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Abstract. Image representations are commonly learned from class la-
bels, which are a simplistic approximation of human image understanding.
In this paper we demonstrate that transferable representations of images
can be learned without manual annotations by modeling human visual
attention. The basis of our analyses is a unique gaze tracking dataset of
sonographers performing routine clinical fetal anomaly screenings. Models
of sonographer visual attention are learned by training a convolutional
neural network (CNN) to predict gaze on ultrasound video frames through
visual saliency prediction or gaze-point regression. We evaluate the trans-
ferability of the learned representations to the task of ultrasound standard
plane detection in two contexts. Firstly, we perform transfer learning by
fine-tuning the CNN with a limited number of labeled standard plane
images. We find that fine-tuning the saliency predictor is superior to
training from random initialization, with an average F1-score improve-
ment of 9.6% overall and 15.3% for the cardiac planes. Secondly, we
train a simple softmax regression on the feature activations of each CNN
layer in order to evaluate the representations independently of transfer
learning hyper-parameters. We find that the attention models derive
strong representations, approaching the precision of a fully-supervised
baseline model for all but the last layer.

Keywords: Representation learning · Gaze tracking · Fetal ultrasound ·
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1 Introduction

When interpreting images, humans direct their attention towards semantically
informative regions [17]. This allocation of visual attention is typically quantified
via the distribution of gaze points, which can be recorded with gaze tracking.
There has been great interest in developing models of human visual attention
that, given an image, predict the likelihood that each pixel is fixated upon,
hereafter referred to as visual saliency map. Currently, convolutional neural
networks (CNNs) are the most effective visual attention models (VAMs) due to
their ability to learn complex feature hierarchies through end-to-end training [2].



2 R. Droste et al.

Here, we explore the following question: To what extent can models of human
visual attention transfer to tasks such as automatic image classification?

We explore this question using the application of fetal anomaly ultrasound
scanning. The scan is performed during mid-pregnancy in order to detect fetal
anomalies that require prenatal treatment and to determine the place, time and
mode of birth. Previous work related to this application has focused on detecting
so-called ultrasound standard imaging planes through fully-supervised training
of image classifiers [1,3,15]. Here, in contrast, we aim to learn transferable repre-
sentations of the scan data without manual supervision by modeling sonographer
visual attention. To this end, we acquire the gaze of sonographers in real-time
through unobtrusive gaze tracking alongside anomaly scan recordings.

Sonographer visual attention is modeled by training a CNN to predict gaze
on random video frames. We consider this to be self-supervised representation
learning since it does not require any manual annotations and gaze data is
acquired fully automatically. We extract high-resolution image features by intro-
ducing dilated convolutions [10,19] into a recently proposed image classification
architecture [8]. Two methods for training the model for gaze prediction are
evaluated: (i) Visual saliency prediction: Ground truth visual saliency maps
are generated and used as training targets [2]. (ii) Gaze-point regression: The
approach of gaze-point regression [14] is much less explored in the literature but
is simpler since it does not require explicit modeling of foveal vision for ground
truth saliency map generation. An existing mathematically differentiable method
is based on a fully-connected layer [14] which does not scale well to high-resolution
feature maps due to the exponentially increasing number of learnable parameters.
Here, we propose a method based on the soft-argmax algorithm by Levine et
al. [11] with no additional learnable parameters compared to saliency prediction.

The learned representations are evaluated on the task of standard plane detec-
tion in two contexts. (1) Transfer learning: We fine-tune the weights of the entire
CNN with a limited number of training samples, thereby assessing the transferabil-
ity of the learned representations in a realistic scenario. (2) Softmax regression:
We fix the weights of the CNN and train a simple softmax regression on the
spatially average-pooled feature activations of each layer. This procedure deter-
mines the generality of the representations independently of any transfer learning
hyper-parameters.

