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A B S T R A C T

To enable application of non-Gaussian diffusion magnetic resonance imaging (dMRI) techniques in large-scale
clinical trials and facilitate translation to clinical practice there is a requirement for fast, high contrast, tech-
niques that are sensitive to changes in tissue structure which provide diagnostic signatures at the early stages of
disease. Here we describe a new way to compress the acquisition of multi-shell b-value diffusion data, Quasi-
Diffusion MRI (QDI), which provides a probe of subvoxel tissue complexity using short acquisition times (1–4
min). We also describe a coherent framework for multi-directional diffusion gradient acquisition and data pro-
cessing that allows computation of rotationally invariant quasi-diffusion tensor imaging (QDTI) maps.

QDI is a quantitative technique that is based on a special case of the Continuous Time Random Walk model of
diffusion dynamics and assumes the presence of non-Gaussian diffusion properties within tissue microstructure.
QDI parameterises the diffusion signal attenuation according to the rate of decay (i.e. diffusion coefficient, D in
mm2 s�1) and the shape of the power law tail (i.e. the fractional exponent, α). QDI provides analogous tissue
contrast to Diffusional Kurtosis Imaging (DKI) by calculation of normalised entropy of the parameterised diffusion
signal decay curve, Hn, but does so without the limitations of a maximum b-value.

We show that QDI generates images with superior tissue contrast to conventional diffusion imaging within
clinically acceptable acquisition times of between 84 and 228 s. We show that QDI provides clinically meaningful
images in cerebral small vessel disease and brain tumour case studies. Our initial findings suggest that QDI may be
added to routine conventional dMRI acquisitions allowing simple application in clinical trials and translation to
the clinical arena.
1. Introduction

Over the last decade there have been extensive advances in acquisi-
tion and analysis of diffusion magnetic resonance imaging (dMRI) data
but these have not been routinely translated into clinical practice. One
reason for this is the frequently lengthy acquisition times required to
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provide adequate image quality. This can be prohibitive, for example, in
acute stroke where there is a need for rapid data acquisition as patients
are not always able to remain motionless throughout lengthy MRI pro-
tocols. Consequently, current clinical use of dMRI is limited to conven-
tional Diffusion-Weighted Imaging (DWI) (i.e. clinical trace DWI) and the
occasional use of Diffusion Tensor Imaging (DTI). To enable application
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of new dMRI techniques in large-scale clinical trials and facilitate
translation to clinical practice there is the requirement to provide high
signal to noise and high contrast to noise using short acquisition times
(i.e. between 1 and 4 min). Here we introduce a novel dMRI technique,
Quasi-Diffusion MRI (QDI), which utilises a rapid scan acquisition that
can be acquired on clinical MR systems and provides high tissue contrast
images. The QDI technique provides a coherent framework for data
acquisition and processing to give all conventional dMRI contrasts plus
images analogous to Diffusional Kurtosis Imaging (DKI) (Jensen et al.,
2005; Jensen and Helpern, 2010).

The simplest and most widespread assumption used in dMRI analysis
is that spin displacements are Gaussian (Jones et al., 2013; Johansen--
Berg and Behrens, 2009) leading to prediction of mono-exponential
diffusion signal attenuation with b-value (Callaghan, 2011). DWI and
DTI use this assumption and can be routinely acquired in the clinic in 1–4
min. Although mono-exponential signal decay is observed in
diffusion-weighted measurements of fluids, this is not the case for
diffusion in more structurally complex media such as tissue, where the
signal decays more slowly than described by a single exponential func-
tion and a Gaussian process alone (Clark and Le Bihan, 2000).

