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A better understanding of the response against Tuberculosis (TB) infection is required

to accurately identify the individuals with an active or a latent TB infection (LTBI)

and also those LTBI patients at higher risk of developing active TB. In this work,

we have used the information obtained from studying the gene expression profile

of active TB patients and their infected –LTBI- or uninfected –NoTBI- contacts,

recruited in Spain and Mozambique, to build a class-prediction model that identifies

individuals with a TB infection profile. Following this approach, we have identified

several genes and metabolic pathways that provide important information of the immune

mechanisms triggered against TB infection. As a novelty of our work, a combination

of this class-prediction model and the direct measurement of different immunological

parameters, was used to identify a subset of LTBI contacts (called TB-like) whose

transcriptional and immunological profiles are suggestive of infection with a higher

probability of developing active TB. Validation of this novel approach to identifying LTBI

individuals with the highest risk of active TB disease merits further longitudinal studies

on larger cohorts in TB endemic areas.
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INTRODUCTION

Tuberculosis (TB), the infectious disease caused byMycobacterium tuberculosis (Mtb), is the leading
cause of death from a single infectious agent worldwide (1). Despite being a long known disease,
the approaches for TB diagnosis and therapy available to date have not yet been able to successfully
control this world health problem. It has been estimated that 1.7 billion people are latently infected
(LTBI) withMtb, fromwhom a small percentage will develop active TB disease during their lifetime.
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Although the classification of the Mtb infection status is
currently dichotomic, divided into latent or active TB, it is clear
that there is a spectrum of different TB infection stages (2, 3). The
spectrum includes, among others, people who have cleared the
infection, latently infected individuals, or those with a subclinical
or incipient TB infection. Unfortunately, the Tuberculin Skin
Test (TST) and Interferon Gamma Release Assays (IGRA)
cannot differentiate between LTBI and active TB, nor identify
the different stages of Mtb infection, or the people at higher
risk of developing active disease. Furthermore, the diagnosis
of LTBI using these tests can lead to both false positive and
negative results (4). Although IGRA provides a greater specificity
over TST (5), T-cell responses to mycobacterial antigens persist
even after the infection has been cleared. As a result, the LTBI
diagnosis may include a broad spectrum of individuals, from
those that have cleared the infection to those with a high risk of
progression to active TB.

The screening of Mtb-infected individuals is of great
importance for TB prevention programs. In order to control and
eliminate TB disease worldwide, theWorldHealthOrganization’s
(WHO) “End Tuberculosis Strategy” recommends the early
diagnosis and treatment of LTBI people at higher risk of infection
(6). However, the treatment regimens for latent TB infection
are not devoid of potential toxicity and drug-related adverse
effects. Since the estimation is that only 5–10% of LTBI patients
will eventually progress to active TB disease, it is desirable to
improve the identification of those individuals with higher risk
of TB progression, as they would benefit the most from receiving
anti-TB treatment.

The gene expression profiling has proved to be a potent
tool for the identification of different events involved in TB
infection. Several studies have been conducted using whole-
genome microarrays (7–12) and less frequently RNA-seq (13)
that proves the suitability of transcriptomics to identify the
key mechanisms of TB infection. However, the identification
of the events that precede the progression to active TB are
not yet fully understood. Although recent works have provided
information of these mechanisms (14, 15), further studies
are needed to identify common features within cohorts from
different locations. In addition, new approaches that allow
the identification of different profiles within LTBI individuals
without the requirement of a long-lasting follow-up studies are
also of interest.

In this work, we have conducted an RNA-seq gene expression
study in patients recruited in two different countries (Spain
and Mozambique) in order to identify a robust signature of the
mechanisms that define the infection. The gene expression profile
was used to study the heterogeneity within LTBI individuals
applying a machine-learning based procedure. We found a
percentage of these individuals showing immunological and
transcriptomic features of active TB profile that suggest a
correlation with the events that take place before progressing
to active TB. Based on our results, we propose that there is a
specific list of genes expressed in peripheral blood that could
discriminate between the two groups of LTBI persons (NoTB-like
and TB-like). The early identification of individuals with a TB-
like profile, with higher probability for progressing to TB, opens

the possibility to target more accurately the recommendation for
receiving preventive TB treatment.

