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TMX2 is a crucial regulator of cellular redox state and its dysfunction causes severe brain 

developmental abnormalities. 
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ABSTRACT  

The redox state of the neural progenitors regulates physiological processes such as neuronal 

differentiation, dendritic and axonal growth. The relevance of ER-associated oxidoreductases in 

these processes is largely unexplored. We describe a severe neurological disorder caused by biallelic 

loss of function variants in Thioredoxin (TRX)-Related Transmembrane-2 (TMX2), detected by exome 

sequencing in fourteen affected individuals from ten unrelated families presenting with congenital 

microcephaly, cortical polymicrogyria and other migration disorders. TMX2 encodes one of the five 

TMX proteins of the Protein Disulfide Isomerase family, hitherto not linked to human developmental 

brain disease. Our mechanistic studies on protein function show that TMX2 localizes to the ER 

Mitochondria-Associated-Membranes (MAMs), is involved in posttranslational modification and 

protein folding, and undergoes physical interaction with the MAM associated and ER folding 

chaperone calnexin and ER calcium pump SERCA2. These interactions are functionally relevant 

because TMX2-deficient fibroblasts show decreased mitochondrial respiratory reserve capacity and 

compensatory increased glycolytic activity. Intriguingly, under basal conditions TMX2 occurs in both 

reduced and oxidized monomeric form, while it forms a stable dimer under treatment with hydrogen 

peroxide, recently recognized as signaling molecule in neural morphogenesis and axonal pathfinding. 

Exogenous expression of the pathogenic TMX2 variants or of variants with in vitro mutagenized TRX 

domain induces a constitutive TMX2 polymerization, mimicking increased oxidative state. Altogether 

these data uncover TMX2 as a sensor in the MAM-regulated redox signaling pathway and identify it 

as a key adaptive regulator of neuronal proliferation, migration and organization in the developing 

brain.   
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INTRODUCTION 

The endoplasmic reticulum (ER) is responsible for the folding of one third of the human proteome. 

Protein folding is coordinated by ER chaperones, together with ER oxidoreductases of the Protein 

Disulfide Isomerase (PDI) family1. This family consists of 23 oxidoreductase proteins2 and is part of 

the thioredoxin (TRX) superfamily3. PDIs are characterized by the presence of at least one TRX-like 

domain (potentially catalytically active with sequence including two cysteines, C-X-X-C) and an ER 

retention domain (typically Lys-Asp-Glu-Leu/ KDEL)3; 4. In the oxidizing environment of the ER, PDIs 

with active site cysteines can oxidize thiol groups of newly synthesized polypeptides mediating 

protein folding2; 5, but can also catalyze reduction and isomerization of disulfides in misfolded 

proteins,  facilitating ER-associated degradation (ERAD) during the unfolded protein response (UPR)6.  

PDI mediated protein folding is ATP dependent and relies on precise regulation of calcium influx to 

the mitochondria, necessary for mitochondrial oxidative phosphorylation1 7. Since the ER is the 

major storage site for calcium, specialized ion channels are located at the mitochondria-associated 

membranes (MAMs) of the ER to assure proper calcium transport to and from the ER, e.g. 

sarcoplasmic-endoplasmic reticulum Ca2+-ATPase ATP2A2/SERCA2, inositol 1,4,5 trisphosphate 

receptor type 1 (IP3R1) and voltage-dependent anion-selective channel 1 (VDAC1)1. Besides 

regulating protein folding, some PDI oxidoreductases additionally function in calcium trafficking 

through interaction with these ER calcium channels1; 8; 9. Accordingly, some PDIs show enriched ER 

localization at the MAM10. Through upregulation of calcium transport into the mitochondria, PDIs 

are also able to regulate ATP production, necessary to increase folding mechanisms when misfolded 

proteins aggregate (ER-stress)1; 7; 11. Hence, PDIs and protein folding are important determinants for 

normal mitochondrial bioenergetics and cell survival.  

In humans, altered expression of PDIs has been correlated with neurodegenerative disorders like 

Alzheimer, Parkinson disease and amyotrophic lateral sclerosis12. However, notwithstanding their 

proven biological relevance, little is known about the consequence of inherited pathogenic variants 

in PDIs. At the moment of writing, only one heterozygous recurrent variant in P4HB (OMIM 176790 ) 

(Prolyl 4-hydroxylase, β-subunit) encoding PDIA1has been associated with Cole-Carpenter syndrome 

1 (OMIM 112240), characterized by skeletal malformations (OMIM 176790)12-15. Pathogenic variants 

in non-PDI oxidoreductases from other protein families, e.g. WWOX (OMIM 605131)16, DHCR24 

(OMIM 606418) 17, NDUFS1 (OMIM 157655) 18 ,  and variants in MAM-associated genes, e.g. SERAC1 

(OMIM 614725) 19, MFN2 (OMIM 608507) 20, have been linked to neurodevelopmental and 

mitochondrial disorders.   

Thioredoxin (TRX)-Related Transmembrane proteins (TMX) are five type 1 transmembrane proteins 

belonging to the PDI family2; 3; 21. The best studied of the group, TMX1 (PDIA11) is localized at the 

MAM and regulates calcium trafficking through interaction with the ER calcium pump SERCA21 7. No 

pathogenic variants have been reported in TMX members in relation to human disease until now, 

although two missense variants of unknown significance in TMX3 were proposed to lead to 

microphthalmia22. TMX2 (PDIA12), one of the least studied of the group, is encoded by TMX2 on 

chromosome 11q12.1 (OMIM 616715), is ubiquitously expressed and presents in two isoforms, the 

longest with 296 amino acids being the most biologically relevant as ER resident protein21. The N-

terminal signal sequence (amino acid1-48) is followed by the cytosolic domain (amino acid49-102), 

the single transmembrane domain (amino acid 103-125), the atypical TRX domain (amino acid 167-

170, Ser-Asn-Asp-Cys, SNDC), the ER intraluminal C-terminal domain (amino acid 126-296) and a Di-
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lysine ER retention motif (amino acid 293-296, Lys-Lys-Asp-Lys, KKDK)3; 4. It has been suggested that 

TMX2 is enriched at the MAM location10. Because TMX2 does not contain a typical thioredoxin-like 

active domain (SNDC instead of CXXC), its oxidoreductase activity and role in protein folding have 

been questioned. However, the importance of TMX2 is underlined by the non-viability of 

homozygous Tmx2-/- knockout mice (C57BL/6NJ strain, Mouse Genome Informatics MGI:1914208). 

Here we report microcephaly, polymicrogyria (PMG), complex migration disorders and epilepsy in 

individuals bearing bi-allelic autosomal recessive variants in TMX2. We study the function of normal 

TMX2 and the effect of the variants in human cells providing a mechanistic understanding of TMX2 

function in health and disease, linking PDIs to neurodevelopment. 

MATERIAL AND METHODS 

Ethics statement and biopsy  

The cohort of TMX2 affected individuals (here coded as P1 to P14) includes 10 families of which four 

were gathered through the European Network on Brain Malformations, Neuro-MIG (COST Action 

CA16118), five families through GeneMatcher23 and one family was earlier described in 

supplemental data from a cohort of undiagnosed individuals with malformations of cortical 

development24. All study participants or their legal caretakers gave written informed consent to 

participate in this study and for publication of images, according to Erasmus MC institutional review 

board requirements (protocol METC-2012387). Skin biopsies were sampled before the study for 

routine diagnostic purposes and used to isolate dermal fibroblasts using standard procedures. 

Fibroblasts were tested negative for mycoplasma infection. 

 

Neuropathology 

An autopsy including brain was performed after demise of individual P1 at 14 days of age and 

individual P10 at two days of age. The material was fixed in 4% formalin. Samples from frontal, 

parietal, temporal, and occipital lobes, deep nuclei, cerebellum, brain stem and spinal cord were 

submitted for histological evaluation. Paraffin-embedded samples were cut to a thickness of 5 µm 

and hematoxylin and eosin-staining (H&E) or Lugol-PAS staining were performed according to the 

manufacturer’s guidelines (Hoffmann-LaRoche, Basel, Switzerland). For the age- and gender 

matched control brain, the sample collection was approved by the Institutional Ethical Review Board 

(EP02/21AG) of the Clinical Hospital Centre and School of Medicine, the University of Zagreb, in 

accordance with the Helsinki declaration 2000, and became a part of the Zagreb Neuroembryological 

Collection25. 

 

Genomic and Transcriptomic analysis 

Whole exome sequencing (WES) 

DNA was isolated from blood of the probands and family members and used for exome and Sanger 

sequencing, in nine different laboratories. WES data are deposited internally at the Erasmus MC and 

in each medical institute referring the individuals with TMX2 variants, in respect to the privacy of the 

families. Details of sequencing and analysis pipelines are described in the Supplemental data.  