The observation of non-mono-exponential decay has led to the
concept that diffusion is influenced by microstructure which impedes the
motion of spins. Structures with a size similar to the typical diffusion
length-scale will impede spins’ motion in a non-trivial way (e.g. Gre-
benkov, 2009, 2008) and cause departures from a Gaussian displacement
distribution. This has led to the diffusion signal being used as a probe of
microstructural properties of the tissue environment by techniques that
model underlying tissue geometry (e.g. biexponential (Clark and Le
Bihan, 2000), CHARMED (Assaf and Basser, 2005), AxCaliber (Assaf
et al., 2008), ActiveAx (Alexander, 2008; Alexander et al., 2010), NODDI
(Zhang et al., 2012), VERDICT (Panagiotaki et al., 2015, 2014)). These
techniques potentially provide useful clinical information but require
lengthy dMRI acquisition times due to the requirement for numerous
diffusion gradient directions and b-value shells. In addition, techniques
such as NODDI exhibit acquisition and parameter-based bias (Jelescu
et al., 2015; Jelescu and Budde, 2017) and are not readily applicable to
organs outside the central nervous system without adaption of geomet-
rical assumptions and algorithmic recalibration (Bonet-Carne et al.,
2019). Multidimensional dMRI (Topgaard, 2017) is a technique derived
from multidimensional solid-state MRI that uses q-vector trajectory
encoding MRI acquisition sequences to provide a representation of
diffusion in isotropic and directional tissue dimensions. This technique is
not yet clinically available and requires lengthy acquisition times and
requires gradient pulse shapes to be optimised using bespoke software
and uploaded to the scanner prior to any application.

Another recent approach is to make an assumption regarding the
overall distribution of barriers in the environment and estimate a time-
dependent diffusivity (Novikov and Kiselev, 2010; Novikov et al.,
2011, 2014, 2019). In this case a model is derived that involves a
diffusivity with a power-law time dependence. Model parameters are
estimated from diffusion-weighted measurements at several diffusion
times, and the power-law exponent is related to the presence or absence
of disorder in the diffusion environment. The strength of this approach
and that of Topgaard (2017) is that no geometric assumptions regarding
the tissue microstructure are necessary. The technique has been applied
in humans to estimate muscle fibre size (Sigmund et al., 2014), prostate
microstructure (Lemberskiy et al., 2018) and properties of the human
brain (Veraart et al., 2019). One disadvantage, however, is the require-
ment for dMRI acquisition at multiple diffusion times resulting in lengthy
acquisition times.

An alternative to these techniques is DKI, which provides a repre-
sentation (rather than a biophysical model, Novikov et al., 2018a) of
non-Gaussian diffusion (Jensen et al., 2005; Jensen and Helpern, 2010).
DKI provides greater sensitivity to subtle microstructural damage than
DTI in early detection of pathological change (Gong et al., 2017; Praet
et al., 2018) and histological grade of brain tumours (Falk Delgado et al.,
2

2018). This technique adds a fourth order moment to the second order
mono-exponential diffusion decay curve and computes an additional
term, κ, representing departures from Gaussian diffusion due to in-
teractions with the microstructural environment. However, the tech-
nique has several limitations: (i) DKI provides unreliable information for
b > 3000 s mm�2 (Jensen and Helpern, 2010) and (ii) DKI has frequent
fitting errors that lead to computation of negative kurtosis within an
image voxel (Jensen and Helpern, 2010; Tabesh et al., 2011). The first
issue represents a limitation for clinical studies as dMRI of ultra-high
b-values (i.e. b > 3000 s mm�2) has potential in characterising neuro-
degenerative diseases such as Parkinson’s disease (Xueying et al., 2015)
and Alzheimer’s disease (Yingnan et al., 2018), and characterising brain
tumour subtypes (Tan et al., 2018). Secondly, although DKI acquisitions
have a theoretical minimum acquisition of 15 diffusion gradient di-
rections in 3 b-values (i.e. b¼ 0 s mm�2 and two non-zero b-value shells),
a routine acquisition typically involves 30 or more directions in more
than two non-zero b-value shells. These limitations mean that DKI cannot
use the higher diffusion sensitisation capabilities of modern clinical MRI
systems and does not provide a time efficient scan acquisition.