MATERIALS AND METHODS

Recruitment of Study Participants
The RNA-seq analysis was performed on samples from two
newly recruited cohorts, one from Galicia (Spain) and the
second from a high-burden TB country (Mozambique), used
for validation purposes. Both cohorts included pulmonary TB
patients and their contacts, classified as uninfected (NoTBI) and
LTBI contacts.

Participants were recruited between September 2015 and
February 2018 at the Tuberculosis Unit in the “Complexo
Hospitalario Universitario de Pontevedra” (Galicia, Spain) and
the “Centro de Saúde da Machava II” and the “Centro de Saúde
de Mavalane,” both based in Maputo, Mozambique.

Contacts were diagnosed either as LTBI or uninfected
(NoTBI) according to the Spanish consensus for TB diagnosis
(16) based on the results of the TST and/or the IGRA
QuantiFERON R©-TB Gold in-tube (QFT-GIT) test. In the case
of the Mozambican cohort, LTBI or NoTBI diagnosis was based
only on the IGRA results. In those patients with an initial negative
result, this was repeated 8–10 weeks after the last possible
exposure to Mtb in order to rule out a false negative result
before the “window period” (17). Active TB disease was ruled
out in TST/IGRA positive contacts if they showed no clinical
manifestations of the disease, a normal chest X-ray and negative
microbiological readout.

The study was approved by the Galician Ethics Committee
(registry number: 2014/492) and the National Bioethics
Committee for Health of Mozambique (reference number
298/CNBS/2015). All Participants gave their written informed
consent after appropriate counseling prior to enrolment in
the study.

Inclusion and Exclusion Criteria
Newly diagnosed pulmonary TB patients with microbiologically
confirmed M. tuberculosis in respiratory specimens were
recruited prior to initiation of anti-TB treatment or within
the first 5 days of treatment due to logistic reasons. TB
contacts included healthy people exposed to a pulmonary
microbiologically confirmed TB index case. In order to have
a controlled cohort of people not suffering from any other
condition that could interfere in the TB study, people matching
the exclusion criteria summarized in Table 1were not considered
for study.

Tuberculin Skin Test and Interferon Gamma
Release Assay Test
TST or QuantiferonTM TB Gold In-Tube (QFT) (Cellestis Ltd,
Carnegie, Australia) were both performed at the first visit to
the clinic.

TST was conducted according to the Mantoux method, with
2 units of tuberculin RT-23 (PPD, Statens Serum Institute,
Copenhagen, Denmark), following the standardized protocol.
The induration diameter was measured at 48–72 h. A positive
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TABLE 1 | Exclusion criteria for participants’ recruitment.

Exclusion Criteria

All participants Having received anti-TB treatment before

HIV co-infection irrespective of CD4 count

TST (Tuberculin Test) in the last 3 months

Immunosuppressive treatment (Prednisone > 10 mg/day or

equivalent; TNF blockers; cancer chemotherapy). Inhaled

corticosteroids (At least during the previous month).

End Stage Renal Disease Diabetes

Alcoholism (as confirmed by the attending physician)

Patients with autoimmune disorders or any other

immunosuppressive state (as confirmed by the attending

physician)

Pregnant women

Unwilling to participate

Being under 18 years old*.

Contacts only Previous TB diagnosis

Previous positive TST/IGRA documented

Previous old healed lesion on chest radiography

Recent (<3 months) vaccination with live-attenuated strains

Any other active infection during the previous month

IGRA result indeterminate

TST was defined as an induration of ≥ 5mm following Spanish
national guidelines (16). TST conversion to positivity was
indicated by an increase in induration diameter of at least 10mm
over a previously negative TST result.

The TB Quantiferon Gold Kit was used to detect the presence
of Interferon gamma produced by T cells in response to TB
antigens, following themanufacturer’s instructions. Samples were
previously frozen and stored at −80◦C until analysis, 3–4 weeks
later. The cut-off value for a positive test was 0.35 IU/mL.