 

RNA sequencing 

Skin fibroblasts from affected individuals P1, P2 and four different healthy age and sex (male) 

matched controls were cultured to 80% confluence in T175 flasks, before RNA isolation with TRIzol™ 

Reagent (Invitrogen®, 15596026) and RNA cleanup with RNeasy mini kit (Qiagen®, 74106). The 



8 
 

NEBNext Ultra Directional RNA Library Prep Kit for Illumina was used to process the samples. Strand-

specific mRNAseq libraries for the Illumina platform were generated with a poly-A selection and 

sequenced at GenomeScan (GenomeScan, Leiden, The Netherlands). Fastq files from forward and 

reverse reads were aligned to reference genome hg38 with the STAR aligner tool (v.2.4.2a)26. Counts 

per gene were calculated from bam files using the featureCount program with version 27 of the 

genecode hg38 annotation27. For differential gene expression P1 and P2’s samples were compared 

to four male control samples in R (v.3.4.3) (R Core Team (2017). R: A language and environment for 

statistical computing. R Foundation for Statistical Computing, Vienna, Austria) using the edgeR 

package (v.3.20.9)28. Functional annotation clustering of the top 1000 differentially expressed genes 

(p<0.05) was performed with gene ontology Database for Annotation, Visualization and Integrated 

Discovery (DAVID, v6.8)29; 30. Downstream affected biological functions were determined with 

Ingenuity Pathway analysis (IPA, Qiagen®, vs.2018) on all differentially expressed genes with a p-

value below 0.05. 

qPCR 

Skin fibroblasts were cultured in T75 culture flasks, in DMEM with 10% Fetal Calf Serum (FCS), 1% 

PenStrep, Lonza® (DMEM with serum), to 80% confluence. Total RNA was extracted on RNeasy mini 

columns (Qiagen®, 74106) according to the manufacturer’s protocol. Reverse transcription was 

performed on 1 µg of RNA in a total volume of 20 µl, with the iScript cDNA Synthesis kit (Bio-Rad 

Laboratories®) used according to the manufacturer’s instructions. Real time quantitative Polymerase 

Chain Reaction (RT-qPCR) was performed using iTaq™ Universal SYBR® Green Supermix (BioRad®) 

according to manufacturer’s instructions. Primers for RT-qPCR analysis for the experiments shown in 

Fig. 3 are listed in Table S1. 

 

Antibodies  

Primary antibodies used: Polyclonal Rabbit anti-human TMX2 (HPA040282, Sigma®, WB 1:250), 

Monoclonal Rabbit anti-human HSP60 (D6F1, Cell Signaling®, Immunocytochemistry (ICC) dilution 

1:800), Monoclonal Rabbit anti-human CNX (C5C9, Cell Signaling®, ICC 1:50, IP 1:1000), Mouse 

monoclonal anti-SERCA2 ATPase (ab2861, Abcam IP:1:1000), Mouse monoclonal anti-Myc (9B11, 

Cell Signaling Technologies®, WB 1:3000 and ICC 1:500), Mouse monoclonal anti-PDI (1D3, ADI-SPA-

891, Enzo Life Sciences, WB: 1:1000) 

Secondary antibodies used for ICC: Green Goat anti-Rabbit IgG (H+L) Alexa Fluor 488 (1:400, Thermo 

Fisher Scientific®, A11088), Red Cy™3 AffiniPure Donkey Anti-Mouse IgG (H+L) (1:100, Jackson 

Laboratories®, 715-165-150). Secondary antibodies used for WB in 1 in 10 000: Red IRDye® 680RD 

Goat anti-Rabbit IgG (H + L) (LI-COR Biosciences®, 926-68071), Green IRDye® 800CW Goat anti-

Mouse IgG (H + L) (LI-COR Biosciences®, 926-32210). 

 

Plasmid constructs 

Wild-type human TMX2 (NM_015959) was cloned in a pCMV-Entry-Myc-DDK TrueORF Gold vector 

(OriGene®, RC200032). 50 µL semi-competent homemade Escherichia coli XL10-Gold Bacteria strains 

were thawed on ice for 20 minutes and subsequently incubated for 15 minutes with 0.1 µg wild-type 

TMX2 plasmid. Transformation of the bacterial cells was induced through a heat shock at 42°C for 2 

minutes. 800 µL Luria-Bertani (LB) broth (EZ™ Mix, Lennox®) was added to the cells and placed under 

agitation (200 rpm, 40 min, 37°C). Selection of transformed cells was performed overnight on LB-

Kanamycin agar plates at 37°C. Vector-positive colonies were grown to 50 mL midiprep. Plasmid DNA 
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was isolated with the Qiagen® Plasmid Plus Midi kit. The full length and sequence of TMX2 cDNA in 

the plasmid was checked by capillary sequencing before performing the transfections. 

pcDNA™3.1/Myc-His (-)/LacZ (Thermo Fisher Scientific®) was used as a negative control and kindly 

provided by Dr. Mark Nellist.  

 

Site-directed Mutagenesis (SDM) 

Variant TMX2 constructs (TRX domain SNDC to SNDG p.Cys170Gly and affected individuals’ variants 

p.Arg53Cys and p.Arg231Trp) were generated according to manufacturers’ procedures using the 

QuikChange II XL Site-Directed Mutagenesis Kit (Agilent®), wild-type purified TMX2 construct dilution 

(10 ng/µL) and 100 ng/µL primers specified in Table S2. PCR products were transformed in 

ultracompetent Escherichia coli XL10-Gold bacteria supplemented with β-mercaptoethanol in SOC 

medium through a heat shock at 42°C for 30 seconds. Selection, midi isolation and Sanger 

sequencing were performed in analogy with the wild-type construct. 

 

Sanger sequencing of plasmid DNA 

Sanger sequencing of wild-type and variant plasmid DNA was performed as earlier described31. 

Briefly, amplification reactions were performed in a total volume of 20 μl, containing 1× PCR buffer 

with Mg (Roche), 200 μM of each dNTP, 1 μM forward and reverse primer (specified in Table S3), 0.1 

units Fast Start Taq DNA polymerase (Roche), and 25 ng genomic DNA. PCR conditions were as 

follows: 5′ 96°C, 10 cycles of 30″ 96°C, 30″ 68°C (−1°C/cycle), 60″ 72°C, followed by 25 cycles of 30″ 

96°C, 30″ 58°C, 60″ 72°C, and a final extension for 5′ 72°C.  

PCR reactions were purified with ExoSAP-IT (USB). Direct sequencing of both strands was performed 

with Big Dye Terminator chemistry (version 3.1; Applied Biosystems). DNA fragment analysis was 

performed with capillary electrophoresis on an ABI 3130 Genetic Analyzer (Applied Biosystems) with 

the software package Seqscape (Applied Biosystems, version 2.1). 

 

Transfection 

Human Embryonic Kidney HEK293T cells were plated at 5x104 cells/cm2 with or without 24 mm cover 

slips (Thermo Fisher Scientific®) cultured in 2mL DMEM with serum in a 6 well plate or 10 cm petri 

dishes for immunoprecipitation. The next day culture media was replaced with 2 mL DMEM without 

serum (Lonza®). Per 10 cm2, 1 µg plasmid DNA was added to 125 µL DMEM without serum at room 

temperature and 3 µL/10cm2 Lipofectamine™ 2000 Transfection Reagent (Thermo Fisher Scientific®) 

was added to 125 µL DMEM without serum. These tubes mixed and incubated 5 minutes at room 

temperature, prior to transfection. The appropriate volume was added to each dish in a dropwise 

manner. After 3 hours, 10% FCS and 1% PenStrep was supplemented to the dishes. After 24h 

transfection, cells were fixated with methanol for 10 minutes at -20°C or lysed for western blot and 

immunoprecipitation. Transfection was also stable after 48 and 72h (Fig.S3). 

 

Immunoprecipitation (IP) and Mass spectrometry (MS) 

Exogenous TMX2 was immunoprecipitated after transfection in HEK293T cells. Initially, 15 µL EZview 

Red Anti-c-Myc Affinity Gel beads (E6654, Sigma Aldrich®) were washed with non-denaturing TNE-

1% lysis buffer (50mM Tris pH 7.6 + 100mM NaCl + 50mM NaF + 1% NP-40 + 1mM EDTA + Protease 

inhibitor tab Roche®). TMX2-transfected and control Lac-Myc-transfected HEK293T cells in 10 cm 

Petri’s dishes were transferred on ice, washed with 1×dPBS, and lysed with 800 µL TNE-1% lysis 

buffer. To test transfection efficiency and localization, each dish contained a 24 mm coverslip, which 
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was subsequently fixated and immunostained, before adding the lysis buffer. Lysates were 

incubated on ice for 10 minutes and centrifuged at 10000 x g for 10 minutes at 4°C. The supernatant 

was added to the washed beads and incubated overnight under agitation at 4°C. After washing 3 

times with TNE-1% lysis buffer and centrifugation at 1000 x g, 15 sec, 4°C, bead pellets were 

subjected to a Mass spectrometry preparation as described32. Protein Mascot scores and numbers of 

unique peptides were taken directly from the Mascot output and reported. Only hits with a Mascot 

score higher than 40 were taken into account for analysis. 

Mitochondrial respiration and glycolysis determination 

Bioenergetics profiles of human primary skin fibroblasts were generated in real time with a Seahorse 

XF24 Extracellular Flux Analyzer (Agilent Technologies, Santa Clara, Ca, USA) as previously 

described33. Fibroblasts were seeded on a Seahorse XF-24 plate at a density of 6×104 cells per well 

and grown overnight in DMEM with serum at 37 ˚C, 5% CO2. This density ensures a proportional 

response to the uncoupler FCCP (Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone) with cell 

number and resulted in confluent cultures, in which cell replication was further prevented by 

contact inhibition. On the experimental day, medium was changed to unbuffered DMEM (XF Assay 

Medium – Agilent Technologies, Santa Clara, Ca, USA) supplemented with 5 mM glucose and 1 mM 

sodium pyruvate, and incubated 1 hour at 37 °C in the absence of CO2. Medium and reagent acidity 

was adjusted to pH 7.4 on the day of the assay, according to manufacturer’s procedure. 

Mitochondrial respiration was measured as the oxygen consumption rate (OCR), and glycolysis was 

measured as the extracellular acidification rate (ECAR). After three baseline measurements for the 

oxygen consumption ratio (OCR), cells were sequentially challenged with injections of mitochondrial 

toxins: 0.5 µM oligomycin (ATP synthase inhibitor), 1 µM FCCP (mitochondrial respiration 

uncoupler), 0.5 µM rotenone (complex I inhibitor), and 0.5 µM antimycin (complex III inhibitor). 

