mitochondrial outer membrane 351 

(MOM) (54-58) which have been reported to facilitate release of cytochrome c from the 352 
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intermembrane space (IMS) (59, 60). This is in agreement with a past study which found CSFV 353 

to antagonise cytochrome c release and caspase-9 cleavage (25). Importantly, this localisation 354 

occurred in a manner independent of Bax expression levels, lending further credence to the 355 

idea that the observed phenotype is due to IFN-independent IRF3/Bax activity.  356 

Jefferson et al. observed that transfected CSFV Npro and the related Pestivirus BVDV 357 

antagonised sodium arsenate-mediated mitochondrial Bax localisation (61). However, this 358 

agonist is thought to trigger apoptosis by upregulating Bax expression in a c-Jun N-terminal 359 

kinase (JNK)-dependent manner (62). Our study explored this pathway in the context of stably-360 

expressed Npro and CSFV infection utilising authentic agonists of dsRNA signalling pathways. We 361 

have demonstrated both poly(I:C) and SeV to be relevant and authentic agonists of TLR3 and 362 

RIG-I signalling pathways that converge on IRF3 in their induction of apoptosis. The significance 363 

of TLR3 and RIG-I mediated responses during CSFV infection was highlighted by Hüsser et al. 364 

using shRNA knockdown to target each (63). No observable differences in ΔNpro rCSFV growth 365 

were observed in a representative Bax-/- cell line in comparison to wild-type cells (data not 366 

shown). We suspect any differences were masked by the transcriptional activity of IRF3 and 367 

subsequent ISG expression.  368 

Taken together, these results suggest that Npro’s interaction with IRF3 is not only responsible for 369 

antagonising the induction of type I IFN but also the induction of IFN-independent IRF3/Bax-370 

mediated caspase-3 cleavage and apoptosis. Ultimately, Npro’s antagonism of TLR3, RIG-I and 371 

IRF3-mediated apoptotic responses serves as another mechanism of CSFV immune evasion, 372 

likely contributing to the establishment of infection and host persistence.  373 



19 
 

Materials and methods 374 

Cell culture and viruses 375 

All cells were maintained at 37°C in 5 % CO2. PK-15, SK6 and HEK 293-T cell lines (obtained in-376 

house) were maintained in Dulbecco's Modified Eagle Medium (DMEM; Thermo Fisher), 5% 377 

adult bovine serum (ABS; Selborne) demonstrated to be BVDV-free and anti-BVDV antibody 378 

free, GlutaMAX (Thermo Fisher) and penicillin-streptomycin (50 IU/ml penicillin, 50 μg/ml 379 

streptomycin, Thermo Fisher). CSFV-strains Alfort 187 and Brescia were kindly provided by the 380 

EU reference laboratory (Hannover, Germany). The parental infectious clone EP#98/2 derived 381 

from CSFV-strain Alfort Tübingen and the corresponding Npro-deleted infectious clone EP#96/2 382 

were a kind gift from Prof Gregor Meyers (FLI; Tübingen, Germany). Virus was grown in SK6 383 

cells and isolated from washed cell pellets by freeze-thaw lysis. Immunostaining with anti-CSFV 384 

E2 antibody WH303 (APHA) (64) was used to titre viruses by TCID50 in SK6 cells and used in 385 

experiments at a MOI of 0.2. Where indicated, cells were treated with inhibitor of JAK1/2 386 

phosphorylation ruxolitinib (RXT; Selleckchem), recombinant porcine IFN-α (R&D Systems), 387 

staurosporine (STS; Sigma), Sendai virus (SeV) Cantell strain (Charles River) and 388 

polyinosinic:polycytidylic acid (poly(I:C); Sigma). Cells were treated with 0.5 μM RXT, 2.5 μM 389 

STS, 100 µg/ml poly(I:C) and 200 HA/ml SeV except where stated otherwise.  390 

Generation of cell lines stabling expressing recombinant proteins using 391 

lentivirus 392 

CSFV Alfort 187 cDNA was cloned into the 3rd-generation lentiviral vector pLJM1-EGFP, a gift 393 

from David Sabatini (Addgene plasmid #19319) (65), to generate pLJM1-EGFP-Npro. WT and S1 394 
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mutant (S396A, S398A) porcine IRF3 cDNAs bearing an N-terminal FLAG tag were cloned into a 395 

modified pLJM1 vector devoid of EGFP to generate pLJM1-FLAG-IRF3 and pLJM1-FLAG-IRF3-S1.  396 