Blood RNA Isolation and Sequencing
Whole blood RNA was isolated from 2ml of blood collected
in EDTA-coated vacutainer tubes (BD Vacutainer, USA). After
removing the plasma fraction, RNA was isolated using the
QIAamp RNA Blood Mini kit (Qiagen; Hilden, Germany)
following the manufacturer’s instructions. Isolated RNA was
stored at −80◦C until their analysis and a small fraction was
used to evaluate its quality. The RIN value was assessed using
an Agilent 2100 Bioanalyzer and the Agilent RNA 600 Nano Kit
(Agilent Technologies; CA, USA). Only samples with a RIN value
> 7 and a minimum concentration of 20 ng/mL were sequenced.

Whole blood RNA sequencing was performed on an Ion
Proton sequencer (Ion Torrent, Thermo Fisher Scientific; CA,
USA). Poly(A)-mRNA fraction was enriched processing 400–500
ng of total RNA with the Dynabeads R© mRNA DIRECTTM

Micro Kit (Thermo Fisher Scientific; CA, USA) according to
the manufacturer’s protocol. The enriched mRNA was then
used to prepare barcoded libraries with the Ion Total RNA-Seq
Kit v2 (Life technologies- Thermo Fisher Scientific; CA, USA)
following the manufacturer’s instructions. Library construction
and sequencing were performed by the personnel of the Genomic
Service at the Scientific and Technological Research Assistance
center (CACTI) (Vigo, Spain). Fastq files were then used to
quantify the gene expression.

RNA-seq data generated and analyzed in this work have been
deposited in the ArrayExpress database at EMBL-EBI under the
accession number E-MTAB-7830.

Gene Expression Quantification and
Downstream Analysis
Single-end raw reads were quantified following the irap pipeline
version 0.8.5.p8 (18), using Kallisto (19) and the reference
genomeGRCh38 (release 90). Differentially expressed (DE) genes
between groups were identified using DESeq2 (20) R-package
(version 1.18.1). The default parameters of DESeq2 were used,
with the TB group as the condition following the model design:
“design = ∼ condition.” Genes with an adjusted p-value (p.adj)
<0.01 or <0.05 and an absolute log2(Fold-change) >1 were
considered significant in terms of differential expression. In order
to rule out the influence of having started the anti-TB therapy,
we compared the TB patients that were within the first 5 days of
treatment, with those that had not started it. No DE genes were
found between them (data not shown), hence all TB patients were
studied together in following steps.

The list of DE genes was used to perform a pathway
enrichment analysis using the ReactomePA R package (21) and
a hierarchical clustering analysis with the pheatmap R package
(version 1.0.12). Normalized counts of the DE genes were used
as the input, obtained from the DESeq2 Variance stabilizing
Transformation (VST) function. Rows (i.e., genes) were scaled
using the pheatmap “scale= row” parameter.

Machine Learning-Based
Class-Prediction Analysis
The free software WEKA (22) was used to conduct a class
prediction study based on the DE genes derived from the
Spanish cohort (train set). The train set was used to evaluate
the performance of three candidate algorithms (Naïve Bayes,
Random Forest and SMO) using a Leave-one-out cross-
validation (LOOCV) procedure. In order to avoid gene selection
biases, each round of the LOOCV included: (i) a new DE analysis
using DEseq2 over the train samples (n-1) (ii) identification of
the DE genes derived from the train samples; (iii) the model
training using the train samples and the selected DE genes and
(iv) the evaluation of the model using the remaining test sample.
The algorithm with the best performance in the LOOCV was
selected and a classification model was built using the expression
levels of the DE genes derived from the analysis of the train
set. The model was validated on the test set (Mozambique). The
validated model was used to further classify the LTBI samples
based on the expression of selected genes that differentiate
between (confirmed) infected and uninfected people.

ANALYSIS OF CIRCULATING
LEUKOCYTES AND PROTEIN
CONCENTRATIONS IN BLOOD

The different distribution of circulating leukocytes and selected
protein concentrations in blood from LTBI participants were
further analyzed.
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TABLE 2 | Demographical composition of the Spanish and Mozambican cohorts.