For galactose experiments, cells were cultured in galactose 10 mM, 10% FCS, 2 mM glutamine, 5 mM 

Hepes and 1% penicillin-streptomycin medium for three days before the bioenergetics assay33.  

A minimum of two Seahorse replicates were performed for each fibroblast line. In each replicate, we 

used six wells for each line. In each run, six wells were always used for a reference primary fibroblast 

line with highly characterized bioenergetics behavior. Three reference lines that were available at 

the Erasmus MC institute have been used33.  

Basal respiration was defined as the average OCR values at baseline. Respiration dedicated to ATP 

production was calculated as difference between basal respiration and the respiration measured 

after oligomycin injection. Reserve capacity was calculated as the difference between the maximal 

respiration (the average OCR of the three measurements following the FCCP injection) and basal 

respiration. The rotenone dependent respiration parameter was calculated as the difference 

between the maximal respiration value and the average OCR values obtained after the rotenone 

injection and was used to evaluate the activity of mitochondrial complex I. Basal glycolysis was 

defined as the average of the 3 baseline ECAR measurements, and the increase in glycolysis after 

blocking ATP synthase was indicated as oligomycin stimulated glycolysis.  

 

TMX2 Redox state assay 

HEK293T cells were transfected during 24 hours with plasmid DNA producing Myc-tagged β-

lactamase control protein (Lac-Myc), wild-type (TMX2) or variant TMX2 (p.Cys170Gly, p.Arg53Cys 

and p.Arg231Trp) in a 6 well plate. Afterwards cells were treated with different ER-stress inducers or 

oxidant/reductant at 37°C with 5% CO2, according to Matsuo et al 34: 6h with 0,5 µg/mL Brefeldin A 
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(BFA; Cayman Chemical® CAS 20350-15-6, 20 mg/mL stock in DMSO), 6h with 5 µM Thapsigargin (TG, 

Sigma® T9033, 1mM stock in DMSO), 6h with 10 µg/mL Tunicamycin (TM, Sigma® T7765, 1mg/mL 

stock in DMSO), 10 minutes with 5 mM DL-Dithiothreitol (DTT, Fluka® CAS 3483-12-3, 100 mM stock 

in MilliQ sterile water), or 10 minutes with 200 µM Hydrogen peroxide H2O2 (Merck®, 822287). Free 

thiol groups were alkylated by washing and 10 min incubating the cells with ice-cold 1× dPBS (Sigma 

Aldrich®) supplemented with 20 mM N-ethylmaleimide (NEM, Sigma®, E3876-5G) and 4× Laemmli 

buffer (3:1) before storage at -20°C. Total protein concentrations were determined by a BCA 

protocol with Varioskan™ LUX multimode microplate reader (Thermo Fisher Scientific®). Equal 

protein concentrations were loaded onto a 4-15% Criterion™ TGX Stain-Free™ Protein Gel (Bio-Rad 

Laboratories®). Proteins were separated in a non-reducing SDS-PAGE with a Criterion™ Cell geltank 

(Bio-Rad Laboratories®) at 100 Volt for 1h40min in Tris-Glycine-SDS running buffer. Proteins were 

transferred by wet blotting to a Nitrocellulose membrane (Amersham Protran 0.45 NC, GE 

Healthcare Life Sciences®) at 100 Volt for 1h at 4°C or alternatively on a Trans-Blot Turbo 0.2 μm 

Nitrocellulose membrane (BioRad®) at 25V, 1.5A for 20 minutes in a Trans-Blot Turbo transfer 

system (BioRad®). After antibody incubation, bands were detected with a fluorescent based 

approach on the Odyssey Infrared Imager (LI-COR Biosciences®). Densitometry analysis to determine 

Dimer/monomer ratios was performed in Odyssey 3.0 Software or Image Studio Lite Version 5.2.  

Statistics 

Statistical tests were performed with GraphPad 8 and are specified in legends of the experiments. 

 

RESULTS 

Clinical overview  

The clinical features observed in all fourteen individuals, in whom we detected TMX2 variants, have 

been summarized in Table 1 and full clinical and MRI description is available in the Supplemental 

Note, Table S4 and Figure 1. Most subjects (11/14) were reported with microcephaly (defined as 

OFC at or below -2.5 SD, for age and sex; Table 1) and, where documented, this was present at birth 

or at the first clinical examination. However, intra-familial discrepancy is present, because only one 

of the two siblings of family 5 was microcephalic at adult age (P5), while the other sibling has a 

borderline normal head circumference (P4) in the third decade of life.  Two other affected 

individuals of family 9 and 10 did not present with microcephaly at the last examination (Table 1, 

P13 and P14). With the exclusion of two individuals (P6 and P14), all have suffered from drug-

resistant epilepsy, occurring in most cases in early infancy, characterized by apnea, epileptic spasms, 

myoclonic seizures, focal seizures with or without secondary generalization, generalized tonic clonic 

(GTC) seizures and in one case possible diaphragmatic myoclonia. Three affected individuals of the 

cohort died during infancy, two of them of severe epilepsy in the early post-natal period. The brain 

imaging of these two is strikingly similar (Figure 1, P1 and P10) and resembles a congenital viral 

(CMV) infection for the presence, besides diffuse bilateral polymicrogyria (PMG), of reduced central 

white matter volume, abnormal appearance of the periventricular borders with an occipital 

pseudocyst. In both cases no infection was documented, and brain pathology excluded the presence 

of inflammatory signs. All subjects, but one (Family 10, P14) surviving beyond infancy present with 

severe developmental delay (Table 1), progressing to profound intellectual disability, cerebral palsy 

with absent ambulation and lack of speech and/or progressive neurodegenerative course. No 

additional extra-CNS malformations or health issues were observed, except for expected 

complications of the underlying brain pathology. Metabolic screening performed in most subjects 
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did not reveal abnormalities of intermediate or energy metabolism. Two individuals have been 

followed in their third decade (P4 and P5): they both showed signs of regression, with loss of motor 

skills and severely impaired cognitive skills and no speech development.  

Structural brain abnormalities were detected in almost all the subjects undergoing MRI scan. In 

seven of the twelve affected individuals who received an MRI scan (Figure 1) a cortical malformation 

has been documented.  Diffuse PMG (small and excessive number of gyri) was observed in five 

individuals (Figure 1, P1, P2, P3, P10 and P12), while the two siblings from family 5 show diffuse 

pachygyric (= thickened and smooth) cortex (Figure 1, P6-P7). The brain imaging of these latter 

siblings had been reported in supplemental data from a cohort of undiagnosed individuals with 

malformations of cortical development24. In three other individuals brain imaging shows 

(progressive) global cerebral atrophy (families 4 and 6). The two remaining affected individuals 

showed an MRI with no cortical malformation (P14) or a hemihypertrophy with frontal dysgyria 

(P13). No brain imaging was performed in individual P8 (Family 6) and individual P11 (Family 8). 

Brain pathology of affected individuals (P1 and P10) 

At autopsy of individual P1 (day 14 postpartum), the head circumference was 34 cm (-2SD) and the 

brain weight 316 g (normal weight at term: 400-450 g). Macroscopically, the brain surface was 

polymicrogyric with the temporal regions being least affected (Figure 2A and 2B).  

Evaluation of H&E stained sections of the frontal, parietal, temporal and occipital cortex showed 

extensive unlayered polymicrogyria throughout the sampled cortical sections (Figure 2E and 2F). 

Undulating bands of neurons extended deeply in the cortex. The insular and parahippocampal region 

were least affected with undulating neuronal bands extending less deep into the cortex. The 

hippocampus was spared. The transition from normal cortex to polymicrogyric cortex was abrupt. 

The molecular layer appeared fused between adjacent gyri causing inclusions of pial vessels in the 

deep cortical region. Leptomeninges overlying the polymicrogyric cortex were focally thickened. 

Overmigration of neurons into the arachnoid space was not noted. The grey-white matter junction 

was blurred under affected cortical areas. The white matter was normal. Heterotopic remnants of 

the germinal matrix were occasionally observed in the periventricular region which is considered 

pathologic given that the affected individual was born at term. Telangiectatic vessels were present in 

the brain stem at the level of the locus coeruleus. Histologically, other brain structures and the eyes, 

especially the retina appeared normal. There were no signs of mitochondrial disease or an acquired 

cause for the malformation, e.g. no calcifications or inflammatory cells. The basal ganglia were 

normal as well as the cerebellum, which consisted of a four-layered cortex including the for the age 

appropriate external granular layer. 

Brain examination of individual P10 (Figure 2C) macroscopically showed a polymicrogyric cortex of 

the occipital lobes, but microscopically the whole cerebral cortex was polymicrogyric, with diffuse 

dyslamination, fusion of molecular layers and blurred grey-white matter junction (Figure 2G). In 

contrast with P1, in the polymicrogyric areas glioneuronal heterotopia were diffusely seen migrating 

over the meninges in P10’s brain.  In the frontal area few calcifications were seen at the grey-white 

matter border, with some calcification of the pericallosal artery, without any other evidence for 

(focal) infection or inflammation. The occipital ependymal layer showed interruptions and gliotic 

changes with some reactive macrophages. The presence of neuroglial cells migrating over the glia 

limitans of the pia into the arachnoid space is typical of the cobblestone malformation. However, 
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there were no additional abnormalities common in the cobblestone malformation, such as 

brainstem and cerebellar hypoplasia35. 

