
 

 

Causal graphs for the analysis of genetic cohort data 1 Oliver Hines1,2, Karla Diaz-Ordaz1, Stijn Vansteelandt1,3, and Yalda Jamshidi2,* 2 
1Department of Medical Statistics, London School of Hygiene and Tropical Medicine, UK 3 2Molecular and Clinical Sciences Institute, St George’s, University of London, UK 4 3Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 5 Belgium 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
*Corresponding Author: 16 Dr. Yalda Jamshidi 17 Molecular and Clinical Sciences Institute 18 St George’s, University of London 19 Cranmer Terrace, London 20 SW17 0RE 21 UK 22 Email: yjamshid@sgul.ac.uk 23 

Keywords: Causal Graphs, GWAS, Mendelian Randomisation 24 



Causal graphs for genetic data 

1 

1 25 
 26 

Abstract 27 The increasing availability of genetic cohort data has led to many Genome Wide Association Studies (GWASs) 28 successfully identifying genetic associations with an ever-expanding list of phenotypic traits. Association, 29 however, does not imply causation and therefore methods have been developed to study the issue of causality. 30 Under additional assumptions, Mendelian Randomisation (MR) studies have proved popular in identifying causal 31 effects between two phenotypes, often using GWAS summary statistics. Given the widespread use of these 32 methods, it is more important than ever to understand, and communicate, the causal assumptions upon which 33 they are based, so that methods are transparent, and findings are clinically relevant. 34 Causal graphs can be used to represent causal assumptions graphically and provide insights into the 35 limitations associated with different analysis methods. Here we review GWAS and MR from a causal perspective, 36 to build up intuition for causal diagrams in genetic problems. We also examine issues of confounding by ancestry, 37 and comment on approaches for dealing with such confounding, as well as discussing approaches for dealing with 38 selection biases arising from study design. 39 
1 Introduction 40 
Genetic cohort data is increasingly used to look for associations between candidate genes or genome regions and 41 specific outcome measures, or else between modifiable risk factors and disease outcomes. Genome Wide 42 Association Studies (GWAS), for example, are a popular and effective approach to analysing Single Nucleotide 43 Polymorphism (SNP) data, which identifies reproducible regions of the genome associated with common traits. 44 Observed GWAS associations, however, are not necessarily indicative of causal relationship, unless one is willing 45 to make additional assumptions on the causal structure of the cohort data. 46 Mendelian Randomisation (MR) is another popular method, which uses genetic cohort data (or GWAS summary 47 statistics) to establish causal effects between two phenotypes. MR seeks to exploit random genotype allocation, 48 which occurs naturally due to Mendelian inheritance. The requisite MR assumptions are strong, and the causal 49 structure underlying the data must be carefully considered so that biases are not unwittingly introduced. Since 50 both GWAS and MR rely on genetic cohort data, it is more important than ever to understand, and communicate 51 the causal structures found in these datasets, so that findings remain clinically relevant. 52 Universal frameworks to study causal structures have emerged in the past few decades, based on potential 53 outcomes modelling[31] or causal graphs[27], contributing towards a modern causal understanding of several 54 existing techniques, such as, randomised controlled trials, instrumental variable, and observational data 55 techniques (propensity score methods and sample matching). Causal graphs may inform both the design and 56 analysis of observational studies, and have successfully been applied to problems in epidemiology[13, 14], social 57 science[4] and economics[21] to represent causal assumptions, and derive causal quantities from observed data. 58 Eliciting and defending causal assumptions requires an expert understanding of the problem at hand. Here we 59 review methods from genomics and genetic epidemiology, highlighting common causal structures which can bias 60 observed associations. We advocate the use of causal graphs, firstly as a formal tool for representing and 61 communicating the causal assumptions regarding data collection and study design, which underly analytical 62 methods, and secondly, for deriving testable implications based on those assumptions. Causal graphs have several 63 attractive properties in this regard. As a communication tool they are inherently diagrammatic and equation-free, 64 aiding interpretability, whilst as a derivation tool one may apply powerful and rigorous mathematical rules, 65 which link causal relations to statistical associations. These rules are summarised in Section 2.1. 66 We will initially introduce causal concepts which form the basis of our discussion. These are then applied to an 67 example of pleiotropy in Section 1.2. Section 2 discusses causal methods for analysing selection biases, using, as 68 an example, the analysis of case-control data for secondary trait association. Here we see the utility of causal 69 graphs in deriving associations between variables which occur under selection. Section 3 then reviews GWAS 70 
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assumptions, addressing issues related to population structure, while Section 4 reviews MR causal assumptions, 71 highlighting several ways in which they may be violated. 72 
1.1 Introduction to Statistical Causal Inference 73 There exists rich philosophical debate on what it means for one thing to cause another[40], however, in the study 74 of causal inference an interventionalist definition is used[27, 13, 18]. In this way, questions of causality are 75 reduced to questions of the type: what would happen if...? 76 For example, for two variables A and B, we say that A causes B if the value that B takes would be different (or 77 different in probability) if we had intervened by setting A to some other value. In this context we might also say 78 that A causally influences B or that B is causally dependent on A. Two variables are said to be statistically 79 
dependent (or associated) if knowing the value of A in some way provides some information about the value of B 80 (or vice-versa). Statistical dependence may arise due to a causal dependence between A and B, but also as a result 81 of a causal dependence of both A and B on a third variable C, as we will see in the example in Section 1.2. 82 Conversely, two variables are statistically independent if knowing the value of A does not provide any 83 information about the value of B (and vice-versa). 84 This notion of causality may also be graphically represented using an arrow[13, 18, 28, 29], for example, A → B 85 reads as “A causes B, but B could not possibly cause A”. This arrow says nothing about the magnitude or direction 86 of the effect that A has on B, just that if we were to intervene on A, then something would happen to B. Using these 87 arrows one can form paths, which are any sequence of variables linked by arrows. For example, if A and B shared 88 a common cause, C, then one may write the path, A ← C → B. All possible paths containing three variables are 89 given in Table 1. A path is causal if all the arrows point in the same direction. The path A → C → B, for example, is 90 causal since A causes C which causes B, therefore if we were to intervene on A, the value of B could be different. 91 Depending on the directions of the arrows, we also have additional terminology for the intermediate variable, 92 also given in the table. 93 Path Description Terminology for the variable C 