Related Work. Visual saliency predictors have previously been employed to
aid computer vision tasks. Cornia et al. [5] use a pre-trained saliency predictor
as an attention module within an image captioning architecture. However, no
representations are shared between the saliency predictor and the task-specific
architecture. Cai et al. [3] show that saliency prediction can aid fetal abdominal
standard plane detection. The authors fine-tune an existing standard plane de-
tector [1] with manually labeled data, using saliency prediction as an auxiliary
task and as an attention module. In contrast, we show that transferable represen-
tations can be learned without manual annotations via visual attention modeling
only. Moreover, we evaluate our framework on full-length freehand clinical fetal
anomaly scans instead of short sequences (sweeps) of the fetal abdomen.
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Within the field of unsupervised representation learning, our method is most
closely related to self-supervised learning. The general idea is to exploit “free”
supervision signals, i.e., supervision signals that can be extracted from the data
itself without any manual annotation, which is comparable to our approach of
using automatically acquired gaze for supervision. Specifically, representations
are learned by either altering the data and inferring the alteration (e.g., spatial
and color transformations [7]) or by predicting certain properties of the data
that are withheld (e.g., the relative position of image patches [6] or the order
of video frames [13]). However, all existing methods design artificial tasks that
yield transferable representations as a “by-product”. Human gaze, in contrast, is
inherently a strong prior for semantic information [17].

Contributions. Our contributions are three-fold: (1) We propose an original
framework for self-supervised image representation learning by modeling human
visual attention. The method does not require manual annotations, is generic,
and has the potential to be applied in any setting where gaze tracking and
image data can be acquired simultaneously. To the best of our knowledge, this
is the first attempt to study human visual attention modeling in the context of
self-supervised representation learning; (2) we propose a method to regress gaze
point coordinates via the soft-argmax algorithm, which is significantly simpler
and more computationally efficient than the existing method by Ngo et al. [14];
(3) finally, we evaluate the attention models on the exemplary task of fetal
anomaly ultrasound standard plane detection, both for transfer learning and as
fixed feature extractors, thus demonstrating the applicability to a challenging
real-world medical imaging task. The framework is illustrated in Fig. 1 a).

2 Representation Learning by Modeling Visual Attention

In this section we describe our method of learning image representations from
video and gaze data in general terms. Let X ⊂ RNc×H×W be the set of video
frames with width W , height H and Nc channels and let P = [0,W ]×[0, H] be
the set of all valid gaze points. Each frame X ∈ X has a corresponding gaze

point set G = {pi | pi ∈ P}NG
i=1 with NG ≥ 1. The dataset D =

{(
X(t), G(t)

)}Nx

t=1
consists of Nx pairs of video frames and gaze point sets.

Let fθ : X → RNf× 1

2d
H× 1

2d
W be a CNN with Nf feature channels, 2d-fold

spatial down-sampling and learnable parameters θ. The final, classification-specific
operations (global pooling, fully-connected layers and softmax layers) are removed
from the network at this stage. In our experiments we use the SE-ResNeXt [8]
model, but any similar feed-forward CNN is suitable. Since such models are
designed for image classification, they perform strong down-sampling in order to
increase the receptive field of the higher-level neurons and to reduce computa-
tional complexity. In contrast, for visual attention modeling, it is desirable to
preserve spatial information throughout the network. Consequently, we remove
the last ND down-sampling operations, i.e., max-pooling or strided convolutions.
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Fig. 1. a) Illustration of our framework for learning and evaluating visual attention
models (VAMs). b) The upper part illustrates a dilated convolution after removed down-
sampling operation. When the down-sampling operation is reintroduced for classification
as shown in the lower part, the dilation is removed from the kernel without changing
the learned kernel weights. The receptive field of the corresponding output neurons is
unchanged and the operation is reversible.