NoTBI LTBI TB

Spain

Total 41 27 28

Males (%) 19 (46.3) 16 (59.3) 23 (82.1)

Age mean (range) 39 (19–76) 48 (19–71) 41 (21–72)

Mozambique

Total 9 16 37

Males (%) 4 (44.4) 7 (43.8) 25 (67.6)

Age mean (range) 35 (9–80) 32 (8–59) 32 (13–61)

The leukocyte count was performed using a starting volume
of 165 µL of whole blood on a hematology analyser (Beckman
Coulter DXA1 800; CA, USA) following the manufacturer’s
instructions. The absolute number of white blood cells was
expressed on millions of cells per mL or in percentage of total
population [(number of cells from a specific population / total
number of cells)× 100].

Serum samples were obtained from 10mL peripheral venous
blood collected in serum separator tubes SST II Advance
(Vacutainer, BD; Plymouth, UK) and stored at −80◦C until its
use. The following protein concentration was evaluated using
customized Milliplex kits (Merk, Millipore; USA) following the
manufacturer’s instructions: IL-6, IL-7, IP-10, TGFα, TNFα,
BCA-1, and IL-27. Data from the reactions were acquired with a
MagPix device (Luminex; Austin, Texas, USA) with the xPonent
4.2 software. A calibration curve was built with this software
based on the standards’ concentrations and median fluorescence
intensity and used to obtain the concentration of each sample
(pg/ml). Leukocyte counts and multiplex data were analyzed
using the non-parametric Mann-Whitney test. Differences were
considered significant when the p value was <0.05. Statistical
analysis was performed in PRISM (GraphPad Software v6, San
Diego, California).

RESULTS

A total of 96 individuals in the Spanish cohort and 62 in
Mozambique were recruited during this period (Table 2).

Different Gene Expression Profile Between
Active TB Patients and Their Contacts
A preliminary evaluation of the gene expression profile
performed by a principal component analysis (PCA) showed that
active TB patients presented marked differences compared to
both their contact groups (LTBI and NoTBI) in the two settings.
However, the expression pattern across contacts did not show
a clear separation between the two subgroups (Figure S1). No
gender bias was observed in the samples distribution along the
PCA (Figures S1C,D).

Differential Expression Analysis
A differential expression analysis was performed using the
data from the Spanish volunteers (training set). We performed

pairwise comparisons between the three groups and found 259
DE genes between Active TB and NoTBI contacts (Figure 1C
and Table S1) and 133 DE genes between Active TB patients
and LTBI contacts (Figure 1D and Table S2). As shown in
the Venn diagram (Figure 1B), these two signatures have 87
genes in common. When we compared the two contact groups
between them, we could not find any gene with significant
differential expression.

Biological Processes Involved in
TB Infection
A pathway enrichment analysis showed that common pathways
differentiate active TB from NoTBI and LTBI contacts (Figure 2)
(Tables S3, S4). These included the neutrophil degranulation
cascade; expression of several defensins and antimicrobial
peptides; the complement cascade; interferon (type I and II)
signaling; or the activation of matrix metalloproteinases and
degradation of collagen and extracellular matrix. The majority of
the genes involved in these pathways were up-regulated in active
TB patients.

Other genes up-regulated in active TB compared to
either one or both contact groups included genes involved
in the B-cell function (MZB1 and CD24); Vitamin B12
carriers (TCN1 and TCN2); T-cell regulation (PDCD1LG2,
CD274 and VSIG4) or cell division and migration, among
others. In addition, an unexpectedly high number of genes
coding for immunoglobulin chains were up-regulated in
active TB (p.adj < 0.01) compared to NoTBI, but not to
LTBI contacts.

Different Gene Clusters Define the
Expression Profile of TB Study Groups
A hierarchical clustering analysis demonstrated that active TB
patients and NoTBI contacts could be differentiated based on
the expression pattern of the 259 DE genes signature, with just
a few exceptions (Figure 3A). On the other hand, active TB and
LTBI formed three separated groups based on the expression of
the 133 DE genes (Figure 3B). These clustering patterns were
verified in the setting from Mozambique (Test Set, Figure S2).
It should also be noticed that TB patients that were under
treatment for 4–5 days before inclusion tend to cluster together
(Figures 3A,B).