A → C → B A causes B (through C) Mediator
A ← C ← B B causes A (through C) Mediator
A ← C → B A and B share a common cause C Confounder
A → C ← B A and B both cause C ColliderTable 1: All possible paths between three variables (A,B,C), with a brief description and additional terminology for 94 the intermediate variable C 95 On its own, a single path is of limited use, motivating a network structure to represent several paths at once. The 96 causal Directed Acyclic Graph (DAG) is such a structure, which for a set of variables, contains all possible paths 97 between them. Causal graphs are said to be acyclic if there are no causal paths from one variable back to itself. It 98 may seem obvious to say that any two variables, A and B, on a causal graph could either be linked by the arrow A 99 → B, the arrow B → A, or no arrow at all. Each configuration makes different assertions about the impossible 100 causal relationship between A and B. Respectively these are that B is not a direct cause of A, A is not a direct cause 101 of B, or that A and B could not possibly be direct causes of each other. In this sense the arrows which are absent, 102 and those which are present are equally important. Similarly, one must be careful to include common causes of A 103 and B, even if they are unmeasured, since to not do so is to assert that it is impossible for such variables to exist. 104 At this stage it is also useful to introduce some terminology[13, 18, 27, 28, 29], which will become important later 105 on. Firstly, a collider is any variable on a path which is causally dependent on the two variables adjacent to it, as 106 in the final example in Table 1. Secondly, the ancestors of a variable are those which causally influence it (i.e. 107 there is a causal path from each ancestor to the variable), and finally the descendants of a variable are those 108 which are caused by it (i.e. there is a causal path from the variable to its descendants). 109 