However, this modification reduces the receptive field of the subsequent neu-
rons. If the down-sampling operations were reintroduced to restore the original
architecture and use the representations for classification tasks, the learned
weights would be invalid. Therefore, the 3×3 convolutions after the removed
down-sampling operations are replaced with dilated 3×3 convolutions [19] such
that each convolutional kernel maintains the same receptive field as in the original
architecture, as illustrated in Fig. 1 b). Formally, given a matrix M and the kernel
k : [−r, r]2 ∩ Z2 → R of size (2r + 1)2, the l-fold dilated convolution operator ∗l
is defined as:

(M ∗l k)i,j =

r∑
n=-r

r∑
m=-r

Mi+ln,j+lm k(n,m) (1)

The resulting dilated CNN f⊕θ has the increased output resolution of (HD,WD) :=
( 1

2d−ND
H, 1

2d−ND
W ). Next, we want to reduce the high-dimensional feature acti-

vations to a single probability map that can be used to model visual attention.
Hence, a series of adaptation layers consisting of a 7×7 depthwise convolution
and several 1x1 convolutions is appended that outputs a single activation map
A ∈ RHD×WD . A probability map Ŝ is then computed by applying a softmax
across the activations with Ŝi,j = eAi,j/

∑
i,j e

Ai,j .
We investigate two methods of training the CNN to predict gaze in a differ-

entiable, and therefore end-to-end trainable, manner: visual saliency prediction
and gaze-point regression.

Visual Saliency Prediction. Given an image and a gaze point set (X, G) ∈ D,
the idea is to generate a visual saliency map S ∈ ]0, 1]H×W , where Si,j is the
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probability that pixel Xi,j is fixated upon. The saliency map is then used as the

target for the predicted probability map Ŝ. We generate S as a sum of Gaussians
around the gaze points in G, normalized such that

∑
i,j Si,j = 1. The standard

deviation of the Gaussians is equivalent to ca. 1◦ visual angle to account for the
radius of visual acuity and the uncertainty of the eye tracker measurements [4].
Next, the saliency map is downscaled to the size of Ŝ, yielding the training target
S∗ ∈ ]0, 1]HD×WD . Finally, the training loss is computed via the Kullback-Leibler
divergence (KLD) between the predicted and the downscaled true distribution:

Ls(S∗, Ŝ) = DKL(S∗‖ Ŝ) =
∑
i,j

S∗i,j · (log(S∗i,j)− log(Ŝi,j)) (2)

Gaze-Point Regression. We propose a method for reducing Ŝ to a single gaze
point in order to compare it to the true gaze points. This eliminates the need
to model the probability distribution of gaze points via a visual saliency map.
First, Ŝ is transformed into image coordinates via the soft-argmax algorithm
[11]. With g(i, j) :=

(
j−0.5
WD

W, i−0.5
HD

H
)

as the function that maps entry (i, j) of

Ŝ to its corresponding point on the image plane, the predicted gaze point p̂ is
computed as the expected value of the probability mass function defined by Ŝ:

p̂ =
∑
i,j

Ŝi,j g(i, j) (3)

Next, the target gaze point p∗ is obtained from the gaze point set G via the
geometric median:

p∗ = arg min
p∗∈[0,W ]×[0,H]

∑
pi∈G

‖pi − p∗‖2 (4)

This reduction is justified by the fact that the gaze points on each frame tend
to be highly localized due to the short frame period (ca. 33 ms). Finally, the
training loss is obtained as Lg(p∗, p̂) = ‖p∗ − p̂‖2, i.e., the Euclidean distance
between the predicted and the target gaze point.

3 Experiments

Data. We acquired a novel dataset of clinical fetal ultrasound exams with real-
time sonographer gaze tracking data. The exams are performed on a GE Voluson
E8 scanner (General Electric, USA) while the video signal of the machine’s
monitor is recorded lossless at 30 Hz. Gaze is simultaneously recorded at 90 Hz
with a Tobii Eye Tracker 4C (Tobii, Sweden). Ethics approval was obtained for
data recording and data are stored according to local data governance rules. For
our experiments, we use 135 fetal anomaly scans, which are randomly split into
three equally sized subsets for cross-validation.
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Table 1. SE-ResNeXt-50 (half-width) [18] and SonoNet-64 [1] (variant of VGG-16
[16]) architectures. Convolutional layers are denoted as ‘conv <kernel-size>, <output-
channels>[, <C =cardinality>]’, where cardinality is the number of grouped convolu-
tions. SE modules are denoted as ‘fc’ followed by the dimensions of the corresponding
fully-connected layers. Scales in parentheses correspond to the dilated networks for
attention modeling. The lower part of the table shows the heads for attention modeling
and classification, respectively.