 

Genomic and Transcriptomic analysis 

Biallelic variants in TMX2 were identified in fourteen affected individuals from ten unrelated 

pedigrees by whole exome sequencing (WES), compatible with autosomal recessive inheritance. 

Detailed information on the genomic alterations (cDNA alteration, protein alteration, gnomAD 

frequency, SIFT, MutationTaster and CADD scores) are described in Table S4 and Supplemental 

Results and a schematic overview of the gene and the thirteen discovered variants can be found in 

Figure 3A. TMX2 encodes a transcript of 8 exons (NM_015959.3), which is translated into a protein 

with 296 amino acids. To test the effect of each variant on TMX2 mRNA expression transcriptomic 

analysis was performed.   RT-qPCR in skin fibroblasts from the affected newborn P1 of Family 1 with 

a compound heterozygous mutation in TMX2 (c.164A>C, p.Asp55Ala; c.391dup, p.Leu131Profs*6), 

showed that TMX2 mRNA expression was much lower (nearly half fold), compared to healthy 

controls (Figure 3 B). To determine which of the alleles was still expressed, we performed allele 

specific RT-qPCR (primers specified in Table S1). Results showed that the allele carrying the 

frameshift in exon 4 barely expressed any product (2-3% of total level TMX2 mRNA in healthy 

controls), indicating that very likely the transcript is subjected to nonsense mediated decay (NMD) 

(Figure 3C). When amplifying the other allele, total TMX2 mRNA expression was again reduced to 

approximately half, confirming our previous result (Figure 3B) and showing that the allele with the 

c.164A>C, p.Asp55Ala variant is normally expressed (Figure 3C). 

In Family 2, the proband (P2) had a homozygous TMX2 missense change in the ultimate nucleotide 

of exon 6 (c.614G>A, p.Arg205Gln), with a predicted effect on splicing. RT-qPCR did not show 

significant decrease in expression of TMX2 mRNA in skin fibroblasts from the proband, compared to 

healthy controls (Figure 3B). However, since the variant affected the last nucleotide of an exon, an 

effect on mRNA splicing was suspected. We used RNAseq in combination with Integrated Genomics 

Viewer (IGV) to visualize cumulative transcript reads per exon in a Sashimi plot (Figure 3D) and the 

amount of reads per million were calculated (Figure 3E). The c.614G>A, p.Arg205Gln variant indeed 

affected splicing through introduction of a new internal splice site in exon 6, resulting into four 

different transcripts: regular mRNA, an alternative transcript with a loss of 11 nucleotides within 

exon 6, an alternative transcript with full in-frame exon 6 skipping (loss of 66 nucleotides) and mRNA 

with intron 6 retention (Figure 3E). This latter transcript is also present at low level in healthy 

controls. Individual reads of each transcript are shown in Figure S1. 

In Family 3, individual P3, similar to the variants in individual P1, a combination was found of a 

missense change in exon 1 (c.157C>T, p.Arg53Cys, nearby the p.Asp55Ala of P1, together with a 

nonsense variant leading to a premature stop codon in the last exon of TMX2 (c.757C>T, p.Arg253*). 

The effect of the variants on TMX2 transcription in skin fibroblasts was tested. RT-qPCR showed a 

mean decreased level of TMX2 mRNA expression by 23%, potentially indicating that the premature 

termination codon in the last exon of the transcript partially escapes nonsense mediated decay, as 

being less than 50 to 55 nucleotides from the stop codon at the 3’-end (for TMX2 nt836-891) (Figure 

3B)36. 
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For families 4 to 10 no materials were available to test the transcriptional effect of each variant. 

However, considering lethality in Tmx2 null mice, residual TMX2 transcript can be anticipated 

originating from the missense alleles and/ or the allele creating a new splice acceptor site (P10).   

Gene ontology (GO) analysis of differentially expressed genes in TMX2 pathogenic variants  

Our data clearly indicates that biallelic TMX2 variants lead to reduced TMX2 expression, acting as 

loss of function variants (LoF) (Figure 3). Compared to other TMX family members, only TMX2 is 

expressed steadily from week 8 throughout fetal brain development, even increasing during 

postnatal life (mRNA expression during human brain development retrieved from Allen human brain 

atlas Figure S3). We therefore considered the TMX2 variants as probably explanatory for the early 

neurological manifestation and decided to investigate their effect in detail. 

We performed analysis of RNAseq data from cultured skin fibroblasts of two affected individuals (P1 

and P2), in parallel with three age and gender matched controls, and studied which pathways were 

deregulated.  

Functional annotation clustering analysis  

Functional annotation clustering analysis of the top 1000 significant differentially expressed genes 

(DEGs) (p<0.05), by the Database for Annotation, Visualization and Integrated Discovery (DAVID, 

v6.8) ranked the top cluster of genes as those associated with post-translational modifications, i.e. 

intramolecular or intermolecular disulfide bond formation (Annotation Cluster 1: Disulfide bond p = 

9.9x10-24) and N-linked glycosylation (Annotation Cluster 1: Glycoprotein p= 2.1x10-28 and 

Glycosylation site:N-linked p=2.5x10-27) (Figure 4A). From this cluster of genes, 24 disulfide 

containing genes were subtracted as being the highest deregulated of this cluster in cells from 

affected individuals, having a False Discovery Rate (FDR) lower than 0.05 (Figure 4B). Stringent 

filtering (FDR<0.01) without clustering, uncovered 37 differentially expressed genes of which five 

were indirectly controlled by the UPR or regulate expression of UPR markers, i.e. CXCL5 (OMIM 

600324) 37, DAPK1 (OMIM 600831) 38, HGF (OMIM 142409) 39, LTBP1 (OMIM 150390) 40 and CES1 

(OMIM 114835) 41. Interestingly, the second highest deregulated gene LTBP1 encodes a known 

folding substrate for another PDI protein, ERp46, also known as TXNDC542; 43. Although it has been 

suggested that most PDIs show substrate specificity2, LTBP1 could also be a substrate of TMX2 or 

TMX2 might affect TXNDC5 mediated folding. 

The second most significant functional annotation cluster ranks genes having a transmembrane 

domain (Enrichment score= 9.43) and a third most significant cluster contains genes encoding 

proteins involved in synaptic function, specifically located at the postsynaptic membrane 

(Enrichment Score= 4.63). This latter membrane is enriched with receptors and ion channels, 

essential for the interaction with neurotransmitters. Interestingly, another cluster mentions the 

deregulation of calcium ion binding (Annotation Cluster 6 Enrichment score 3.16). 

 

Ingenuity pathway analysis (IPA) 

Ingenuity pathway analysis (IPA) of the same differentially expressed genes in cells from the two 

probands (p<0.05), taking into account the logarithmic Fold Change (LogFC) of each gene, was used 

to calculate the most affected biological functions and diseases networks (Figure 4C). Only activation 

Z-scores in the 90 percent confidence interval were considered to be significant (Z[−∞,-1.65] and 

Z[1.65, +∞]). Interestingly, this analysis showed two key IPA categories being inhibited in TMX2 

affected individuals, i.e. ‘Nervous System Development and Function’ and ‘Cellular Growth, 

Proliferation and Survival’ (Blue bars in Figure 4C). The most significant inhibited function was 
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‘quantity of neurons’ (Z=-2.864), with a decreased outgrowth of cells (Z= -2.818), specifically neurons 

(Z=-2.594) and neurites (Z= -2.46), all related to processes affected in microcephaly. Consequently, 

transcripts related to learning ability (Z= -2.356) and cognition function (Z= -2.257) were also shown 

to be potentially decreased in cells from affected individuals. Moreover, besides the development of 

neurons (Z= -1.955), the differentiation of neurons was highly inhibited(Z= -1.812). Lastly, overall cell 

survival (Z= -1.785) and viability (Z= -2.016) were decreased. When looking at the most activated 

biological functions or associated diseases, seizures (Z=2.712) and seizure disorder (Z=2.819) are the 

most significant activated features (Red bars in Figure 4C).  

Proteomics analysis of exogenous TMX2 

In view of the effect of TMX2 variants on transcriptome, specifically on disulfide bond formation, we 

wondered whether TMX2 functions as an oxidoreductase and/or chaperone in protein folding. A 

transfection protocol was optimized in HEK293T cells with a Myc-tagged vector containing full length 

TMX2 sequence (p.CMV6.TMX2-Myc/DKK) and a Myc-tagged β-lactamase vector as negative control 

(pcDNA™3.1/Myc-His (-)/LacZ). Immunocytochemistry of exogenous TMX2 localized the protein to 

the MAM through co-localization with the marker Calnexin (CNX) (Figure S4 A) and in the vicinity of 

the mitochondria, visualized by mitochondrial marker HSP60 (Figure S4 B). Next, we aimed at the 

identification of the TMX2 interacting proteins, by performing mass spectrometry-based proteomics 

of co-precipitated proteins. A 24-hour over-expression of Myc-tagged TMX2, followed by 

immunoprecipitation and LC-MS/MS reveals 71 unique peptides as putative interactors. The list of 

reproducible co-precipitated proteins is shown in Table S5 and visualized with Cytoscape String App 

according to pathway involvement in Figure 5A. A first interesting observation was that TMX2 

physically interacts with MAM marker CNX, which is a calcium-binding protein folding chaperone. 