1.2 Example using Pleiotropy 110 
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Our first example is inspired by a recent discussion of pleiotropy of the fat mass and obesity-related gene 111 
(FTO)[12]. Consider a Single Nucleotide Polymorphism (SNP) in the FTO gene, such as rs1421085, which has been 112 found to be associated with adiposity and brain function[8]. Suppose that a genetic cohort study has been 113 conducted where, for each individual in the study population, an investigator measures body mass index (BMI), B, 114 cerebral blood flow, C, and genotype rs1421085 in the FTO gene, denoted by F and coded as 0,1 or 2. 115 The original authors suggested that reduced cerebral blood flow in the medial prefrontal cortex may effect 116 impulse control and hence BMI [12]. As an illustration, we will attempt to refute the null hypothesis, that there is 117 no causal relationship between cerebral blood flow and BMI by (1) positing the causal relationships that we 118 believe hold amongst the variables involved; (2) representing these causal relationships using a causal graph; and 119 (3) examining the graph, using formal operations, to derive testable assumptions. 120 Since a person’s genome is assigned before their BMI or cerebral blood flow is determined, we argue that it is safe 121 to assume that B and C could not possibly cause F. This assumption, however, says nothing about whether F 122 causes B or C. Since it is possible that F causes B and C we must include the arrows F → B and F → C in our causal 123 graph. For the purposes of illustration, we will additionally make the strong assumption that no other measured 124 or unmeasured variables causally influence both B and C. 125 The causal graph in Fig.1 represents the causal assumptions posited between F, B and C under the null hypothesis 126 that there is no causal relationship B and C. These assumptions are unnecessarily strong for the purpose of 127 illustration, since additional variables might be included such as age or physical activity level, which are common 128 causes of both B and C. Other violations of our assumption, which could arise due to population structure, are 129 discussed in Section 3. We remark that while the causal graph in this example is perhaps oversimplified, such 130 assumptions are not uncommon, and by using a causal graph representation we are required to be transparent 131 about them. 132  [Figure 1 Here] 133 In the graph in Fig.1, there is no causal path between B and C, but that does not mean that they are statistically 134 independent. In fact one might expect a negative correlation between BMI and cerebral blood flow since those 135 who inherit the FTO variant are likely to have a higher BMI and also a lower cerebral blood flow. This statistical 136 dependency can be read off the graph in the form of the possible path: B ← F → C. It is a general rule that two 137 variables will be statistically independent if all paths between them that contain colliders. For this reason, we can 138 refer to paths that do not contain a collider as open paths and those that do as closed paths. 139 Using our causal graph, we may derive testable assumptions in an attempt to falsify our null hypothesis. Imagine, 140 for example, that we are told the value of B for a particular patient, and are asked to predict their value of C. The 141 value of B may inform our prediction since B and C may be statistically dependent (due to confounding by F). If, 142 however, we are subsequently told the patient’s FTO variant then, under our causal assumptions, a new 143 prediction based on F and B is no better than a prediction based on F alone, since B only informed our prediction 144 in so much as it may have conferred some information about F. 145 This important observation is an example of how one may block open paths, such as B ← F → C, by conditioning on 146 an intermediate variable (F). Conditioning on a variable can be done either by stratifying by that variable or by 147 including it as an independent variable in a regression model for B or C. These conditional independences are 148 essential as they allow us to falsify our causal assumptions. 149 In practice, this means that if one were to stratify our imaginary study population by their FTO gene variant, then, 150 under our causal assumptions, no association between B and C should be observed within strata. An association 151 between B and C within strata is, therefore, evidence that our assumptions are invalid. This could be because our 152 null hypothesis does not hold, and B and C are causally related, or else because the relationship between them is 153 confounded by some other variables, which we have not accounted for. 154 
2 Selection Bias 155 
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Due to the considerable cost of obtaining original genetic cohort data, it is common for case-control data to be 156 repurposed for analysis of a secondary trait, such as human height[16, 44], obesity[25], or plasma lipid 157 concentration[45]. Methods that fail to account for the case-control study design, are known to result in inflated 158 error rates when testing for null association using GWAS [23]. Indeed it has been argued that epidemiological 159 data analysis depends as much on study design and background information, as on the data itself[30]. 160 Gene-phenotype associations, induced as a consequence of study design, are problematic in GWAS analyses 161 because they are indistinguishable from underlying causal associations in GWAS results. Using causal graphs we 162 may gain some insight into how the non-random selection of individuals to the study cohort propagates to non-163 randomness in our variables of interest. We will consider an illustrative example, inspired by a real study on the 164 effect of Sex Hormone Binding Globulin (SHBG) on Type 2 diabetes in women[11]. Consider that the study cohort 165 was recruited on a case-control basis and consists of women with a recent Type 2 diabetes diagnosis (D = 1) and 166 controls (D = 0), with genotyping carried out for all women. We shall examine the issues which arise when this 167 cohort is used to conduct a GWAS analysis, with SHBG as the outcome of interest. 168 SHBG is a glycoprotein, produced in the liver, and the level of SHBG in an individual’s blood plasma will be 169 denoted by H. The original authors found that high levels of SHBG were associated with a lower risk of Type 2 170 diabetes and for this example we shall assume that diabetes status does not causally influence SHBG level. 171 Imagine also a specific SNP, G, which does not causally influence SHBG, but does causally influence diabetes 172 diagnosis by some other mechanism. As with the example in Section 1.2 we shall make the “no unobserved 173 confounding” assumption, i.e. that there are no common causes of H, G, or D that we have not accounted for. 174 Due to the case-control design, diabetes status D causally influences selection to cohort, S. By definition S = 1 for 175 all women in the cohort and S = 0 for all other women in the population as a whole. Our causal assumptions are 176 represented by the causal graph in Fig.2a. 177 [Figure 2 Here] 178 Under these assumptions, G and H are statistically independent as there are no open paths between them. One 179 would expect, therefore, to observe no association between G and H for women sampled from the population. Our 180 cohort, however, is not randomly sampled from the population, but instead we observe only those for whom S = 1. 181 This is equivalent to an unavoidable stratification by S, which allows us to observe only the S = 1 stratum. In this 182 stratum, a “spurious” association between G and H may be induced, which we demonstrate by first examining the 183 
D = 1 and D = 0 strata separately. 184 In the cases group (D = 1) an association between G and H would be observed, since, if an individual’s genotype 185 suggests they are unlikely to have diabetes, then their diabetes status is more likely due to a low level of SHBG, 186 and vice-versa. For women in the control group (D = 0) an association between G and H would be observed, since 187 women in this group are less likely to carry the genotype associated with diabetes and are also more likely to 188 have high SHBG. 189 We see, therefore, that G and H are associated in both the D = 0 and D = 1 strata and that this association must be 190 induced by the stratification process, since G and H are not associated in the population. Worse than this, 191 however, is that stratifying by S also induces associations between G and H because the proportions of each D 192 strata in our cohort are not representative of the population as a whole. For selection problems such as these we 193 have no choice but to consider only the strata S = 1. 194 In this simple example we were able to reason that selection bias may influence our results, however, in other 195 examples it may not be so clear. Causal graphs may go some way to elucidate selection biases. It is a general rule 196 that conditioning on a collider, or the descendants of a collider, induces statistical dependencies between the 197 ancestors of the collider. In our case-control example D was a collider on the path: G → D ← H and we were forced 198 to condition on S, which is a descendant of D. This conditioning resulted in a statistical dependency between G 199 and H (the ancestors of D). This induced dependency is represented by the dashed line on the causal graph in 200 Fig.2b. 201 
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In Section 1.2 we saw how open paths on causal graphs could be blocked by conditioning on intermediate 202 variables. In this example, however, conditioning has the opposite effect. By unintentionally conditioning on 203 colliders, we are effectively unblocking a path that was otherwise closed, thereby inducing associations. Several 204 solutions have been proposed, which allow case-control data to be used for secondary trait analysis in association 205 studies. Example analysis strategies include analysing the cases and controls separately, re-weighting the data 206 using additional models, or including case-control status as a covariate [38, 33]. 207 Biases introduced by conditioning on colliders are generally referred to as collider stratification biases[2]. The 208 inclusion of selection variables in causal graphs, like the variable S in the case-control example, can also be useful 209 for expressing selection and retention assumptions which suffer from similar collider stratification biases[26]. 210 The UK Biobank is an example of a cross-sectional cohort study (n ≈ 500,000) self-selected from a population of 9 211 million individuals invited to participate. The resultant cohort contains a lower proportion of current smokers 212 (11% in the UK Biobank, vs approximately 19% in the general population), with a similar discrepancy observed in 213 educational qualification attainment. For a highly self-selected cohort, such as the UK Biobank, causal graphs may 214 be useful in exposing subtle biases induced by this self-selection. 215 
2.1 D-separation 216 The rules discussed in Sections 1.1 and 2 are collectively known as the rules of d-separation (statistical 217 dependence separation). These rules describe statistical dependencies implied by causal graphs before and after 218 conditioning on variables. Table 2 gives a summary of these rules for all possible paths of three variables. To 219 consider longer, more complex paths one must ‘chain together’ these triplets, and to consider the statistical 220 dependence between variables on the whole causal graph, one must consider all possible paths. 221 For complex, multivariate causal graphs this could result in a laborious manual analysis. Fortunately, however, 222 the tool www.dagitty.net [20] may be used to examine statistical dependence on causal graphs using an online 223 web tool or R package. 224 Path Before conditioning on C After conditioning on C 