Packaging plasmids (pLP1, pLP2, pLP/VSV-G) were co-transfected into HEK-293T cells a single 397 

pLJM1 vector to generate EGFP, EGFP-Npro, WT IRF3 and S1 IRF3 encoding lentiviruses 398 

respectively. Lentiviruses were added to a low-passage PK-15 cell culture in the presence of 2 399 

µg/ml polybrene (Sigma) and centrifuged at 1000 rcf for 30 min. 72 hours post-infection, cells 400 

were treated for a further 72 hr with 3 µg/ml puromycin (Thermo Fisher) to select for 401 

transduced cells. 48 hr after removal of selection, colonies of surviving cells were picked and 402 

isolated for screening and validation. 403 

Generation of CRISPR-Cas9 knockout cell lines 404 

Guide RNAs (sgRNAs) were designed using the E-CRISP tool (http://www.e-crisp.org/E-405 

CRISP/designcrispr.html; German Cancer Research Center) and cloned into pSpCas9n(BB)-2A-406 

GFP (PX461) and pSpCas9n(BB)-2A-Puro (PX462) V2.0 plasmids encoding the D10A nickase 407 

mutant of S. pyogenes Cas9 (Cas9n) baring puromycin and GFP selection markers respectively 408 

(66). These plasmids were a gift from Feng Zhang (Addgene plasmids #48140 and #62987) (66). 409 

CaCl2-competent JM109 E. coli were transformed with each plasmid which was then extracted 410 

and purified using a QIAprep Spin Miniprep Kit (Qiagen). Low-passage PK-15 cells were co-411 

transfected with each plasmid for 48 hr and 3 µg/ml puromycin selection (Thermo Fisher) 412 

applied for a further 72 hr. 48 hr after removal of selection, colonies of surviving cells were 413 

picked and isolated for screening and validation. 414 

 415 

http://www.e-crisp.org/E-CRISP/designcrispr.html
http://www.e-crisp.org/E-CRISP/designcrispr.html
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Western blot analysis 416 

Proteins were separated by SDS-PAGE (4-20% polyacrylamide; Thermo Fisher) and transferred 417 

to Amersham Protran 0.45 µm nitrocellulose membranes. Membranes were blocked with 5 % 418 

(w/v) dried skimmed milk in PBS containing 0.5 % Tween-20. Anti-CSFV Npro rabbit sera (DS14) 419 

was generated in-house by inoculating rabbits with the peptide 420 

KTNKQKPMGVEEPVYDATGKPLFGDPS corresponding to N-terminal residues 11-37 (67). Primary 421 

mAbs recognising γ-tubulin (T6557; Sigma), Mx1 (Ab79609; Abcam), RIG-I (sc-376845; Santa 422 

Cruz Biotechnology), CSFV E2 (WH303, APHA), and polyclonal Abs recognising ISG15 (sc-50366; 423 

Santa Cruz Biotechnology), Bax (2772; Cell Signalling Technology), cleaved caspase-3 (9664; Cell 424 

Signalling Technology), GFP (Ab290; Abcam) and FLAG (R1180; Acris) were all used as indicated. 425 

Bound primary antibodies were detected by horseradish peroxidase-conjugated goat anti-426 

mouse (Promega) or goat anti-rabbit (Promega) secondary antibodies. 427 

Immunofluorescence  428 

Cells were prepared on coverglasses prior to treatments and fixed with 4 % paraformaldehyde 429 

(Santa Cruz Biotechnology) for 1 hr, permeabilised with 0.1 % Triton X-100 for 5 min and 430 

blocked in 10% goat serum [DETAILS] in PBSa (lacking MgCl2 and CaCl2). mAb recognising CSFV 431 

E2 (WH303; APHA) and rabbit polyclonal Ab recognising Bax (2772; Cell Signalling Technology) 432 

primary antibodies were used where indicated. Secondary antibodies were goat anti-mouse 433 

Alexa Fluor 488 or 633-conjugated (Thermo Fisher). Nuclei were stained with DAPI (Sigma). For 434 

mitochondrial staining, 150 nM MitoTracker red CMXRos (Thermo Fisher) diluted in complete 435 

growth medium was added to the cells 30 min prior to washing in PBS and fixation. Prepared 436 
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slides of cells were imaged on a Leica TCS SP2Acousto-Optical Beam Splitter confocal scanning 437 

laser microscope at wavelengths appropriate for each Alexa Fluor probe.  438 

Where specified, protein localisation was quantified as follows: images were imported into 439 

ImageJ and automated counting used to determine the total number of nuclei per field of view. 440 

For Bax studies, cells demonstrating condensed mitochondrial localisation were manually 441 

counted and divided by the nuclei count to give percentage positives.  2-way ANNOVA 442 