Other PDIs have also been shown to bind with CNX, e.g. TMX12, TMX46, ERp572. Binding was 

reciprocally confirmed after IP of CNX and detection of Myc-tagged TMX2 on western blots (Figure 

5B). Besides CNX, multiple other protein folding regulators and ER chaperones were interacting with 

TMX2 (Figure 5, dark blue), i.e. co-chaperones of the HSP70 family DNAJA2(HSP40) and BCL2 

associated athanogene 2(BAG2), chaperonin containing TCP1 subunit 5 (CCT5), Translocon-

associated protein/TRAP subunit alpha (SSR1), N-glycosylation regulators glucosidase II alpha subunit 

(GANAB) and Dolichyl-diphospho-oligosaccharide-protein glycosyltransferase complex (OST 

complex: RPN2, DDOST, STT3B, MLEC)44.  

 

Furthermore, besides CNX, TMX2 bound with other key-regulators of calcium homeostasis, i.e. Ca2+-

binding proteins (RCN2, HAX1, SSR1) and Ca2+-ion channels located at the MAM or mitochondrial 

membrane (ATP2A2/SERCA2, VDAC1) (Figure 5A, light blue). TMX2 also binds to Erlin-2 which 

directly regulates inositol 1,4,5-trisphosphate Ca2+ receptor degradation. These calcium receptors 

and channels are necessary for mitochondrial bioenergetics. SERCA2, like CNX, is a main interactor of 

some PDI members (TMX17, ERdj51) and described as a key regulator of protein folding. Binding was 

confirmed reciprocally after immunoprecipitation of SERCA2 and detection of Myc-tagged TMX2 on 

western blot (Figure 5B). Proteomics data also indicates physical interaction of TMX2 with 

components of mitochondrial outer and inner membrane complexes (Figure 5A, green), e.g. the 

mitochondrial contact site and cristae organizing system (MICOS, MIC60/IMMT subunit), the 

mitochondrial precursor protein import pathways (TOM22 and TIM23 complex)45, and the 

mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I NDUFA2 and NDUFA12 

subunits). 
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TMX2 also interacted with proteins regulating the unfolded protein response, i.e. DDRGK1, a direct 

regulator of IRE1α-XBP1 and PERK-eIF2α-CHOP signaling46, or the UPR associated endoplasmic 

reticulum-associated degradation (ERAD), dependent on an ubiquitin-proteasome system (UPS) 

(Figure 5, red), i.e. TMX2 binds with VCP-AMFR ERAD complex, Erlin-2 involved in ERAD of IP3Rs, 

Ubiquitin-binding protein UBXN1, deubiquitinating enzyme USP25, and proteasome subunits 

PSMD2, PSMD3 and PSMA5. Because of these interactions, the RNAseq showing dysregulated genes 

indirectly linked to UPR signaling and the role of TMX2 in protein folding, we tested the hypothesis 

whether TMX2 variants activated the UPR, specifically the IRE1α-XBP1 and PERK-eIF2α-CHOP 

signaling. RT-qPCR of UPR downstream mRNA markers CHOP and spliced XBP1 was performed for 

the three available fibroblasts lines derived from affected individuals and showed that aberrant 

TMX2 did not affect the amount of expressed sXPB1, nor CHOP (data not shown). Although the 

RNAseq data of affected individuals showed DEGs indirectly linked to the UPR, no direct factors of 

any of the three UPR pathways were found to be upregulated when TMX2 was mutated. Hence, 

together these data indicate thatTMX2 pathogenic variants do not lead to constitutive UPR 

activation in fibroblasts from affected individuals. 

 

Mitochondrial bioenergetics in TMX2 variant fibroblasts 

PDIs and protein folding are important determinants for normal mitochondrial bioenergetics and cell 

survival. In view of the putative function of TMX2 at the ER-MAM-mitochondria interface, the results 

of RNAseq (hinting towards a deregulated disulfide bond formation and calcium binding in cells from 

affected individuals) and proteomics analysis (showing binding with regulators of protein folding, 

ERAD, ER-mitochondrial UPR and Calcium homeostasis), we focused on mitochondrial activity and 

evaluated mitochondrial respiration and glycolytic activity in TMX2 variant fibroblasts derived from 

three affected individuals  (P1, P2 and P3) using a Seahorse Extracellular Flux Analyzer. Only P3 

showed reduced basal mitochondrial activity and reduced respiration dedicated to ATP production 

when compared to healthy control lines. At the same time, all TMX2 variant fibroblasts featured 

suppressed mitochondrial respiration upon stimulation with the mitochondrial uncoupler FCCP, with 

a significantly reduced reserve capacity – which reflects the bioenergetics reservoir available to 

counteract cellular stress - and overall decreased rotenone dependent respiration. The latter 

indicates a reduced activity of mitochondrial complex I (Figure 6A and 6C). Interestingly, P1 and P2, 

but not P3 showed a significant increase in the glycolytic activity – that was measured as lactate 

dehydrogenase mediated acidification of the medium- both in basal condition and upon stimulation 

with the mitochondrial ATP-synthase inhibitor oligomycin (Figure 6B and 6D), indicating that TMX2 

variant fibroblasts compensated the mitochondrial bioenergetics defects by potentiating the 

glycolytic pathway and glucose catabolism. Quantification of cellular ATP levels showed no 

differences between TMX2 affected individuals and controls (Figure S5). To identify potential 

mitochondrial defects silenced in glycolysis permitting conditions, we performed the experiments 

also in conditions where glycolysis was inhibited by the presence of galactose, forcing cells to rely on 

mitochondrial respiration for ATP production. As expected, P1 and P2 failed to potentiate basal 

respiration and showed no significant increase of respiration dedicated to ATP production and of 

mitochondrial complex I activity when cultured in galactose medium, although retained the ability to 

potentiate the reserve capacity (Figure 6E).  

 

Redox state analysis of wild-type and variant TMX2 

TMX2 oxidizes and reduces in native conditions 
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We tested whether thiol groups in TMX2 can be oxidized and reduced and thus whether TMX2 is 

able to form disulfides, hence would be able to influence protein folding. HEK293T cells were 

transiently transfected with TMX2 (Figure 7A) or β-lactamase vector (Figure 7B) and the redox state 

of TMX2 was monitored before and after treatment with the reducing agent DTT, the oxidant 

hydrogen peroxide (H2O2) or the ER-stress inducers: Brefeldin A (ER-Golgi transport blocker) (Figure 

7 A-B), Thapsigargin (SERCA2 inhibitor) or Tunicamycin (N-glycosylation inhibitor) (Figure 7C). To be 

able to distinguish redox state of cysteines, cells were incubated with a cysteine alkylating reagent 

N-ethylmaleimide (NEM) to covalently bind reduced thiol groups (+0.125kDa /thiol), but not oxidized 

disulfide groups. Figure 7A, lane 1 and 5, shows that TMX2 exists in both a reduced NEM alkylated 

form (~33 kDa) and an oxidized lower molecular form (~31 kDa) in native conditions. These two 

bands were consistently found in all of our repeat experiments with the ratios of oxidized and 

reduced TMX2 alternating, e.g. sometimes more reduced TMX2 (Figure 7A, lane 1), sometimes equal 

amount (Figure 7C, lane 1), and sometimes more oxidized TMX2. ER stress induced by BFA, 

tunicamycin or thapsigargin did not alter TMX2 redox state (Figure 7A, lane 2, 6 and Figure 7C lane 

2, 5, 6) nor its’ protein level. DTT treatment partially shifted redox state to a more reduced TMX2 

(Figure  7A, lane 3) and TMX2 was completely reduced in the presence of β-mercaptoethanol (Figure 

5B and S6), indicating that at least part of TMX2 redox state is thiol mediated. 

  

TMX2 dimerizes and oxidative stress elevates dimer/monomer ratio 

Surprisingly, H2O2-mediated oxidation of cells overexpressing TMX2 did not result in an increase of 

the lower oxidized TMX2 band, as we observed for PDI (PDIA1) (Figure 7A, lane 12), but generated 

an intense TMX2-reactive extra band with higher molecular mass on immunoblot  (Figure 7A, lane 4 

and 8;  apparent mass ~65kDa). Since molecular mass was double the amount of a TMX2 monomer, 

we hypothesize that this band represents a slower migrating homodimer.  Dimer/monomer ratios 

were calculated, showing up to a 200 fold increase of dimerization in oxidative environment (Figure 

7D, H2O2 p=0.0005). The dimer was still present when SDS-PAGE was performed in reducing 

conditions with β-mercaptoethanol and without NEM, although the ratio dimer/monomer was 

almost inverted and the monomer represented the major band (Figure S6). These results indicated 

that oxidative conditions mediated by H2O2, induce dimerization of TMX2 and that this dimerization 

is at least partially mediated by disulfide bond formation. Homodimerization was confirmed through 

linear correlation between the observed molecular weight on blot (average 57.8kDa, n=18) and the 

calculated expected molecular weight with the method of Lambin for a gradient SDS-PAGE gel (4-

15%) (Figure S7)47. 

TMX2 variants highly dimerize and polymerize in native and ER-stress conditions 

We tested the effect of variants on the behavior of exogenously expressed TMX2. By in vitro 

mutagenesis, the single cysteine in the atypical thioredoxin domain was substituted with a glycine, 

p.Cys170Gly. Interestingly, ablation of the active cysteine in the TRX domain still permitted 

dimerization, which supports the hypothesis that this dimer is not a mixed disulfide dimer of the TRX 

domain with another substrate. Moreover, dimerization of TMX2 was appreciated in the TRX domain 

variant, even under native conditions, i.e. independently of an oxidative stress, suggesting that this 

domain is involved in the reversibility of the TMX2 state between monomer and dimer (Figure 7E). 