A → C → B open closed
A ← C ← B open closed
A ← C → B open closed
A → C ← B closed openTable 2: Summary of the rules of d-separation for all possible paths containing three variables. The two additional 225 columns describe the statistical dependence of A and B before and after conditioning on the intermediate variable 226 

C. 227 
3 Causal Graphs for Genome Wide Association Studies 228 
GWAS studies are a popular and effective approach to analysing SNP data, which identifies reproducible regions 229 of the genome associated with common traits. As of February 2020, the GWAS Catalogue contains 4439 230 publications and 175870 associations[6]. Despite their popularity, it is important to remember that the 231 associations discovered by GWAS are not necessarily causal unless one is willing to make additional assumptions. 232 In this section, we use causal graphs to make these assumptions explicit. Genetic relatedness between individuals 233 in the study population poses an additional, well-known challenge that results in individuals with shared ancestry 234 inheriting similar common variants. Heterogeneous study populations, therefore, complicate the task of 235 separating the contributions of individual genetic variants toward phenotypes of interest. We refer to the 236 problem of heterogeneous ancestry as confounding by ancestry, since this more closely aligns with the language 237 of causal inference. It is also referred to as population structure or population stratification, when at the 238 population level, and kinship, at the familial level. 239 As an illustrative example, we will use Carotid Intima-Media Thickness (CIMT) as a phenotype of interest Y . In its 240 most basic form, one assumes that the study population is in Hardy-Weinberg Equilibrium (HWE), that is, for each 241 
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individual, the value of their value of a particular SNP of interest, G, is drawn from a binomial distribution with 242 some fixed minor allele frequency for the population. 243 Common practice is to model a continuous phenotype, Y , using a model which is linear in G, and other relevant 244 variables, such as age and sex, denoted by the ‘Environmental’ vector, E. When Y is a binary outcome, generalised 245 linear models such as the logistic model, are often used. The linear model for a continuous phenotype, Y , may be 246 written as 247 
  (1) 248 
where ε is a noise term, with constant mean given G and E, and β is a vector of parameters associated with the p 249 environmental variables contained in the vector E. The unknown model parameters, α and β, may be estimated by 250 Ordinary Least Squares (OLS). Ideally we would like to interpret the α parameter as a parameter which quantifies 251 
the influence that the gene of interest has on the phenotype, however, to do so is to make a causal assertion, 252 requiring an examination of causal assumptions. We note that for a discussion of causal assumptions, the exact 253 form of the regression model is not important. Instead, from a causal perspective, we are concerned with the 254 variables which are and are not included in the regression model. 255 One possible causal graph for the basic GWAS analysis, which gives the α parameter the desired causal 256 interpretation is given in Fig.3a. This graph is not unique since it is not strictly required that G and E are 257 independent. Using the running example, the key features of this graph required to interpret α causally are 258 