SE-ResNeXt-50 (half-width, 7.4M parameters) SonoNet-64 (14.9M parameters)

Layer name Scale Layers Scale Layers

layer 1
224× 288 conv, 7× 7, 64, stride 2

224× 288 [conv, 3× 3, 64]× 2
112× 144 max pool, 3, stride 2

layer 2 56× 72


conv, 1× 1, 64

conv, 3× 3, 64, C = 16

conv, 1× 1, 128

fc, [8, 128]

× 3 112× 144 [conv, 3× 3, 128]× 2

layer 3 28× 36


conv, 1× 1, 128

conv, 3× 3, 128, C = 16

conv, 1× 1, 256

fc, [16, 256]

× 4 56× 72 [conv, 3× 3, 256]× 3

layer 4
14× 18
(28× 36)


conv, 1× 1, 256

conv, 3× 3, 256, C = 16

conv, 1× 1, 512

fc, [32, 512]

× 6 28× 36 [conv, 3× 3, 512]× 3

layer 5
7× 9
(28× 36)


conv, 1× 1, 512

conv, 3× 3, 512, C = 16

conv, 1× 1, 1024

fc, [64, 1024]

× 3 14× 18 [conv, 3× 3, 512]× 3

adaptation
(attention)

28× 36
conv 7× 7, 1024, C = 1024
[conv 1× 1, 256]× 2
conv 1× 1, 1

— —

adaptation
(classification)

7× 9
conv 1× 1, 256
conv 1× 1, NC

avg. pool and softmax
14× 18

conv 1× 1, 256
conv 1× 1, NC

avg. pool and softmax

CNN Architecture. Recent empirical evidence suggests that ImageNet perfor-
mance is strongly correlated with performance on other vision tasks [9]. Therefore,
we base our CNN on SE-ResNeXt [8], a ResNet-style model with aggregated con-
volutions and channel recalibration (squeeze-and-excitation, short SE ) modules,
which won the 2017 ImageNet classification competition. For attention modeling,
layers 4 and 5 are dilated as described in Sec. 2. In preliminary experiments we
found that halving the number of feature channels (except for layer 0) greatly
reduced the computational cost without performance losses on our dataset. The
resulting architecture is summarized in column 1 of Table 1. Column 2 shows
SonoNet-64 [1], which we use as a reference for standard plane detection since the
authors published network weights trained on over 22k standard plane images.

3.1 Visual Attention Modeling

Experimental methods. Two visual attention models (VAMs) were trained
on the ultrasound video and gaze data as described in Sec. 2, namely a visual
saliency predictor (Saliency-VAM ) and a gaze-point regressor (Gaze-VAM ). For
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Table 2. Results of visual saliency prediction and gaze-point regression compared
to static baselines (mean ± standard deviation). Next to the training loss (KLD),
the Saliency-VAM is evaluated on the metrics normalized scanpath saliency (NSS),
AUC-Judd, Pearson’s correlation coefficient (CC) and histogram intersection (SIM) (for
references see [2]). Best values are marked bold.

Saliency-VAM Gaze-VAM

KLD NSS AUC [%] CC [%] SIM [%] `2-norm

Static 3.41 ±0.02 1.39 ±0.05 85.9 ±0.3 14.9 ±0.4 8.5 ±0.1 54.4 ±0.6

Learned 2.43 ±0.03 4.03 ±0.05 96.7 ±0.2 31.6 ±0.3 18.5 ±0.2 27.4 ±0.4

pre-processing, all video frames that did not correspond to 2D B-mode live
scanning (e.g., Doppler, 3D/4D or frozen frames) or without gaze data were
discarded. Further, all but every 8th frame were discarded to reduce temporal
redundancy, resulting in a total of 403 070 video frames. Next, the frames were
cropped down to the region of the actual ultrasound image. Data augmentation
was performed by uniformly sampling sub-crops of 70-90% side length that
contained the gaze points, random horizontal flipping, and varying gamma and
brightness by ±25%. Finally, the frames were down-sampled to a size of 224×288
pixels and normalized to zero-mean and unit-variance.