This analysis also showed different gene clusters
within groups. Part of the active TB patients were
characterized by up-regulation of genes involved in
neutrophil degranulation, antimicrobial peptides and the
extracellular matrix organization (Figure 3A cluster II
and Figure 3B cluster III); other patients had a profile
with a higher expression of genes of the interferon (IFN)-
signaling, antigen presentation or the complement cascade
(Figure 3A cluster II and Figure 3B cluster III) while others
overexpressed genes from all these events. The differences
between active TB and NoTBI contacts also included an
independent cluster of immunoglobulin chain-coding genes
(Figure 3A cluster III).
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FIGURE 1 | Summary of the differentially expressed (DE) genes in the pairwise contrasts comparing the TB study groups. (A) Total number of DE genes (adjusted p
<0.01 and absolute Log2 Fold Change (L2FC) >1) and number of up- or down-regulated genes. (B) Venn diagram with the overlapping genes between the different

signatures. The volcano plots highlight the genes with significant differences between (C) active TB patients vs. uninfected (NoTBI) contacts and (D) active TB patients

vs. contacts with latent infection (LTBI). The Top-30 most modulated (genes with the greatest absolute fold change) genes were labeled.

Heterogeneity of Transcriptional Profiles
Within the LTBI Group
Our results suggested a heterogeneous transcriptional profile
within LTBI patients. On the one hand, the lack of DE genes
when compared to NoTBI contacts suggests a greater proportion
of people with similar profile to uninfected contacts. On the
other hand, a proportion of LTBI contacts clustered together
with active TB patients (Figure 3B), indicating similarity between
them. Altogether, this suggests two different profiles within
LTBI contacts.

In order to study this heterogeneity and identify the LTBI
contacts that could really have an infectious process, these
participants were classified based on the expression of the 259
genes that differentiated active TB from NoTBI, as shown in
Figure 4. For that, a Random Forest algorithm was selected
based on the LOOCV result (84% accurately classified samples,
85% sensitivity, 82% specificity) to create a classification model.
The model was validated in the independent cohort from
Mozambique (test set), showing an accuracy of 89% correctly
classified instances and 89% sensitivity (Table S5).

LTBI samples were classified applying this model, resulting
in 22,2% of individuals classified as infected (TB-like) and
the remaining 77,8% as uninfected (NoTB-like). The different
expression profile between the TB-like and the NoTB-like
subgroups were further explored, but comparing the expression
of all genes annotated on the reference genome (34947

annotations). A total of 150 DE genes (p.adj <0.05) were
found between these two groups (Figures 5A,C). Moreover,
NoTB-like contacts presented no DE genes compared to NoTBI
(Figures 5A,D) but 480 DE genes compared to active TB patients
(Figures 5A,F). On the other hand, TB-like contacts presented
great differences compared to NoTBI contacts (Figures 5A,E),
but not compared to active TB patients (Figures 5A,G). A Venn
diagram (Figure 5B) showed that there is an overlap of 96 genes
between those that differentiate the NoTB-like group from both
TB and TB-like. Likewise, there is an overlap of 56 genes between
those differentiating TB-like and both NoTBI and NoTB-like.

The 150 DE genes differentiating TB-like and NoTB-like
contacts were mostly up-regulated in the TB-like subgroup
(Figure 5C and Table S6). A pathway enrichment analysis
showed that the interferon (type I and II) signaling and the
complement cascade were the main processes explaining these
differences, followed by the kinetochores signaling (Figure 6).
Also, as in the case of TB patients, an unusually high number
of genes coding for immunoglobulin chains (41 in total) were
up-regulated in the TB-like subgroup, along with other genes
related to the effector function of B cells (MZB1, JCHAIN) and
immunoglobulin receptors (FCGR1A and FCGR1B).