1. CIMT does not influence the gene of interest, but the reverse may be true. 259 2. CIMT does not influence age or sex, but the reverse may be true. 260 3. There are no variables (observed or otherwise), which are common causes of CIMT and the gene of interest, 261 or of CIMT and age or sex. 262 
The first of these assumptions is justified through the biological understanding that G is assigned before 263 phenotypes are determined, hence reverse causation is not possible. Likewise, the second assumption is 264 reasonable from a biological perspective. Assumption 3, however, is where the basic model breaks down. Under 265 modern theories of Mendelian inheritance, the gene of interest depends on an individual’s parental genotypes, or 266 more generally on their ancestry. Along with the gene of interest, each individual inherits many other genetic 267 variants, G∗, each of which could also have a causal influence over Y . The ancestry of an individual is therefore a 268 confounder as it may be a common cause of both G and Y . 269 This effect is, however, negated if one assumes that Y is monogenic, so is causally affected by only one single SNP. 270 Conversely the effect is amplified for polygenic traits, such as CIMT, which are thought to be affected by multiple 271 genetic variants. 272 [Figure 3 Here] 273 To adequately adjust for confounding by ancestry, the basic GWAS graph Fig.3a must be updated to reflect 274 Mendelian inheritance assumptions. Fig.3b shows a causal graph, modified to include an unmeasured ancestry 275 variable, C, which affects the phenotype of interest through both the gene of interest, G, and other inherited 276 variants, G∗. In this updated causal graph, we see that there are two open paths by which the gene of interest is 277 associated with CIMT, specifically the G → Y causal path and the G ← C → G∗ → Y non-causal path. If one were able 278 to block the non-causal path, then, the remaining association between G and Y must be due to the causal path. 279 One strategy for blocking the path is to condition on ancestry by stratification. Since C is unmeasured, one must 280 assume that the population consists of one strata, which is homogeneous in ancestry with a random mating 281 scheme and no natural selection. Under these assumptions, the HWE model is recovered, whereby G is drawn 282 from the same distribution for all individuals, hence G and Y are not confounded by ancestry. 283 
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The causal graph in Fig.3b made several additional assumptions regarding the ancestry variable, C. The first is 284 that there is no direct path C → Y . Modern epigenetic theory, however, does permit such paths through 285 ‘imprinting’ mechanisms, whereby an individual inherits DNA of the same sequence, whose function is altered by 286 the presence of additional methyl groups. 287 Furthermore, Fig.3b assumes that C and E are independent. This may not be true, however, for a global study, 288 where individuals from different ethnic groups, may have been brought up in different geographical locations, 289 and hence, different meteorological and socio-economic conditions. It is reasonable, therefore, to posit a C → Y 290 path through some unobserved environmental variables. We emphasise again that the arrows absent from a 291 causal graph are important as they represent causal relationships which are assumed not to exist, whilst the 292 arrows represent causal relationships which may exist. 293 
3.1 Using Principal Components to Adjust for Ancestral Confounding 294 
Examining the causal graph in Fig.3b, we discussed how the non-causal path: G ← C → G∗ → Y may be blocked by 295 conditioning on C when one assumes the study population is homogeneous. For heterogeneous populations, 296 however, stratification by C is not possible because it is unmeasured. Instead, the non-causal path can be blocked 297 by conditioning on the remaining observed SNPs, G∗. This involves using G∗ in a regression model for Y , or using 298 
G∗ for stratification. 299 Intuitively, conditioning on G and G∗ removes any dependency between C and Y since, if the full genotype of an 300 individual is used to predict their phenotype, then knowledge of their ancestral genotypes provides no new 301 information to improve our prediction. Using the full genotype in a regression model for Y requires careful 302 consideration, since the number of covariates (SNPs), p, may exceed the number of individuals in the study, n < p. 303 Such ‘high-dimensional’ problems require alternative models and estimation techniques. 304 Due to the high-dimensionality, modifying the linear model in Eq.1 to include the remaining genes as covariates 305 would result in a model which is impossible to fit by OLS. One very common solution is to drastically reduce the 306 dimensionality of the genetic information, using Principal Components (PCs). 307 PCs are used in several ways within genomic analysis: (i) PCs can be used to cluster individuals, either by 308 excluding anomalous individuals from the dataset [1], or else clustering the data for use in a Structured 309 Association analysis, (ii) some PC values may be included as fixed effects in a GWAS analysis, thereby accounting 310 for some of the phenotype variation, which can be explained by the remaining SNPs, and (iii) PCs may be included 311 as random effects in the GWAS analysis, an approach which is equivalent to using a Linear Mixed Model (LMM) 312 [19]. 313 Method (i) may be causally interpreted as stratifying the population into one or more sub-populations, for which 314 we believe that HWE holds. Analysis of each sub-population may be conducted using a basic GWAS analysis. 315 Limitations of this method are that confounding by ancestry is not accounted for within strata and it is not clear 316 how to tune the stratification process. 317 The linear model for methods (ii) and (iii) may be written as 318 
  (2) 319 where P is the vector of q principal components, summarising the genetic data of a particular individual, each 320 component of which has a coefficient given by the γ parameter vector, and where ε has constant mean given G,E 321 and P. In the fixed effect model (method ii), the q-dimensional parameter vector, γ is treated as a fixed covariate, 322 which may be estimated using conventional methods such as by OLS. 323 Alternatively, one may treat the parameters γj as random effects (method iii), by assuming a normally distributed 324 prior for γ, resulting in a LMM. The use of LMMs in genomic data is not restricted to GWAS analyses. They are 325 
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frequently applied to phenotype prediction, heritability estimation, and rare-variant analysis [24]. One key 326 feature of LMMs is that the random effect (given by  above) may be written in terms of a ‘genetic 327 similarity matrix’, which is used to model the covariance between any pair of individuals in the cohort. A more 328 detailed discussion of LMMs and methods for measuring genetic similarity can be found in Appendix A. 329 
4 Causal Graphs for Mendelian Randomisation 330 
Mendelian Randomisation (MR) studies also make use of genetic SNP data, or GWAS summary statistics, with the 331 aim of inferring the effect of a genetically modified exposure (e.g. alcohol consumption) on another phenotype 332 (e.g. cardiovascular disease). GWAS results from multiple cohorts may be used to conduct Two- Sample MR 333 analysis. MR base which is a database of GWAS statistics for conducting Two-Sample MR, contained associations 334 from 1673 GWAS, as of May 2018[17]. Another systematic review estimates a 10-fold increase in published MR 335 studies between 2004 and 2015, with the majority (51%) in the fields of cardiovascular disease and diabetes[37]. 336 MR is therefore increasing in popularity, most likely due to the increasing availability of GWAS summary statistics 337 and large cohorts with genetic and phenotypic data. 338 This section provides an overview of the technique, from the statistical causal inference framework. We refer the 339 interested reader to [40, 7, 32]. 340 
4.1 Instrumental Variable Methods 341 MR exploits the idea that a particular genotype affects the phenotype of interest only indirectly, through the 342 exposure of interest, and that this genotype is assigned randomly (given the parents’ genes) at meiosis, 343 independently of the possible confounding factors. This is essentially using the genotype as a so-called 344 
instrumental variable (IV) for the effect of the exposure on the outcome [9]. This is appealing, as it allows to 345 estimate causal effects event in the presence of exposure-outcome unobserved confounding. Nevertheless, MR 346 makes a number of causal assumptions, known as IV assumptions, which are not always carefully stated and 347 evaluated in applications and are separate from any parametric modelling assumptions, which may also be 348 required. 349 For illustration, we consider a specific example [22] where the interest is to investigate the causal effect of the 350 level of C-reactive Protein (CRP) on CIMT by exploiting random assignment of a genetic variant, G, associated with 351 CRP. Here CRP is referred to as the exposure, X, CIMT as the outcome, Y , and G as the instrumental variable (or 352 instrumental gene). 353 [Figure 4 Here] 354 
Note that the IV causal graph permits unmeasured variables that may influence both the exposure CRP and the 355 outcome CIMT, here denoted by U. The IV assumptions encoded by the causal graph in Fig.4a can be written 356 formally as follows 357 