Both attention models were trained via stochastic gradient descent (SGD)
with momentum of 0.9, weight decay of 10−4 and mini-batch size of 32. The
Saliency-VAM was trained for 8 epochs at a learning rate (LR) of 0.1 while the
Gaze-VAM converged more slowly and was trained for 10 epochs at a LR of 0.01.
In each case, the LR was decayed by a factor of 10 for the final two epochs. All
experiments were implemented in the PyTorch framework. Each training run was
performed in 9–16 h on a single Nvidia GTX 1080 Ti.

Results. Table 2 summarizes the quantitative evaluation of the attention models.
The static baseline for the Saliency-VAM is the normalized sum of all ground
truth saliency maps. The baseline for the Gaze-VAM is the geometric median
of all gaze points. The learned models clearly outperform the static baselines
on every metric. Fig. 2 shows visual saliency and gaze point predictions for
four representative frames from the validation set. Frames 1.-3. each contain
one anatomical structure and show examples of accurate prediction. Frame 4.
contains several structures, which creates ambiguity.

3.2 Fetal Anomaly Standard Plane Detection

Experimental methods. For comparison with Baumgartner et al. [1], we
consider the same 13 standard plane classes and “background” class, except that
our data contains the three vessels and trachea view (3VT) which is similar
to their three-vessel view (3VV). From the available 135 anomaly scans, we
obtained a total of 1129 standard plane frames with 62 to 148 samples per class
(a plane may be acquired twice or may be skipped in a scan). Moreover, we
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Frame Saliency-VAM

Ground Truth Prediction Ground Truth Prediction

Gaze-VAM

1. Abdomen

2. Heart

3. Brain

4. Multiple
structures

Fig. 2. Visual saliency and gaze point predictions with corresponding ground truths
for representative validation set frames.

sampled 1127 background frames in the vicinity of the standard planes. The
same scan-level three-fold cross-validation split as for attention modeling was
applied. For pre-processing, frames were cropped to the ultrasound image region
as for attention modeling. The images were then augmented by random horizontal
flipping, rotation by ±10◦, varying the aspect-ratio by ±10%, sampling a sub-crop
of 95-100% side length, and varying gamma and brightness by ±25%. As before,
the images were down-sampled and normalized.

The trained visual attention models were fine-tuned (FT) on the standard
plane detection task, yielding Saliency-FT and Gaze-FT. Moreover, two baselines
were generated: A SE-ResNeXt model trained from random initialization and a
fine-tuned SonoNet-64 (SonoNet-FT ). Each epoch consisted of 1024 randomly
sampled images. Analogous to Baumgartner et al., we overcome the class im-
balance problem by sampling images from each standard plane class with the
same frequency and sampling one background image per standard plane image.
Fine-tuning was performed via SGD with momentum of 0.9, weight decay of
5×10−4, mini-batch size of 16 and a cross-entropy loss. The attention models
were fine-tuned for 50 epochs with a LR of 0.01, decayed by a factor of 10 at
epochs 20 and 35. For the randomly initialized model, the LR was increased
by a factor of 4. The SonoNet model was initialized with pre-trained weights
published by the authors and fine-tuned for 25 epochs with a LR of 0.01, decayed
at epochs 10 and 20. Longer training or higher learning rates led to overfitting for
the latter two models due to the relatively small number of training samples. Due
to the class imbalance, the overall precision, recall and F1-scores were computed
as macro-averages, i.e., the average of the scores per standard plane.
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Table 3. Standard plane detection results after fine-tuning (mean ± standard deviation
[%]). Rand. Init. denotes the SE-ResNeXt model trained from scratch. The best score
among the first three models is marked in bold. Scores of the fine-tuned SonoNet that
exceed all three models are marked in bold as well. The literature SonoNet scores are
given in parenthesis.

Rand. Init. Gaze-FT Saliency-FT ∆(Saliency,
Rand. Init.)