Our QDI technique has different assumptions with respect to the
underlying diffusion process. We apply a special case of a general model
of diffusion dynamics based on anomalous transport theory (Gorenflo
et al., 2002; Metzler and Klafter, 2000; Zaslavsky, 2005; Klages et al.,
2008) in which the continuous-time random walk (CTRW) model de-
scribes the dynamics of the diffusing spins based on fractional calculus
(Klages et al., 2008). The CTRWmodel makes no explicit microstructural
assumptions but instead assumes an effective diffusion process. This
provides a generalised diffusion equation and propagator in which the
mean-squared displacement of spins depends on some (non-integer)
powers of time and space. Diffusion dynamics are described by two
processes that are represented by fractional exponents: α representing the
probability density function (pdf) of waiting times and β representing the
pdf of step lengths in their random walks. The CTRW model has been
applied to dMRI data but typically involves acquisition of more than two
non-zero b-value shells across multiple diffusion gradient directions
(ex-vivo: Ingo et al., 2014b; Gatto et al., 2019; in-vivo: Karaman et al.,
2016; Tang and Zhou, 2019) and hence requires lengthy acquisition
times. Furthermore, dMRI acquisition parameterised by diffusion
gradient strength and diffusion time may be necessary for accurate
quantification of model parameters (Ingo et al., 2014b) further increasing
acquisition time.

We impose a special case of the CTRW model by assuming there is a
scaling relationship between time and space for diffusion in tissue
microstructure. We do this both for practical and theoretical reasons. The
special case is achieved by identifying a relationship between α and β,
specifically β¼ 2α, which describes a quasi-diffusion random-walk model
of the diffusion dynamics for coupled random walks (Jurlewicz et al.,
2012; Luchko et al., 2016; Meerschaert and Scheffler, 2019). This rela-
tionship simplifies the CTRW model and establishes a mean-squared
displacement of spins that is linearly proportional to time but for which,
in general, the diffusion signal decay is slower than for mono-exponential
Gaussian diffusion. This quasi-diffusion model represents non-Gaussian
diffusion dynamics in a heterogeneous medium and parameterises
signal attenuation according to the quantitative measures of rate of decay
(i.e. the diffusion coefficient, D in mm2 s�1) and the shape of the power
law tail (i.e. the fractional exponent, α). We can consider quasi-diffusion
either as a model based on emergent diffusion dynamics, or as a repre-
sentation of dMRI data (Novikov et al., 2018a) which is more compact
than DKI and provides a better parameterisation of diffusion signal
attenuation at high b-values. To enable QDI to provide tissue contrast
similar to κ we compute the normalised entropy of the parameterised
diffusion signal decay curve, Hn (Ingo et al., 2014b, 2014a). An advan-
tage of the QDI technique is that it estimates D and α separately in each
diffusion gradient direction and requires a minimum acquisition of a b ¼
0 s mm�2 image followed by two non-zero b-value shells, allowing rapid
dMRI acquisition in clinically acceptable time. QDI may be applied to any
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b-value range and Quasi-Diffusion Weighted Imaging (QDWI) and
Quasi-Diffusion Tensor Imaging (QDTI) maps analogous to conventional
diffusion modalities are computed.

Here we provide the theoretical background to QDI and show the
proof of concept of the technique. We show QDTI maps for healthy vol-
unteers and provide an estimate of variance in brain tissue. We then show
that QDTI provides maps analogous to DKI and that QDTI is capable of
estimating D and αwithin image voxels where DKI fails. We also consider
the performance of QDI for minimal dMRI acquisition schemes (using
SENSE to speed up the acquisition, but without multi-band imaging) in
15, 6 and 3 diffusion gradient directions (i.e. in 228s, 120s and 84s,
respectively) indicating the potential clinical feasibility of the technique.
Finally, we present clinical case studies for six diffusion gradient direc-
tion QDTI in cerebral small vessel disease (SVD) and brain tumour
patients.

2. Methods

2.1. Theory

2.1.1. Continuous time random walk model of diffusion dynamics
In this study we use a general model of the underlying diffusion

process known as the continuous time random walk (CTRW). The crucial
difference between the CTRW and conventional random walks models is
that the mean-squared displacement of diffusing particles depends on
some (non-integer) power of time (Metzler and Klafter, 2000; Klages
et al., 2008). This model gives a generalised form,

hxi2et2∝=β [Eq. 1]

where diffusion dynamics are described by two exponents: α which de-
fines the pdf of waiting times between steps in randomwalks and βwhich
defines the pdf of step lengths. Diffusing particles execute a step, and then
remain stationary for a short time before taking another. The exponents
are assumed to be independent, and both processes are described by an
inverse power dependency for step length, xβ�2, and waiting time tα�1.
This means that large step lengths and waiting times are much less likely
than shorter ones but are nevertheless more likely than for a Gaussian
distribution. Themodel reduces to Gaussian distributions when α¼ 1 and
β ¼ 2.