1. CIMT does not influence CRP, but the reverse may be true. 358 2. Relevance: The instrumental gene is associated with the level of CRP. 359 3. Exclusion restriction: The instrumental gene may affect CIMT only through its effect on CRP. 360 4. Unconfoundedness: There is no variable, observed or otherwise, which is a common cause of the 361 instrumental gene and CIMT. 362 
For assumption 1, domain specific knowledge is generally required to defend the X → Y causal relationship over 363 the alternative, Y → X. For this example, it is usually assumed that proteins causally influence disease outcomes, 364 
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rather than the other way round. Collectively, assumptions 2 to 4 are known as the IV assumptions as they 365 describe the relationship between the IV and the variables U, X and Y . In a randomised control trial (RCT), where 366 the IV is the randomly assigned treatment group, these assumptions are more simple to justify, since the 367 randomisation process is known, and we can engineer the randomised treatment so that it is (a) associated with 368 the exposure, and (b) does not influence the outcome except through the exposure, although in some settings 369 justification of the exclusion restriction remains challenging. 370 In the MR setting, we justify the relevance condition (assumption 2) by choosing instrumental genes following a 371 GWAS analysis. In practice, several candidate instrumental genes are often used to support or discredit the 372 evidence of a single one. The exclusion restriction (assumption 3) is, however, more problematic as genetic 373 variants may have independent pleiotropic effects on multiple phenotypes. Pleiotropic effects violate the 374 exclusion restriction by introducing alternative paths of the type G → Y . 375 Recent developments in MR do allow for some limited pleiotropy, such as MR-Egger[3], which permits a direct 376 path from G → Y in Two-Sample studies (under specific assumptions), and the MRGxE method[36], which allows 377 for pleiotropic ‘Gene-by-environment’ interactions provided they reside on the G → X path. Selection of 378 instrumental genes in MR is, however, an open topic of debate, both in terms of statistical and biological 379 considerations[37]. Recent statistical work considers variable selection methods, such as the Lasso, to select 380 IVs[46]. Whilst the exclusion restriction cannot be proven, it may sometimes be possible to show that they are 381 inconsistent with prior evidence. Methods for doing so include leveraging prior causal assumptions, identifying 382 modifying subgroups, or by use of instrument inequality tests[15]. 383 
Unconfoundedness (assumption 4) prohibits edges of the type U → G, which is reasonably well justified on the 384 basis of Mendelian inheritance. As in Section 3, however confounding by ancestry violates this assumption, since 385 unobserved ancestry variables, C, may causally influence the outcome through their effect on other genetic 386 variants as well as causally influencing the instrumental gene itself. Ancestrally heterogeneous populations are 387 therefore known to violate the unconfoundedness in MR, and practitioners are recommended where possible to 388 use homogeneous cohorts, thought to be in HWE. 389 A modified causal graph, which relaxes the IV assumptions to allow for confounding by ancestry, and limited 390 pleiotropic effects, can be seen in Fig.4b. This graph represents a more general set of causal assumptions, to 391 emphasise the assumptions of the IV graph. The standard IV graph may be recovered by removing arrows from 392 the modified causal graph, or in other words, by assuming certain null causal relationships. 393 If only the G → Y arrow is removed from the causal graph in Fig.4b (i.e. G has no pleiotropic effect on Y ) then G 394 may be used as a conditional instrumental variable, assuming one collects adequate data on the other genetic 395 variants G∗. In a conditional instrumental variable analysis, the gene G acts as an instrumental variable after 396 conditioning on G∗ in the models for X and for Y . This conditioning has the effect of blocking the open paths: G ← C 397 → G∗ → X and G ← C → G∗ → Y . Once blocked, unconfoundedness is no longer violated so G again acts as an 398 instrument, allowing for valid MR analysis with ancestrally heterogeneous cohorts. Conditioning on G∗ may be 399 achieved using the methods in Section 3.1. 400 Violation of any of the IV assumptions would result in invalid causal estimates. We refer the interested reader to 401 [41] for a comprehensive discussion of the challenges faced by MR studies when justifying the IV assumptions and 402 on how to conduct sensitivity analyses. 403 
4.2 Survivor Bias in Mendelian Randomisation 404 One setting where causal graphs are especially useful for evaluating MR assumptions is in the use of genetic 405 instruments to asses survival biases. Here we consider the example given in [42], namely where an MR analysis of 406 the effect of vitamin D levels on mortality is performed using a cohort of ancestrally homogenous, genotyped 407 
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individuals between the ages of 40 and 71 years old. Using causal graphs, we show how survivor bias may be 408 introduced because recruitment to the cohort depends on an individual having survived long enough to be 409 eligible for recruitment. 410 Selection to the cohort depends on T, the lifetime of an individual, being larger than some index time, T0. By 411 definition, an index time is actually assigned only to individuals in the cohort (who are indexed at some point 412 between the ages of 40 and 71), however, we could imagine that individuals outside the cohort could also be 413 given an index time, for example by sampling from the birth register. As before, we will denote selection to the 414 cohort by the variable S, with S = 1 for all individuals in the cohort. 415 Let D be the level of vitamin D at index and assume that it captures the effect on lifetime of an individual’s entire 416 exposure to vitamin D since birth. This assumption is implicit in all MR studies, since to not assume it would 417 generally violate the exclusion assumption, in the sense that we could imagine an additional variable (e.g. 418 adolescent vitamin D level) which causally influences the vitamin D level recorded at index, as well as the lifetime 419 of the individual directly. 420 Finally, we shall assume that an appropriate genetic instrument (e.g. filaggrin genotype) has been recorded, which 421 we shall denote, G, and assume is randomised by Mendelian inheritance, since the cohort is homogenous. As with 422 the standard MR causal graph, we shall permit unmeasured confounding variables which might causally influence 423 both vitamin D level and lifetime. Our causal assumptions for this example are represented by the causal graph in 424 Fig.5a. In this example, S, is a variable which we have no choice but to condition on, hence we must be very careful 425 to consider collider stratification biases, as discussed in Section2. 426 [Figure 5 Here] 427 We see that S is a descendent of D, due to the D → T → S path, and that D is also a collider on the path G → D ← U. 428 Hence, by selecting only individuals who have survived, the ancestors of D (namely G and U) become associated. 429 This violates the exclusion assumption, since association between G and T may arise from either the causal path G 430 → D → T or from the path U → T, where U is associated with G. 431 The association induced by conditioning on selection is illustrated by the dashed line in Fig.5b. Recent work 432 proposes various strategies for MR estimation under survivor bias, using a semi-parametric additive hazard 433 model[42], similar to the canonical Cox proportional hazards model. This relates to similar work on MR for 434 censored survival outcomes[39]. 435 Interestingly, however, this problem of survivor bias disappears when testing the null hypothesis that D has no 436 causal influence on T. Under this null hypothesis, there is, by definition, no D → T arrow, hence G is not an 437 ancestor of T and no association between G and U is induced. 438 
5 Conclusion 439 
We have demonstrated, through examples of the most common analytical techniques employed in genetic studies, 440 that a causal inference framework, and in particular the use of causal graphs, allows the analyst to (i) to represent 441 their knowledge of the causal relationships involved in the question at hand, and (ii) use the rules of d-separation, 442 to query the assumptions under which popular genetic analysis methods lead to causal interpretations. 443 Causal graphs may also inform intuition regarding the advantages and limitations of different analytical 444 techniques from the outset and are useful in deciding which variables should (and should not) be conditioned on 445 to avoid subtle confounding and selection biases, arising from study design or data collection methods. 446 Recognising these biases is necessary so that unbiased estimates of causal effects may be obtained. 447 Despite their utility, causal inference methods, and in particular causal graphs, do have limitations. Unavoidably, 448 expert knowledge is still required to elicit and defend causal assumptions, and it is recommended that sensitivity 449 analyses be conducted to explore the consequences that departures from causal assumptions have on estimates 450 
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of interest. Moreover, even in situation where causal assumptions may be well justified, correct specification of 451 regression models remains an issue. These regression models may be required to adequately block open paths. In 452 Section 3.1, we saw that specification of regression models is especially difficult in genomic applications, where 453 dimensionality reduction strategies are required to condition on high-dimensional genetic information. These 454 strategies come with their own model validity assumptions, separate from the causal ones we have discussed. 455 We reiterate that causal graphs are not the only framework for representing causal assumptions and deriving 456 statistical dependencies, and that this can be done within other causal frameworks, for example[30]. We hope this 457 review may, however, contribute to the discourse of GWAS and MR analyses by allowing causal assumptions to be 458 explicitly acknowledged and communicated in a transparent and intuitive manner. Finally, since causal graphs are 459 common in the communication and development of novel analytical methods, we hope to have contributed to a 460 better understanding of them, thus helping the adoption of new analytical methods in the future. 461 
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List of Figures 612 1 Causal graph representing the causal assumptions between a patients FTO gene variant, F, body mass index, B, 613 and cerebral blood flow, C.    [Page 3] 614 2 (a) Causal graph representing the causal assumptions between a specific gene of interest, G, Type 2 diabetes 615 status, D, SHBG level, H, and selection to the cohort, S. (b) Causal graph when considering only individuals in 616 the cohort (S = 1). The selection variable has been conditioned on, indicated by the box around it. The induced 617 association between G and H is represented by the dashed line.    [Page 4]   618 3 Causal graphs for GWAS analysis. Graph (a) shows the basic causal GWAS model, where the phenotype of 619 interest, Y , is dependent on the gene of interest, G, and some other environmental factors, E. Graph (b) 620 accounts for confounding by the ancestry of the individual, C, which affects the gene of interest, and the 621 remaining genes, G∗. This modified graph assumes that a polygenic trait, Y , depends on both the gene of 622 interest, and the remaining genes. By convention, unobserved (or latent) variables, such as the ancestry 623 variable, C, are circled.    [Page 7]   624 4 Causal graphs for MR analysis. Graph (a) shows the traditional IV causal graph, where the gene, G, acts as an IV 625 for the X → Y relationship of interest, itself confounded by the unmeasured variable, U. Graph (b) shows 626 modifications to graph (a) which relax assumptions by allowing for confounding by ancestry,  and some 627 pleiotropic effects.    [Page 9]  628 5 Causal graphs for MR analysis of a survival outcome. Graph (a) shows the instrumental gene, G, acts as an IV 629 for the D → T relationship of interest where D is vitamin D level and T is lifetime. Graph (b), however, shows 630 
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that conditioning on selection to the cohort, S, which depends on an individual surviving to index time T0, 631 introduces associations between G and U which violate the IV exclusion assumption.    [Page 11]  632  633 
Appendix A Linear Mixed Models 634 
Consider again the linear model in Eq.2. When the model parameters are estimated by OLS, one effectively makes 635 no prior assumptions about the parameter values, other than that they are fixed to some true unknown value. 636 Considering P as a random effect, however, we impose, in a Bayesian sense, a normally distributed prior for637 , where Ip is a p by p identity matrix, σg2 is a hyper parameter and Np (µ,Σ) is a p-multivariate 638 normal distribution with mean µ and variance Σ. 639 By making this prior assumption we arrive at a LMM, which may be written as a model for the full n-dimensional 640 observed phenotype vector, Y . Here bold notation is used to refer to vector (or matrix) quantities with n entries 641 (or rows), each representing a single individual in the cohort. Again In is the n by n identity matrix, 642 
 Y  (3) 643 where K = PPT and P is an n by q matrix where each row represents the vector of PCs for a particular individual. 644 The n by n matrix, K is referred to as the genetic similarity matrix, since the entry Kij is a measure of the genetic 645 similarity between the ith and jth individuals in the cohort, obtained by comparing their PCs. In general one is not 646 restricted to using PCs to define the genetic similarity matrix. In fact several different methods can be expressed 647 by the LMM equation above, using different measures of genetic similarity [19]. 648 
Measures of Genetic Similarity 649 Methods for measuring genetic similarity may be broadly separated into two categories: Those related to the 650 Principal Component Analysis (Principal Components like), and those where some biologically motivated 651 measure of genetic similarity is made. We will refer to methods of the latter type as Identity By Descent like, since 652 they often measure similarity by finding genetic regions which are thought to be identical by descent in two 653 individuals. A brief overview of these approaches is provided below. 654 
Principal Component like 655 
In a conventional PC analysis, the variables from which PCs are constructed (in this case the SNP values) are 656 standardised. Variations exist, however, in how the SNPs are selected, how they are weighted in the 657 standardisation step, and how the resultant PCs are selected. These include: 658 