Furthermore, oxidative stress even induced the formation of higher molecular weight polymers in 

the TRX domain mutant (Figure 7C, lane 10). To determine redox state of human TMX2 pathogenic 

variants under different stress conditions, we overexpressed either a TMX2 variant located in the 
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cytosolic domain, p.Arg53Cys , or a variant in the ER lumen domain, p.Arg231Trp (Figure 7C, lanes 

13-18, 19-24). Strikingly, the amount of TMX2 dimer was significantly higher compared to wild-type 

TMX2 for both variants in both native and under all stress conditions, not only H2O2, as quantified in 

Figure 7 E. Dimer/ monomer ratios were increased by 10-fold (1:1), while in wild-type TMX2 this is 

0.1:1, showing that the pathogenic variants block the protein in a dimerized state and that affected 

individuals may have less monomeric protein available (Figure 7 E). Moreover, TMX2 with the 

natural variants also displayed higher levels of polymerization, as seen in the TRX mutant (apparent 

mass ~110kDa and 140kDa, observed average mass 97.1kDa and 138.9kDa with method of Lambin in 

n=11). Based on the linear correlation between observed and expected mass, these bands seem to 

represent homotrimers and tetramers of TMX2(Figure S7). Although the amount of dimer to 

monomer ratios under oxidative stress was also doubled or tripled in mutant p.Arg231Trp or 

p.Arg53Cys TMX2 compared to wild-type TMX2, the difference was no longer significant (Figure 7E, 

H2O2,, fourth graph). DTT treatment prevented polymerization of the variants almost completely, 

confirming that polymerization is (at least partially) mediated by disulfide bridge formation (Figure 

7E, third graph and Figure S6). Notably, in vitro mutagenized Myc-tagged TMX2 was still able to bind 

both CNX and SERCA2 (Figure S8).   

DISCUSSION 

We describe a disorder, characterized by developmental delay, microcephaly, impaired speech and 

ambulation, epilepsy and cortical malformations, with a relatively wide spectrum of severity ranging 

from early death to intellectual disability with mild motor impairment, resulting from recessive 

TMX2 variants. 

Redox regulatory proteins are enriched at the MAM of the smooth ER 10; 48. Some of these proteins 

interact with ER calcium handling proteins and regulate the calcium flux into the mitochondria, 

which, in turn, influences mitochondrial membrane potential and mitochondrial respiration1. 

Thioredoxins of the PDI family regulate the cellular redox state through oxidoreductase activity-

mediated disulfide bond formation and contribute to protein folding. The PDI transmembrane ER 

thioredoxin-related (TMX) proteins, such as MAM-associated TMX1, seem to have dual function: on 

the one hand in regulating protein folding, maintaining the redox environment of the ER and hereby 

preventing ER stress, on the other hand in regulating calcium flux in the mitochondria7. Besides 

regulating protein folding and calcium transport, thioredoxins in general are key molecules in the 

regulation of oxidative stress through scavenging reactive oxygen species (ROS), such as hydrogen 

peroxide49.  

TMX2 lacks the canonical oxidoreductase active C-X-X-C domain. However, its function as folding 

chaperone is suggested by our data, demonstrating (1) the dysregulation of disulfide bond and N-

glycosylation-related genes in TMX2-deficient fibroblasts, (2) the interaction of TMX2 with several 

proteins regulating protein folding and UPR and (3) the presence of both oxidized and reduced forms 

in the maleimide alkylation assay. In addition, our mechanistic studies discover the function of TMX2 

as regulator of calcium homeostasis and mitochondrial bioenergetics. TMX2 localizes at the MAM 

where it physically binds to calnexin and SERCA2, whereas TMX2-variant fibroblasts show decreased 

mitochondrial reserve capacity and lower ability to cope with oxidative stress, probably related to 

defective calcium flux, similarly to what was proposed for TMX1-deficient cells7. Compared to TMX1, 

TMX2 is highly expressed in fetal and post-natal brain. The specific TMX2 expression in the cortex 

during prenatal life, together with the deleterious effect of its loss of function for human cortical 

development, places TMX2 as a key molecule in the ER-mitochondrial redox regulation of brain 
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development. Although pathogenic variants in mitochondrial oxidoreductases and MAM-associated 

proteins have been reported as causes of pediatric neurologic disorders16-20, the TMX2 related 

disorder is a malformation of cortical development resulting from a defect in a member of the PDI 

family. 

TMX2 is thus an important regulator of oxidative stimuli and an intriguing aspect is its 

responsiveness to H2O2. The sensitivity of TMX proteins to H2O2 has received little attention, 

although it has been shown that their redox state dramatically changes after H2O2-treatment, as it 

happens for example for TMX46. The hydrogen peroxide signaling molecule has long been 

considered as deleterious for cellular function and as a byproduct of oxidoreductase reactions, being 

rapidly metabolized by catalases, glutathione-peroxidases or peroxi-redoxins49. However, more 

recent findings highlighted the role of H2O2 as physiological regulator of redox signaling (oxidative 

eustress), acting via reversible cysteine and methionine oxidation50. Additionally, H2O2 functions in 

higher concentrations as a mediator of pathophysiological signals (oxidative distress) leading to 

growth arrest and regulated cell death50. One of the main intracellular sites of H2O2 production is the 

ER51. Along with the activation of peroxi-redoxins as possible intermediate sensors, the role of H2O2 

in the development of the nervous system has been well-established51-53. Among targets of H2O2 

redox signaling are transcription factors of the Wnt and the Shh pathways54. Moreover, H2O2 has 

been recently discovered as signaling molecule controlling axonal path finding in zebra fish54 and 

neuronal growth cone collapse in vitro55. Hence, it is not surprising that a TMX2 variant-mediated 

misbalance in oxidative eustress/distress could result in impaired neuronal development.  

Under our experimental conditions, increased concentrations of H2O2 in the culture medium induced 

wild-type TMX2 dimerization. In the same maleimide alkylation assays, TMX2 redox state does not 

seem sensitive to ER stressors. These results reflect a physiological sensitivity of TMX2 to H2O2, 

possibly mimicking an adaptive response to oxidative eustress, regulating physiological steps in 

development52; 54.  Wild-type TMX2 dimer was still slightly present under β-mercaptoethanol 

reducing conditions (Fig. S6), indicating that it is partially formed through inter-disulfide bonds. The 

occurrence of homo-dimerization of other members of the PDI superfamily has been described 

earlier (for PDI56-58, PDIp59, ERp2960) and is suggested as a general mechanism to regulate PDI 

function13; 56. Dimers can exhibit higher chaperone or unfolding activity as described for ERp29, PDIp, 

CNX and CRT dimerization60.  Also, homo-dimerization of other TMX proteins has been postulated, 

e.g. a putative TMX1 homodimer was observed in immunoprecipitates with anti-CNX after ablation 

of the TRX domain active cysteines61. 

Our data suggest the formation of TMX2 homo-dimer/polymers, based on the evidence that 

observed TMX2 molecular masses on gradient gels show linearity with the predicted molecular mass 

by the Lambin method calculation and on the fact that the dimerization is not strictly dependent on 

disulfide bridge formation. Both under DTT pre-treatment in culture (of the TMX2 mutants) and by 

running a gel with β-mercaptoethanol, dimers are still present with an identical linear molecular 

mass. Since dimerization  still occurs in the TRX domain mutant independently of an active cysteine 

and H2O2 treatment, the dimer does not represent a heterodimer of TMX2 with a substrate formed 

through mixed disulfides, similar to what is described for TMX1 homo-dimerization61. Although 

polymers were also observed after ablation of the TRX domain cysteine, they were barely present 

under reducing conditions. Hence, we cannot exclude interactions of TMX2 with other substrates of 

identical molecular mass, through TRX domain-independent interactions. For example, N-linked 

glycosylation has been shown to modulate the formation of PDI polymers and in TMX2 it could 

mediate interaction with heterologous peptides 56.  
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Similar to wild-type TMX2 under oxidative stress, we observed constitutive TMX2 homodi-

/polymerization upon expression of the TMX2 pathogenic variants (p.Arg53Cys and p.Arg231Trp), 

leading to mitochondrial dysfunction, reduced maximal respiration and increased glycolysis, as seen 

under ER stress conditions 7; 50; 62. However, we did not detect activation of UPR in fibroblasts from 

affected individuals, both under native and under treatment with H2O2 (data not shown). This 

suggests that UPR is not the primary target of TMX2 function or that cultured fibroblasts are not the 

ideal test model.  

Another fascinating aspect is TMX2 involvement in the pathogenesis of PMG. This malformation has 

long been considered as a defect of postmigratory cortical organization63, with wide genetic 

heterogeneity, but also being a proven consequence of prenatal brain injury or disruptive events64. 

These aspects make genetic counseling of PMG most challenging. At brain imaging it may be difficult 

to distinguish PMG resulting from environmental factors (e.g. prenatal CMV infection) or from 

genetic defects. At MRI and pathological examination the main PMG characteristics are many small 

gyri with pebbled appearance, loss of normal cortical lamination, overfolding and fusion of the gyri, 

stippling of the white-grey matter border65, sometimes giving the appearance of generally thickened 

cortex. The cobblestone malformation is characterized by pebbled cerebral surface, thick cortex and 

striation perpendicular to the cortical surface, which reflect tracks of neuroglial cells overmigrating 

above the glia limitans in the subarachnoid space, overmigration sometimes being massive and 

leading to thinning of the cortical plate 35; 66. Cobblestone malformation is frequently associated with 

cerebellar and pons dysplasia and variable hydrocephalus, white matter and callosal dysgenesis. 