This expression profile was suggestive of an infectious process
in the TB-like group. However, according to local and WHO
guidelines, treatment is indicated in LTBI contacts (16, 23), so
we could not investigate their progression, or not, to active

Frontiers in Immunology | www.frontiersin.org 5 July 2020 | Volume 11 | Article 1470

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Estévez et al. Transcriptional Heterogeneity in TB Infection

FIGURE 2 | Reactome Pathway Enrichment Analysis of genes differentiating Active TB vs. NoTBI (A) and vs. LTBI (B). The Gene count indicates the number of genes

from the input list found on each pathway. The adjusted p-value (p.adj) indicates the significance of the enrichment.

TB. In order to overcome this limitation, we used the 16-gene
signature proposed by Zak et al. (14) to identify people at risk
of developing active TB in our LTBI patients. An unsupervised
hierarchical clustering analysis (Figure S3) showed that 5 out
of the 6 TB-like individuals clustered together based on the
expression of this 16-gene risk signature in a cluster that also
includes 2 NoTB-like individuals. The remaining 19 individuals
classified by our model as NoTB-like are clustered in a different

group, which includes one TB-like individual according to
this signature.

LTBI Subgroups Present Immunological
Differences
The two LTBI subgroups also showed differences in
immunological parameters that were studied as part of the
TB profile in our laboratory (Table 3). These data showed that
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FIGURE 3 | Hierarchical Clustering analysis of the active TB patients and their contacts from the Spanish cohort based on the expression of the differentially

expressed genes. (A) Heatmap based on the 259 DE genes between Active TB and NoTBI contacts. (B) Heatmap based on the 133 genes between active TB and

LTBI contacts. Each column of the heatmaps represents one sample and each row represents one gene. Both the samples and the genes have been clustered based

on the similarity of their expression pattern. The color of the cells indicates the expression of each gene for the corresponding sample. The main enriched pathways

related to each gene cluster are included.

the TB-like contacts had higher levels of leukocyte counts,
higher percentage of circulating monocytes and also higher
concentration of IL-6, IL-7, IP-10, TGFα and IL-27 in serum,
compared to NoTB-like contacts (p < 0.05).

DISCUSSION

The present study aimed to identify mechanisms of the immune
response against TB infection that provide a better understanding
of the disease and help with the identification of different profiles
within the latently infected contacts.

In our work, we identified a robust 259-gene signature that
differentiates active TB from uninfected contacts and a 133-gene
signature to discriminate active TB and LTBI. Our results showed
that one of the most important innate effector mechanisms in

TB patients are the neutrophil degranulation cascade and the
expression of antimicrobial peptide genes, in agreement with
previous works (7, 15). Among genes coding for antimicrobial
peptides we found several defensins, which are believed to play
a role against Mtb infection (24, 25), and metalloproteinases,
demonstrating their role in TB pathogenesis (26, 27). We also
found genes that could be related to intracellular bacilli survival
inside macrophages (ORL1) (28) or genes (TCN1 and TCN2)
coding for two carriers of cobalamin (vitamin 12), a metabolite
that could play a role in Mtb pathogenesis (29). A greater
expression of those carriers in active TB patients could benefit the
mycobacteria survival inside the host by enhancing Vitamin B12
uptake. Other genes showing higher expression in TB patients
were syndecans (SDC1, SDC3, and SDC4), suggesting a role
for these molecules during TB infection, and the complement
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FIGURE 4 | Schematic representation of the steps followed to classify the

LTBI samples. Differentially Expressed (DE) genes between patients with

confirmed infection (28 Active TB) and uninfected individuals (41 NoTBI) were

used to create a class-prediction model. A leave-one-out Cross-validation

(LOOCV) was used to select the classification algorithm. Random Forest

algorithm, the one with the best performance in the LOOCV, was used to build

a class-prediction model using the samples from the Spanish cohort (training

set) as an input. The model was validated on an independent Mozambican

cohort (test set). The validated model was then applied to the LTBI samples

from the Spanish cohort to study their similarity to either the active TB patients

or the uninfected contacts. Two subgroups were identified within the LTBI

contacts, named TB-like and NoTB-like.

cascade and type I and II interferon signaling, supporting
previous transcriptomic studies (8, 13, 30). Genes from the
complement cascade have been seen to be substantially down-
regulated during the first week of treatment (31). Related to this,
we observed that the small proportion of patients under 4–5 days
of treatment included in our work tended to cluster together and
showed a lower expression of these genes, as seen in the heatmap.
However, despite these patients, genes from the complement
cascade were amongst the top-30 most up-regulated genes in the
TB signature. This indicates the robustness and importance of
these genes during TB infection.