SonoNet-FT
(Lit. value [1])

Precision 70.4 ± 2.3 67.2 ± 3.4 79.5 ± 1.7 9.1 ± 2.1 82.3 ± 1.3 (81)
Recall 64.9 ± 1.6 57.3 ± 4.5 75.1 ± 3.4 10.2 ± 1.9 87.3 ± 1.1 (86)
F1-score 67.0 ± 1.3 60.7 ± 3.9 76.6 ± 2.6 9.6 ± 2.1 84.5 ± 0.9 (83)

F1-scores per class: ↓
RVOT 37.9 ± 3.8 30.4 ± 4.9 58.7 ± 2.7 20.8 ± 5.5 71.2 ± 2.8

LVOT 30.3 ± 4.7 25.8 ± 5.9 48.6 ± 3.3 18.4 ± 7.3 69.9 ± 5.3

4CH 43.1 ± 6.7 33.5 ± 8.5 57.3 ±10.8 14.2 ±11.9 75.7 ± 9.1

Kidneys 71.4 ± 5.5 68.5 ±12.1 84.7 ± 6.3 13.3 ± 5.7 81.0 ± 5.0

Profile 77.5 ± 7.2 61.7 ± 7.7 87.2 ± 7.5 9.7 ± 3.7 88.1 ± 4.5

Lips 76.7 ± 2.6 74.2 ± 7.3 85.6 ± 4.5 8.8 ± 6.7 92.9 ± 0.8

Brain (Cb.) 84.9 ± 7.0 83.2 ± 1.5 93.7 ± 4.6 8.8 ± 2.3 92.8 ± 1.1

3VT 50.4 ± 1.9 47.1 ± 7.1 58.3 ± 7.1 7.9 ± 5.6 77.9 ± 1.6

Brain (Tv.) 86.1 ± 7.7 88.8 ± 2.8 92.9 ± 5.0 6.8 ± 2.8 92.1 ± 4.5

Spine (cor.) 72.9 ± 3.6 57.2 ± 2.8 79.0 ± 3.7 6.1 ± 6.2 90.3 ± 4.9

Abdominal 67.9 ± 5.1 60.8 ± 6.7 72.9 ± 2.9 5.0 ± 3.7 85.0 ± 1.4

Spine (sag.) 86.5 ± 3.5 80.2 ± 2.5 89.1 ± 2.1 2.7 ± 5.2 91.6 ± 2.5

Femur 85.7 ± 2.0 77.7 ± 0.1 87.6 ± 1.3 1.9 ± 1.5 89.5 ± 1.8

Background 85.2 ± 0.9 83.3 ± 0.7 89.0 ± 0.4 3.8 ± 1.2 90.3 ± 0.4

RVOT: right ventricular outflow tract; LVOT: left ventricular outflow tract; 4CH: four chamber view;
3VT: three vessel and trachea view; Brain (Cb.): brain cerebellum suboccipitobregmatic plane; Brain
(Tv.): brain transventricular plane; Cor.: Coronal plane; Sag.: Sagittal plane.

Besides fine-tuning, we trained a multinomial logistic regression (softmax
regression) on the spatially average-pooled feature activations of each layer of the
attention models and two baselines: an SE-ResNeXt model with random weights
and the pre-trained SonoNet model. For each regression, the entire respective
training set was sampled without augmentation. The classifier was trained with
the L-BFGS solver and balanced class weights. The L2 regularization parameter
was selected for each regression from a range of 16 logarithmically spaced values
from 10−5 to 101 based on the validation F1-score.

Results. A quantitative evaluation of the fine-tuned attention models is shown
in Table 3. The Saliency-FT model improves standard plane detection compared
to the model trained from random initialization on every metric and for each
standard plane. The largest improvement per anatomy is observed for the right
ventricular outflow tract (RVOT) with an average 20.8% increase in F1-score,
followed by the left ventricular outflow tract (LVOT) and the four chamber view
(4CH). Further, the average F1-score of Saliency-FT exceeds that of SonoNet
on 3/14 classes. The Gaze-FT model under-performs compared to training from
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a)

b)

Fig. 3. a) Results of the regression analysis of the fixed-weight attention models, and
baselines. b) t-SNE visualization of the feature embeddings at the respective layers with
the highest F1-score (Background class omitted for legibility). Best viewed in color.

random initialization. In general, the average precision, recall and F1-score of
SonoNet-FT are in good agreement with the literature values. The authors do
not provide per-anatomy scores for SonoNet-64.