PMG and cobblestone malformation have been sporadically reported to coexist in the same genetic 

disorder67; 68. Pathology of the brain in two TMX2 variant affected individuals shows a complete 

disorganization of the cortical layers (unlayered PMG) in both and in one of them (P10) diffusely 

overmigrating neurons, typical of cobblestone malformation, together with scattered white matter 

calcifications and pseudocysts, suggestive of a disruptive (CMV-like) event. Unlayered PMG is 

supposed to be caused by an early disruption of cortical development between 16-24 weeks 

gestation69 and can also be observed in metabolic causes of PMG such as Zellweger disease (a 

peroxisomal biogenesis disorder, characterized by mislocalization of catalase), or lining non-genetic 

schizencephalic clefts64; 70. A mixture of disruptive and developmental migratory abnormalities has 

been reported for the brain disorder caused by the Zika virus (ZIKV) infection, where the effect on 

neuronal proliferation and migration is more prominent than in other more common congenital 

infections, i.e. CMV 71. We demonstrate that TMX2-related PMG is a disorder of neuronal migration 

and cortical organization, without evidence of vascular or inflammatory disruption, in some cases 

with radiological aspect resembling an infectious i.e. non-genetic cause, in other cases 

microscopically showing the cobblestone malformation. These observations support the view that 

PMG and cobblestone are cortical malformations that can share a common pathogenesis and 

represent different severity of the spectrum72; 73. 

It is possible that some of the TMX2 related malformations are caused by lack of physiological 

response to regulators of neuronal development (hypothetically H2O2-mediated axonal pathfinding) 

and some are the effect of abnormal oxidoreductase-mediated protein folding and calcium 

homeostasis, with a secondary mitochondrial dysfunction. Although no UPR stimulation was found 

in TMX2 deficient cells, TMX2 also plays a role in regulation of UPR and apoptosis, both mechanisms 

essential for regulation of neuronal proliferation and cortical organization74.  
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Our observation shows how in humans a genetic disorder of cellular redox adaptation mechanisms 

can be the cause of neuronal proliferation and migration disorders, with characteristics of a 

disruptive event. These studies also provide a mechanistic explanation for the fact that human brain 

development is driven by steps strictly regulated in time and space, including individual response to 

environmental stimuli, e.g. to redox signaling molecules and changes in cellular redox state.  Protein 

disulfide isomerase family members might prove to be major players in this process. 
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FIGURE TITLES AND LEGENDS 

Figure 1. Features and brain MRI of individuals with TMX2 variants. P indicates the code of the 

probands as used in Table 1 and S4. P1 (A-E): affected member of family 1. A: The photograph shows 

mild microcephaly and no overt dysmorphic features. The MRI scan at birth shows T2 weighted 

images, of (B) parasagittal plane, (C) axial at the level of basal ganglia, (D) axial at the level of parietal 

areas and € axial at the level of pons and cerebellum. Both the parasagittal and the two axial 

cerebral sections show diffuse polymicrogyria of the cortex, normal myelination, hypointensity of 

the thalami (left axial) and normal cerebellum. P2 (F-H): MRI of the affected individual from family 2 

at 19 months of age. (F) axial FLAIR -, (G) coronal T2 -, (H) coronal inversion recovery- weighted 

images all showing bilateral diffuse thickened cortex extending through frontal, parietal and occipital 

areas, resembling polymicrogyria, with sparing of the cerebellum. The lateral ventricles are enlarged 

and asymmetric; the periventricular white matter volume is strongly reduced. P3 (I): axial T2 

weighted image of the affected child of family 3 at birth, showing diffuse bilateral polymicrogyria of 

the cortex, mild dilatation of the posterior horns of the lateral ventricles and delayed myelination. 

P4 (J-L) and P5 (M-O): affected siblings of family 4, at the age of 12 (P4) and 23 years (P5), 

respectively (J and M) sagittal T1-, (K and N) axial T2- weighted images at the level of basal ganglia 

and (L and O) the cerebellum, showing thin corpus callosum, loss of periventricular white matter and 

volume of thalami, deep cerebral sulci and mild cerebellar atrophy. No cortical malformation is 

present. P6 (P-S) is the index of family 5. (P) Axial T2 and (Q) parasagittal T1 images showing 

abnormally thick cortex, atrophic thalami, in (Q) the frontal cortex looks pachygyric. (R) Axial T2 

FLAIR and (S) axial T1 weighted images showing diffusely thickened cortex, most prominent in 

parietal areas and moderately enlarged lateral ventricles. P9 (T-V): affected proband of family 6, at 

the age of 11 months. Axial T2 weighted images (T-U) showing brain atrophic changes with bilateral 

pallidus (red arrow) and posterior limb of the internal capsule (red arrowhead) T2 high signal 

intensity, as well as significant delayed myelination. Globi pallidi are severely atrophic. (V): Both 

globi pallidi, posterior limb of the internal capsules, optic radiations (black arrowhead) and 

brainstem tract (not shown) abnormalities are also noted on DWI and confirmed by ADC map (not 

shown) indicating restricted diffusion. P10 (W-Y): MRI at birth of the proband from family 7. (W) 

midsagittal, (X-Y) axial T2 weighted images. (W) mild hypoplasia of the pons, thin corpus callosum. 

(X) hypoplastic cerebral peduncles, bilateral abnormal cortex with polymicrogyric appearance. (Y) 

diffuse bilateral polymicrogyria, enlarged lateral ventricles with pseudocyst in the left occipital horn 

(black arrowhead), and white matter loss, the combination including the pseudocyst being typically 

seen in CMV infections. 

Figure 2. Brain pathology of individuals with TMX2 variants. A-C, E-G: affected individuals; D and H: 

age matched controls.  Upper panel: macroscopic brain appearance of P1 (A-B) and P10 (C). Sagittal 

view (A) and coronal section (B) show diffuse bilateral excessive amount of small gyri 

(polymicrogyria) of the cerebral cortex (most affected areas indicated by white arrows), compared to 

control brain (D).  (C) coronal section through the posterior parts of the brain shows asymmetric 



29 
 

hemispheres and bilateral polymicrogyria, especially in the occipital lobes (white arrow). The image 

of the normal neonatal age-matched brain (40GW), shows normal size and number of the gyri and 

sulci (lateral view of the right hemisphere) (D). Lower panel: Histological sections of individuals P1 

(E-F), P10 (G) and age matched control brain cortex (H) show absence of normal cortical layers in 

affected individuals, with bands of neurons laying perpendicular to the cortical surface in E, F and G. 

Undulating bands of neurons (arrow heads), entrapped pial vessels mimicking fusion of the cortical 

layer (arrow), and thickened leptomeninges are compatible with (unlayered) polymicrogyria (E: H&E, 

10x, F: H&E, 5x, G: Lugol-PAS stain, 3x). Control histological section of the frontal dorsolateral 

telencephalic gyrus of the neonatal age-matched brain (H: H&E 5x), showed the regular organization 

of the six-layered neonatal neocortex, parallel to the pia surface. 

 

Figure 3. Genomic and transcriptomic analysis of TMX2 variants. A. Schematic overview of TMX2, 

protein domains and the discovered variants in affected individuals (GSDS 2.0) B. Levels of expressed 

TMX2 messenger RNA in individuals P1, P2 and P3. Ct values were normalized with two 

housekeeping genes CLK2 and RNF111(∆∆ CT relative to control (n=2). Data are represented as the 

mean ± SEM. Statistical two-tailed unpaired t-tests were performed with confidence interval 95%. C. 

Allele specific qPCR of individual P1. Ct values were normalized with two housekeeping genes CLK2 

and RNF111 (∆∆ CT relative to control (n=4).  D. Aberrant splicing of the P2 and control TMX2 alleles. 

Graphic illustration (adapted from IGV Sashimi plot) of the percentage of TMX2 transcripts in 

RNAseq data of total RNA of individual P2 and 1 control individual. Percentages are calculated for 

each transcript compared to the total TMX2 (wild-type and alternative) transcript reads (GRCh38), 

and E. Aberrant splicing of the P2 and control TMX2 alleles. Aligned uniquely mapped reads in the 

exon 5-7 region of TMX2 were quantified (reads per million) using IGV 2.3.26. Three distinct 

alternative species of TMX2 transcript were identified, consistent with intron 6 retention, exon 6 

skipping and exon 6 internal splice site usages, the latter two only from the P2 allele. Total uniquely 

mapped reads for control and individual P2 were 64 745 034 and 54 200 090 respectively. 
 

Figure 4. Gene ontology (GO) analysis of differentially expressed genes in TMX2 variants. A. DAVID 

Functional Annotation Clustering (FAC) analysis of the top 1000 differentially expressed genes (DEGs) 

obtained by comparison of two TMX2 affected individuals vs. three age and gender matched control 

RNA samples (p-value <0.05). B. upper panel: LogFC of all differentially expressed disulfide bond 

associated genes in TMX2 affected individuals with an FDR<0.05, lower panel: -Log(FDR) of these 

genes (-log(FDR)<1.3). C. Ingenuity Pathway analysis (IPA) was performed to determine activated 

and inhibited biological functions downstream of the differentially expressed genes in TMX2 affected 

individuals. Stringency was determined with 90% confidence interval by only considering activation 

Z-scores higher than 1.65 (activation) or lower than -1.65 (inhibition). Individual p-values of each 

function are mentioned within the bars and were always lower than 10-6. Abbreviations: GO, Gene 

ontology; UP, UniProtKB; FDR, False discovery rate; FC, Fold Change; KEGG, Kyoto Encyclopedia of 

Genes and Genomes. 