(Graphpad) was used to determine mean, SD and CI for n=5.  443 

Yeast two-hybrid analysis 444 

The Matchmaker© 3 GAL4-based yeast two-hybrid system (Clontech Laboratories) was 445 

employed to identify direct protein-protein interactions. A cDNA encoding CSFV Npro (Alfort) 446 

was cloned into the pGBKT7 and pGADT7 vectors to generate fusions with the GAL4 DNA-447 

binding and activation domains respectively. A cDNA encoding porcine IRF3 (NM_213770.1) 448 

was additionally cloned into pGADT7 while a cDNA encoding porcine Bax (XM_003127290.5), 449 

modified by PCR to lack the terminal 20 amino acids (Val173-Gly192), was cloned into each vector. 450 

Yeast (AH109) were grown, maintained and transformed as instructed by the manufacturer 451 

(Clontech Laboratories). Co-transformed yeast cultures were subsequently plated onto double-452 

dropout media deficient of leucine and tryptophan and quadruple-dropout media additionally 453 

lacking adenine and histidine.  454 
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 653 

Figure 1: Npro antagonises poly(I:C) and Sendai virus-mediated apoptosis in PK-15 cells. (A) PK-15 654 

cells or PK-15 cells stably expressing His-Npro, or (B) PK-15 cells stably expressing EGFP (*) or 655 

EGFP-Npro (**) were seeded in 12-well plates and treated with poly(I:C) or SeV. 18 hours post-656 

treatment, whole cell lysates were prepared and analysed by Western blotting using polyclonal 657 

Abs recognising ISG15, Npro or GFP and mAbs recognising cleaved caspase-3, Mx1 or RIG-I as 658 



28 
 

indicated. (C) PK-15 cells, PK-15 cells stably expressing His-Npro or PK-15 cells infected (MOI of 659 

0.5) with CSFV Alfort for 24 hr were treated with STS. 8 hours post-treatment, whole cell lysates 660 

were prepared and analysed by Western blotting using a polyclonal Ab recognising Npro and a 661 

mAb recognising cleaved caspase-3 as indicated. (A-C) A mAb recognising γ-tubulin was used to 662 

determine relative protein concentrations. Experiments were repeated on at least two separate 663 

occasions. 664 

Figure 2: Type I IFN amplifies poly(I:C)-mediated apoptosis but is not essential for its induction. 665 

(A) Schematic representation of RXT inhibition of JAK/STAT-mediated IFN response. (B) PK-15 666 

cells were seeded in 12-well plates and treated with poly(I:C) or SeV in the presence or absence 667 

of JAK-STAT inhibitor RXT. 18 hours post-treatment, whole cell lysates were prepared and 668 

analysed by Western blot using a polyclonal Ab recognising ISG15 or mAbs recognising cleaved 669 

caspase-3, Mx1, RIG-I, or GFP as indicated. A mAb recognising γ-tubulin was used to determine 670 

relative protein concentrations. (C) PK-15 and SK6 cells were seeded in 12-well plates and 671 

treated with increasing concentrations of porcine IFN-α in the presence or absence of poly(I:C). 672 

18 hours post-treatment, whole cell lysates were prepared and analysed by Western blot as in 673 

(A). Experiments were repeated on at least two separate occasions. 674 

Figure 3: Poly(I:C) and SeV induce apoptosis through TLR3/IRF3 and RIG-I/IRF3 signalling 675 

pathways, respectively. (A-F) WT PK-15 and knockout PK-15 cell lines (TLR3-/-, RIG-I-/-, IRF3-/-) 676 

were seeded in 12-well plates and treated with poly(I:C) (A, C, E) or SeV (B, D, F) in the presence 677 

or absence of RXT. 18 hours post-treatment, whole cell lysates were harvested and analysed by 678 

Western blot using a polyclonal Ab recognising ISG15 and mAbs recognising cleaved caspase-3, 679 
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Mx1, or RIG-I as indicated. A mAb recognising γ-tubulin was used to determine relative protein 680 

concentrations. Experiments were repeated on at least two separate occasions. 681 

Figure 4:  Bax directly mediates apoptosis in a manner that relies upon transcription-682 

independent functions of IRF3. (A) Yeast co-transformed with plasmids expressing the indicated 683 

proteins fused to either the GAL4 DNA-binding domain (in pGBKT7) or activation domain (in 684 

pGADT7) were cultured on dropout media to identify interactions. Co-transfection of plasmids 685 

encoding Npro, Bax∆C or IRF3 with the reciprocal plasmid vector (pGBKT7 or pGADT7) served as 686 

negative interaction controls. Co-transfection of the large T antigen (T) and p53 or T and Lamin 687 

served as positive and negative system controls. (B, C) WT and Bax-/- PK-15 cell lines were 688 

seeded in 12-well plates and treated with poly(I:C) or SeV. 18 hours post-treatment, whole cell 689 

lysates were (B) imaged, (C) harvested and analysed by Western blot using polyclonal Abs 690 

recognising ISG15 or Bax and mAbs recognising cleaved caspase-3 or Mx1. (D) Alignments of 691 

porcine, human and murine IRF3 protein sequences implicated in transcriptional activity 692 