Our results also showed a high expression of genes coding for
immunoglobulin chains in active TB, not highlighted in previous
transcriptomic analysis (7–9, 12, 32). A greater expression of
these, and other genes such as MZB1 or immunoglobulin
receptors FCGR1A, a proposed hallmark of TB disease (8), and
FCGR1B in active TB patients, indicate the involvement of B cells
in TB infection. Active TB signature was also characterized by
a higher expression of genes involved in T cell regulation (33),
including the Programmed Cell Death 1 Ligand 1 (CD274) and 2
(PDCD1LG2), in agreement with Wang et al. (34).

The gene signatures derived from the Spanish cohort showed
a similar clustering pattern and good classification accuracy

with the Mozambique setting, indicating a robust expression
profile associated with TB disease. This signature was not only
used to provide a classification tool that differentiates confirmed
infection from uninfected people, but also, as a novelty of our
work, it provided a tool for the identification of different profiles
within LTBI group by machine learning.

Latent TB Infection diagnosis is currently based on
the evidence of immune memory against Mtb, without
microbiological, radiological, or clinical evidence of active
TB. The current tests, TST and IGRA, pose a very low Positive
Predictive Value to predict development of active tuberculosis
(35), and they do not differentiate between persistent and
resolved latent infection nor do they discriminate those infected
patients with higher risk for progression to TB disease (36). As a
result, LTBI individuals can include people that may not have the
infection anymore.

Our work showed that at least two profiles can be identified
within LTBI contacts. The majority of them (77.8%) showed a
transcriptional profile similar to that of uninfected contacts, and
we referred to them as NoTB-like. The second subgroup (22.2%),
on the other hand, showed a similar gene expression profile to
those patients with microbiologically confirmed TB. Hence, we
named them TB-like. Our hypothesis is that TB-like contacts,
which present features of TB disease, would be those at higher
risk of developing active TB. In this case, they would benefit the
most from receiving preventive treatment.

Although the expression profile of TB-like contacts presents
similarities with that from active TB, there were also some
discrepancies. For instance, genes related to neutrophil
degranulation or antimicrobial peptides were not part of their
expression profile. This suggests that TB-like contacts may
have started the activation of immune mechanisms involved in
controlling the infection, but have not progressed to the later
events that take place during the active killing of replicative
mycobacteria. This supports the idea that TB-like contacts would
be at the initial stages before progression to active TB.

The main limitation of our hypothesis is that progression to
active TB in TB-like individuals could not be verified, as all LTBI
patients received Isoniazid preventive treatment in accordance
with local guidelines. However, several data in the literature
support our findings and indicate the suitability of our approach.
We showed that, with a few exceptions, the two subgroups
identified here as TB-like and NoTB-like could be separated
in two different clusters based on the expression of the 16-
gene risk signature from Zak et al. (14). These genes, that were
proposed to identify those individuals at risk of developing active
TB, were up-regulated in our TB-like subgroup, which could
suggest its correspondence with Zak’s progressors. In addition,
the expression profile identified in those progressors in the most
proximal stage to the disease onset (15), was also in agreement
with our findings. Like in our study, they identified Type I/II
interferon and complement genes to be involved in early stages
before progression to active TB, while expression of lymphoid,
monocyte and neutrophil genes were found more proximal to
the disease onset. Our results also correlate with those from
Gupta et al. (37), who highlighted the importance of IFN and
TNF signaling pathways amongst 40 transcripts derived from a
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FIGURE 5 | Genes differentially expressed in LTBI subgroups compared between them and to NoTBI and active TB patients. (A) Table summarizing the number of DE

genes on each pair-wise comparison (columns vs. rows). (B) Venn diagram showing the overlapping genes between signatures. (D–G) Volcano plots highlighting the

genes with significant (adjusted p < 0.05) fold Change between groups. Up-regulated genes (Log2(Fold Change) >1) in green and down-regulated genes (Log2(Fold