1. Selection of which SNPs to use for PC analysis: It is possible to include all available SNPs, however, it has 659 been suggested that only variants thought to be causally related to the phenotype of interest should be 660 included [43, 24], since these are the ones which lie on the causal pathway between C and Y . The process of 661 selecting SNPs is known as pruning or thinning. 662 2. The choice of SNP dependent scaling constant before constructing PCs: The intuition behind scaling the SNP 663 value is that sharing a rare variant is greater evidence of common ancestry than sharing a common variant. 664 Scaling values are often estimates of the SNP standard deviation. This may be estimated by the sample 665 standard deviation or using the standard deviation under the Hardy-Weinberg equilibrium model. 666 It has also been suggested that, rather than pruning SNPs, SNPs should be weighted according to their 667 degree of LD, to account for replication of causal information by neighbouring, imputed, SNPs in LD [35]. 668 
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Their proposal uses weights, chosen such that SNPs with high LD are down-weighted. This is implemented 669 in their LDAK software package. 670 3. The number of PC dimensions chosen for inclusion in the linear model: This is often determined using 671 heuristic measures. Each successive PC accounts for a smaller amount of genetic variation in the chosen 672 SNPs. Most methods use estimates for the proportion of variance explained by each PC, for example 673 selecting PCs to exceed some threshold of the total proportion of variance explained, or else choosing an 674 arbitrary number of PCs. 675 In the LMM, it is possible to include all PCs. This is the choice made in the GEMMA software package [47]. 676 This approach is equivalent to measuring the covariance between two individuals based on all chosen SNPs. 677 
Identity By Descent like 678 
Traditional measures for relatedness pre-date modern genomic study and were originally used to study trait 679 inheritance within pedigrees. Using known pedigree information one can construct the probabilities that genomic 680 regions of two individuals are identical-by-descent (IBD) from a recent common ancestor (‘recent’ in so far as it is 681 assumed that there is no intermediate mutation or recombination event). 682 Pedigree based relatedness measures are broadly obsolete in modern genomic analysis for several reasons [34]: 683 (i) When studying natural populations pedigree information is often unavailable or insufficient to account for 684 population structure. (ii) Even when pedigree information is available, it is usually unrealistic to assume that 685 pedigree founders have zero genetic similarity. (iii) The relatedness of any two individuals tends towards one, as 686 the size of the pedigree is increased. 687 Rather than using pedigree information to estimate IBD probabilities, modern theories instead measure IBD by 688 appealing to SNP data itself. These methods generally examine the length and frequencies of similar genomic 689 regions in two individuals and are based on biochemical theories regarding the process by which gametes divide 690 and recombine from two parents. Examples include: FastIBD [5], which estimates the frequencies of shared 691 haplotype distributions; and shared segment detection in PLINK [1]. Reviewing these methods is beyond the 692 scope of this review. 693 