(turquoise) were performed in MEGA7. Mutations (pink) were designed in porcine IRF3 (poIRF3) 693 

to generate N-terminal FLAG-tagged WT and S1 mutant (S394A, S396A) poIRF3 fusion proteins. 694 

Conserved (*) and non-conserved residues (-) are indicated. (E) Pools of IRF3-/- PK-15 cells 695 

expressing WT or S1 mutant FLAG-tagged IRF3 were prepared and treated as previously 696 

detailed (B, C). Western blot analysis was performed using a polyclonal Ab recognising the FLAG 697 

epitope (DYKDDDDK) and mAbs recognising cleaved caspase-3 or Mx1. (C, E) A mAb recognising 698 

γ-tubulin was used to determine relative protein concentrations. Experiments were repeated on 699 

at least two separate occasions. 700 
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Figure 5: Npro
 

blocks poly(I:C) and Sendai virus-mediated mitochondrial localisation of pro-701 

apoptotic Bax. (A) WT, IRF3-/- and His-Npro-expressing PK-15 cells were treated with poly(I:C) or 702 

SeV in the presence of 100 µM caspase inhibitor Z-VAD(OMe)-FMK (Bachem). 18 hours post-703 

treatment, cells were treated with Mitotracker and analysed by immunofluorescence using a 704 

polyclonal Ab recognising Bax. Nuclei are stained blue with DAPI.  Scale bars represent 45 μM. 705 

(B) Immunofluorescence images of single cells were collected from the experiment detailed in 706 

(A). Scale bars represent 20 μM. (C, D) Whole cell lysates prepared from replicate samples of (A) 707 

were analysed by Western blot using polyclonal Abs recognising Bax or Npro and a mAb 708 

recognising cleaved caspase-3. A mAb recognising γ-tubulin was used to determine relative 709 

protein concentrations. Experiments were repeated on at least two separate occasions. 710 

Figure 6: Antagonism of SeV-mediated apoptosis in CSFV-infected cells is dependent on the 711 

expression of Npro. (A) WT PK-15 and SK6 cells were infected (MOI of 0.2) with CSFV Alfort, CSFV 712 

Brescia, rCSFV Alfort or ΔNpro rCSFV Alfort as indicated for 72 hr and then treated with SeV. 18 713 

hours post-treatment, cells were treated with Mitotracker and analysed by immunofluorescence 714 

staining using a polyclonal Ab recognising Bax and a mAb recognising CSFV E2. Nuclei are 715 

stained blue with DAPI. (B, C) The percentage of cells displaying Bax localisation to the 716 

mitochondria following each treatment was then quantified; ***: p<.001. Experiments were 717 

repeated on at least two separate occasions. 718 

Figure 7: Model of TLR3 and RIG-I-mediated apoptosis and its antagonism by CSFV Npro. Upon 719 

stimulation with poly(I:C) and SeV, TLR3 and RIG-I initiate apoptosis in an IRF3-dependent 720 

manner, independent of its functions as a transcription factor and characterised by 721 

mitochondrial relocalisation of Bax and activation of caspase-3. IRF3 also triggers induction of 722 
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IFN-β and IFN-dependent and independent upregulation of ISGs which might amplify the 723 

TLR3/IRF3 signalling axis. CSFV Npro (purple), apoptotic signalling (red), IFN signalling (blue) and 724 

uncertain or inferred pathways (?) are indicated. 725 

Table 1: Cas9 target sequences within the coding sequence of each gene and their respective 726 

offsets.    727 

 728 

















 

 
Knock-out 

target 

sgRNA-1 (px461) sgRNA-2 (px462) Offset 

IRF3 GCCGCAAGCCGTGCTTCCAA GGAGGACTTCGGCATCTTCC +13 

TLR3 CTCCATCCAAGGTAGTAAGT ATTTAACACCATCTCAAAGC +1 

RIG-I GATGATGGAGATAGAGAGTC GATGCACTTAAATCTGTCAG +11 

Bax TTCTTGGTAGATGCATCCTG AGCGAGTGTCTCAAGCGCAT +4 