The results of the regression analysis are shown in Fig. 3 a). The scores of
both attention models monotonously increase up to layer 4 and stagnate at layer
5, peaking at F1-scores of 58.0± 1.5% for the Gaze-VAM and 64.9± 1.5% for the
Saliency-VAM. The scores of the Saliency-VAM and SonoNet are at similar levels
up to layer 4, while the Gaze-VAM achieves lower scores. For SonoNet the scores
continue to increase at layer 5, reaching an F1-score of 79.9± 0.6%. In general,
the scores of the random features are comparable to those of the other models at
layers 0 and 1 but decline afterwards, peaking at an F1-score of 49.5± 2.7%.

The differences between the feature embeddings are illustrated for selected
layers in Fig. 3 b) via t-SNE [12], a non-linear dimensionality reduction algorithm
that visualizes high-dimensional neighborhoods. Compared to random features,
a separation of the different standard plane classes emerges in the embeddings of
the visual attention models. However, a large overlap remains among the two
brain views and the cardiac views, respectively. Moreover, the views of coronal
spine, kidneys, profile and lips are not well localized. In the embedding of SonoNet,
most classes are well-separated with overlap remaining among the cardiac views.
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4 Discussion and Conclusion

The evaluations have shown that the visual attention models have learned
meaningful representations of ultrasound image data, which was the main goal
of this work. In the transfer learning context, the Saliency-FT model clearly
outperforms the model trained from random initialization. The largest benefit is
observed for the cardiac views with an average increase in F1-score of 15.3%. In
fact, the performance of Saliency-FT is closer to that of SonoNet-FT, although
the latter had been pre-trained with over 22k labeled standard plane images, while
the attention models are pre-trained only with sonographer gaze on unlabeled
video frames. Since fine-tuning is performed with 753 standard plane images on
average, this is a 30-fold reduction in the amount of manually annotated training
data. Gaze-FT did not yield an improvement, indicating that visual saliency
prediction is better suited to learn transferable representations.

Even without fine-tuning, the high-level features of the attention models are
predictive for fetal anomaly standard plane detection, outperforming the baseline
with random weights for softmax regression on the feature activations. Up to last
network layer, the features of the Saliency-VAM are almost as predictive as those
of SonoNet, even though it had received no explicit information about the concept
of standard planes during training. This confirms our hypothesis, motivated by
Wu et al. [17], that gaze is a strong prior for semantic information. At the last
layer, the attention models fall behind SonoNet, indicating the task-specificity of
that layer. The qualitative analysis through t-SNE confirms that some standard
plane classes are well-separated in the respective feature spaces of the attention
models, with overlap remaining for standard planes with similar appearance such
as the brain views and the cardiac views, respectively. It should be noted that we
did not compare our models to a recently proposed variation of SonoNet [15] with
multi-layer attention-gating due to the added complexity of that architecture.

The results for both visual saliency prediction and gaze-point regression
indicate successful learning of sonographer visual attention. This is supported
by the fact that the scores on the key metrics of AUC and NSS are higher than
the scores reported by Cai et al. [3] and than typical scores on the public MIT
Saliency Benchmark of natural images (saliency.mit.edu). However, our scores
on the CC, SIM and KLD metrics are worse compared to these sources and in
general, the comparability is very limited since the maximum attainable values
are dataset-dependent. For gaze-point regression, the proposed method based on
the soft-argmax algorithm was found to be an effective solution.

In conclusion, we have shown that visual attention modeling is a promising
method to learn image representations without manual supervision. The trained
CNNs generalize well to the task of fetal anomaly standard plane detection,
both for transfer learning and as fixed feature extractors. We have evaluated two
methods for visual attention modeling, visual saliency prediction and gaze-point
regression, and found that the representations learned with the former method
generalize better. The representation learning framework presented herein is
generic and therefore has the potential to be applied in many settings where gaze
and image data can be readily acquired.

saliency.mit.edu
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