 

 

Table 1: All possible paths between three variables (A,B,C), with a brief description and additional terminology for the intermediate variable C  Path Description Terminology for the variable C 
A → C → B A causes B (through C) Mediator
A ← C ← B B causes A (through C) Mediator
A ← C → B A and B share a common cause C Confounder
A → C ← B A and B both cause C Collider                                  



 

 

Table 2: Summary of the rules of d-separation for all possible paths containing three variables. The two additional columns describe the statistical dependence of A and B before and after conditioning on the intermediate variable 
C.  Path Before conditioning on C After conditioning on C 

A → C → B open closed
A ← C ← B open closed
A ← C → B open closed
A → C ← B closed open                                   



 
 
 
Fig.1 Causal graph representing the causal assumptions between a patients FTO	gene 
variant, F, body mass index, B, and cerebral blood flow, C.  
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Fig.2 (a) Causal graph representing the causal assumptions between a specific gene of 
interest, G, Type 2 diabetes status, D, SHBG level, H, and selection to the cohort, S. (b) 
Causal graph when considering only individuals in the cohort (S	= 1). The selection variable 
has been conditioned on, indicated by the box around it. The induced association between 
G	and H	is represented by the dashed line.     
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Fig.3 Causal graphs for GWAS analysis. Graph (a) shows the basic causal GWAS model, 
where the phenotype of interest, Y	, is dependent on the gene of interest, G, and some 
other environmental factors, E. Graph (b) accounts for confounding by the ancestry of the 
individual, C, which affects the gene of interest, and the remaining genes, G∗. This modified 
graph assumes that a polygenic trait, Y	, depends on both the gene of interest, and the 
remaining genes. By convention, unobserved (or latent) variables, such as the ancestry 
variable, C, are circled.     
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Fig.4 Causal graphs for MR analysis. Graph (a) shows the traditional IV causal graph, where 
the gene, G, acts as an IV for the X	→	Y	relationship of interest, itself confounded by the 
unmeasured variable, U. Graph (b) shows modifications to graph (a) which relax 
assumptions by allowing for confounding by ancestry,  and some pleiotropic effects. 
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Fig.5 Causal graphs for MR analysis of a survival outcome. Graph (a) shows the instrumental 
gene, G, acts as an IV for the D	→	T	relationship of interest where D	is vitamin D level and T	
is lifetime. Graph (b), however, shows that conditioning on selection to the cohort, S, which 
depends on an individual surviving to index time T0, introduces associations between G	and 
U	which violate the IV exclusion assumption.     
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