Change) <-1) in red. The differential expression analysis was made using the DESeq2 R package, comparing all annotations of the reference genome (34947

annotations). Genes PPP1R11 and AC004556, which showed a log2(Fold Change) <-20, are not represented in the volcano plot (C).

meta-analysis of publicly available whole bloodmRNA signatures
proposed to identify incipient TB (who could correspond to our
TB-like group). On the other hand, genes coding for molecules
of the complement cascade, with special importance of C1q,
along with Fcγ receptors (up-regulated in our TB-like subgroup),
were also described to be up-regulated during subclinical TB,
related with a greater presence of antibody/antigen complexes
(38). C1QC was also proposed as a promising biomarker to detect
TB progressors when used in combination with TRAV27 (39).
These, along with our own results, suggest the importance of the
complement signaling during the early events of the disease.

The identification of common patterns with previous studies
gives the notion that the machine-learning approach proposed
here could be useful for the study of LTBI contacts at risk of
progression to active TB, without the need of a follow-up study.
This is of great utility given the WHO’s recommendations of
preventive treatment (23), which makes it difficult to perform
follow-up studies in untreated LTBI individuals. Our approach,

based on the idea that biomarkers of active TB could be used to
identify people at risk of progression to active TB, is in agreement
with a recent study by Roe et al. (40). In their study, BATF2,
an active TB-derived biomarker, was used to identify cases of
incipient tuberculosis among TB-progressors from Zak’s cohort,
with promising results. This not only supports the suitability
of the approach used in our study, but interestingly, BATF2
is also amongst the genes up-regulated in our TB-like group,
supporting a higher risk of progression of these individuals to
active TB. In addition to the mechanisms described above, our
work provides new information of the events that might correlate
with an incipient TB stage. Besides all the above, TB-like contacts
are also characterized by a higher expression of genes involved in
B cell function, T cell regulation and others, that could intervene
inMtb infection, such as syndecans and transcobalamin carriers.

Furthermore, the immunological differences between TB-like
and NoTB-like contacts suggested an infectious process taking
place in the former. On the one hand, we observed an increase in
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FIGURE 6 | Pathway enrichment analysis of the 150 DE genes between TB-like and NoTB-like subgroups. (A) Enriched pathways from the Reactome database. The

color of the bars indicates the significance [adjusted p-value (padj)] of the enrichment. (B) String protein association network. Each node (circle) represents a protein

(identified by their coding gene) and the edges represent protein interactions. The main enriched pathways have been circled in a matching color with the

correspondent Reactome pathway.

TABLE 3 | Immunological variables in TB-like and NoTB-like patients.

Variables NoTB-like TB-like p

Cells

Leukocyte count (106 cells/mL) 6058.57 7700 0.029

Neutrophils (%) 57.95 59.83 1

Lymphocytes (%) 31 26.83 0.413

Monocytes (%) 7.67 9.33 0.043

Eosinophils (%) 2.48 3 0.809

Basophils (%) 0.76 0.5 0.224

Cytokines (PG/ML)

IL-6 42.26 93.36 0.048

IL-7 6.4 23.58 0.02

IP-10 240.12 438.99 0.016

TGFα 9.91 25 0.022

TNFα 34.84 32.51 0.143

BCA-1 23.38 24.84 0.34

IL-27 317.47 579.14 0.013

Bold values indicate those that were statistically significant.

leukocytes and monocyte proportion, suggested to correlate with
risk of progression (41). And higher concentration in TB-like
contacts of the serum cytokines IL-6, IL-7, TGFα and IL-27 and

the chemokine IP-10, a chemokine proposed as a tool to monitor
inflammation and disease activity in TB (42).

While we believe that this approach has a significant potential
to be used for better resolution within the broad spectrum of
LTBI, we do recognize certain shortcomings of our study. Our
cohorts in Spain and Mozambique were relatively small and did
not provide us with an opportunity to perform the longitudinal
studies to test the predictive power of our model. However, we
believe that our findings merit such follow up studies in a larger
cohort of LTBI individuals in an endemic TB setting, so that our
findings could be validated and this concept potentially harnessed
for better management of LTBI.
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