Figure 5. Proteomics analysis of exogenous TMX2 interacting proteins. A. HEK293T cells were 

transfected with Myc-tagged TMX2 or negative control β-lactamase for 24 hours, followed by IP with 

αMyc antibody and LC-MS/MS on bead pellets. Detected proteins interacting with TMX2-Myc but 

not with Lac-Myc were filtered based on average Mascot score in n=4 experiments (significant if 

higher than 40). Cytoscape String App visualized all 71 proteins reproducibly and selectively 
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interacting with TMX2 according to pathway involvement (dark blue=Protein folding, light blue= 

Calcium Homeostasis, Red= ER associated degradation (ERAD) and Unfolded Protein Response 

(UPR), Green= Mitochondrial signaling, Pink= Mitosis, Orange= Translation, Yellow= Nucleus 

Transport, Black=Golgi transport, Grey=unassigned). Known PDI interactors Calnexin and SERCA2 

were found in the top 10 highest interactions, and are circled in red.  B. HEK293T cells were 

transfected with Myc-tagged TMX2 or negative control β-lactamase for 24 hours, followed by 

reciprocal immunoprecipitation of SERCA2 (Mouse monoclonal anti-SERCA2 ATPase ab2861) and 

Calnexin (Monoclonal Rabbit anti-human CNX C5C9), SDS PAGE and detection of TMX2 with αMyc 

antibody. IP input is shown after reducing western blot. 

 
 

Figure 6. Bioenergetics profiles of skin fibroblasts from affected individuals with TMX2 variants. A, 

B. Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) bioenergetics profiles 

of fibroblasts derived from healthy controls (n=4) and affected individuals (P1, P2, P3). Fibroblasts 

were challenged with sequential administration of oligomycin to inhibit ATP synthase, FCCP to elicit 

maximal respiration, rotenone to inhibit complex I, and antimycin to inhibit complex III and fully 

block respiration. The parameters analyzed in the profiles were: basal respiration, respiration 

dedicated to ATP production, (measured as difference between basal respiration and the respiration 

after oligomycin injection), mitochondrial reserve capacity (as difference between maximum reserve 

capacity and basal respiration), and rotenone sensitive respiration (which accounts for the 

respiration dependent on complex I), basal glycolysis and oligomycin stimulated glycolysis. C, D. 

Fibroblasts derived from affected individuals show significant reduction in mitochondrial reserve 

capacity and in the complex I activity (C) while showing a significant potentiation of glycolysis in 

basal condition and upon stimulation with oligomycin (D). E. The analysis of mitochondrial 

respiration in galactose medium (where glycolysis is not permitted) highlights the inability of the 

TMX2 variant fibroblasts to potentiate basal mitochondrial respiration and mitochondrial complex I 

activity. (*p < 0.05; **p < 0.01; ****p < 0.0001; one-way ANOVA (C, D) and two-way ANOVA (E) 

followed by Dunnett's multiple-comparison post doc test). Graphs represent mean ± SEM. 

Figure 7. Redox state assays of wild-type and variant TMX2. A-B. Non-reducing western blot of 

exogenous wild-type TMX2 versus endogenous control PDI (PDIA1) in HEK293T cells, showing that 

TMX2 occurs in an oxidized and reduced monomeric form, while during H2O2 treatment a dimer is 

formed (OX dimer). A) left panel shows the blot after incubation with anti-wild-type TMX2 

antibodies; middle panel: incubation with anti-Myc antibodies; right panel: anti-PDI control protein 

antibodies. B) Control experiment after expression of exogenous control β-lactamase (Lac-Myc); 

immunoblotting performed with the same antibodies as in A.  Native: untreated cells; BFA: cells 

treated with ER stress inducer Brefeldin A; DTT: cells treated with reducing agent DL-Dithiothreitol; 

H2O2: cells treated with hydrogen peroxide.  

C. Non-reducing western blot with similar experimental setup as in A and B. but here also after 

addition of ER stress inducers Tunicamycin ( TM) and Thapsigargin (TG). Redox states of TRX domain 

p.Cys170Gly variant (lanes 7-12) and affected individual p.Arg53Cys variant (lanes 13-18) and 

p.Arg231Trp variant (lanes 19-24) were determined simultaneously. Detection was performed with 

anti-Myc antibody. D-E. Semi quantitative densitometry calculations of TMX2 dimer/monomer ratios 

in native, ER stress, oxidative and reductive environment for wild-type TMX2, n=4 western blots 

from biological replicates (D.) and comparing wild-type TMX2 to p.Cys170Gly, p.Arg53Cys and 

p.Arg231Trp variants. Data are represented as the mean ± SEM. Statistical two-tailed unpaired t-
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tests were performed with confidence interval 95% in Graphpad Prism 8 (*p < 0.05; **p < 0.01; 

***p<0.001, ****p < 0.0001).
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TABLE TITLES AND LEGENDS 
Table 1 Summary of TMX2 variants and phenotypes. 

 Affected 
individuals 

Family 1- P1 Family 2- P2 Family 3-P3 Family 4- P4  Family 4- P5  Family 5-P6  24 Family 5-P7  24 Family 6- P8  Family 6- P9  Family 7- P10 Family 8- P11  Family 8- P12  Family 9- P13 Family 10- P14 

Ancestry Dutch Portuguese White British Puerto Rican Puerto Rican Spanish Spanish Arab Arab Dutch Iraqi Iraqi Pakistani Mexican 

cDNA 
alteration 

c.164A>C; 
c.391dup 

c.614G>A 
Homozygote 

c.157C>T;     
c.757C>T 

c.166G>C 
Homozygote 

c.166G>C  
Homozygote 

c.326A>G;    
c.691C>T 

c.326A>G; 
c.691C>T 

Not tested 
 c.532G>A 

Homozygote 
c.164A>C;c.609

_614+15del 
c.184G>C 

Homozygote 
c.184G>C 

Homozygote 
c.178G>A 

Homozygote 
c.349A>G;    
c.691C>T 

Protein 
alteration 

p.Asp55Ala;p.L
eu131Profs*6 

p.Arg205Gln 
p.Arg53Cys;p.A

rg253* 
p.Gly56Arg p.Gly56Arg 

p.Asp109Gly;p.
Arg231Trp 

p.Asp109Gly;p.
Arg231Trp 

Not tested p.Ala178Thr 
p.Asp55Ala;p.S
er203_Thr204d

el 
p.Asp62His  p.Asp62His  p.Asp60Asn 

p.Ile117Val;p.A
rg231Trp 

Gender Male Male Female Male Female Female Male Female Female Male Male Male Female Female 

Head size 
(OFC)  

Primary 
microcephaly  

( - 3 SD at 
birth) 

Microcephaly  
(n.a. at birth;                    

- 4.5 SD 
current)          

Primary 
microcephaly         

(- 2.5 SD at 
birth,                    

- 6.7 SD 
current) 

Borderline 
microcephaly 
(n.a. at birth;                

- 2 SD current) 

Microcephaly 
(n.a. at birth;                     

- 3 SD current) 

Microcephaly           
(- 2 SD at birth;                  
- 4 SD current) 

Microcephaly      
(n.a. at birth;                     

- 3 SD current) 

Undefined   (0 
SD at birth, 
later n.a. )    

Microcephaly    
(0 SD at birth;                     

- 5.5 SD 
current) 

Primary 
microcephaly          

(- 2.5 SD at 
birth) 

Microcephaly         
(n.a. at birth;                

- 4.5 SD 
current) 

Primary 
microcephaly            

(- 2,5 SD at 
birth;                  

- 3.5 SD 
current) 

Normal                      
(n.a. at birth;                

- 0.5 SD 
current) 

Normal                  
(n.a. at birth;                

- 0.8 SD 
current) 

Neurological 
impairment 

No 
developmental 

milestonesa 

CP, no speech 
or ambulation 

CP, no speech 
or ambulation 

CP, no speech 
or ambulation 

CP, no speech 
or ambulation 

CP, no speech 
or ambulation 

CP, no speech 
or ambulation 

CP, no speech 
or ambulation 

CP, no speech 
or ambulation 

No 
developmental 

milestonesa 

No 
ambulation, 
few words  

 No speech or 
ambulation 

Able to walk 
with support, 

few words 

IQ 62; 
language 
disorder; 

hyperactive 
behavior, able 

to walk 

Survival/ age 
at last 

examination 

Deceased at 
week 2 

7 yr. 9 yr. 28 yr. 25 yr. 13 yr. 11 yr. 
Deceased at 6 

yr. 
1.5 yr. 

Deceased at 1 
week 

10 yr. 5 yr. 4.8 yr. 11.5 yr. 

Epilepsy 
Generalized, 
apnea, status 

epilepticus 

Generalized, 
absence, 
spasms 

Generalized 
seizures 

Focal seizures 
Myoclonic-

absence, GTC 
No seizures GTC GTC Focal seizures 

Apnea, 
diaphragmatic 

myoclonia 

Generalized 
tonic, 

myoclonic 
seizures 

GTC  
Myoclonic 

status 
epilepticus 

No seizures 

MRI Polymicrogyria Polymicrogyria Polymicrogyria 
Progressive 

brain atrophy 
Progressive 

brain atrophy 
Pachygyria Pachygyria 

Severe brain 
atrophy 

Severe brain 
atrophy 

Polymicrogyria n.a. Polymicrogyria 
Hemihypertrop
hy and frontal 

dysgyria 
Normal 

Brain autopsy 

Unlayered 
polymicrogyria 
and complete 

cortical 
disorganization 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Diffuse 
polymicrogyria 

and 
cobblestone-

like 
malformation 

n.a. n.a. n.a. n.a. 

a These individuals passed away soon after birth. Microcephaly is defined as an OFC <-2.5SD. Abbreviations: CP, signs of cerebral palsy; n.a., not assessed or not available; OFC, 

Occipitofrontal circumference; yr., year; SD, standard deviations; GTC, Generalized tonic clonic seizures 
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