2.1.2. Application of the continuous time random walk diffusion model to
dMRI

Following an analogous strategy to Gaussian diffusion the 1D motion
of a diffusing particle, Pðx; tÞ, is represented by a fractional partial dif-
ferential equation (see Ingo et al., 2014b for details). For application to
dMRI the Fourier Transform of this solution is derived in q-space where
q ¼ 1

2π γgδ (in mm�1), γ is the gyromagnetic ratio of hydrogen, g is the
diffusion gradient strength (in mTm�1), and the effective diffusion time is
denoted as Δ ¼ Δ� δ

3 (in s) for a given diffusion gradient pulse duration,
δ, and separation, Δ. This provides an equation for the diffusion signal
decay, pðq;ΔÞ as follows,

pðq;ΔÞ¼Eαð � Dα;βjqjβΔαÞ [Eq. 2]

where Eα is the single-parameter Mittag-Leffler function (MLF) (Haubold
et al., 2011). The MLF is defined as a power series for z 2 C such that,

EαðzÞ¼
X∞
k¼0

zk

Γðαk þ 1Þ [Eq. 3]

where Γ(y) is the Gamma function, a generalization of the factorial
function for all y 2 R. At low z this equation describes a stretched
exponential and at high z a power law decay (Carpinteri and Mainardi,
1997). In Eq. (2) the orders of the fractional operators α and β are frac-
tional exponents that stretch and contract the power law tails of the
3

waiting time and step length pdfs and allow inference of asymptotic
microscopic diffusion dynamics from macroscopic experimental data
(Mainardi et al., 2001; Klages et al., 2008; Gorenflo et al., 2014; Evan-
gelista et al., 2018; Magin et al., 2019).

The fractional time and space exponents are decoupled and provide
potentially uncorrelated α and β exponents that have meaning with
respect to the type of diffusion that is present within a voxel (i.e.
Gaussian, sub-diffusive (i.e. slower than Gaussian) or super-diffusive (i.e.
faster than Gaussian), Fig. 1). Such a model ideally requires dMRI
acquisition across multiple q and Δ values (Ingo et al., 2014b) and is
either not clinically feasible due to long acquisition times, or is affected
by the limited range of diffusion times available on clinical MR systems
(Magin et al., 2013). Furthermore, the diffusion coefficients, Dα,β,
computed from Eq. (2) are in units of mmβs�α and require complex
methods to recover units of mm2s�1 (e.g. Ingo et al., 2014b; Karaman
et al., 2016; Magin et al., 2008). A pragmatic, clinically feasible solution
to ensuring acquisition times are short is to keep Δ constant and alter q,
however, such a restriction still requires extensive data acquisition across
multiple b-value shells (Gatto et al., 2019; Ingo et al., 2014b; Karaman
et al., 2016; Tang and Zhou, 2019).

2.1.3. Quasi-diffusion MRI
We propose a simplification of the CTRWmodel by a coupling of the α

and β exponents. Mean-squared displacement of diffusing particles in the

CTRWmodel is given by hxi2 � t
2α
β and Gaussian diffusion by α ¼ 1 and β

¼ 2, such that hxi2 � t. If the same heuristic Gaussian scaling relation of
position with time continues to hold for non-Gaussian diffusion then
hxi2 � t and 2α=β ¼ 1. In this case the model represents non-Gaussian
diffusion which is not super-diffusive or sub-diffusive (see Fig. 1);
instead we have a quasi-diffusion process. For dMRI the quasi-diffusion
equation is derived by substitution of β ¼ 2α in Eq. (2) as follows,

pðq;ΔÞ ¼
X∞
k¼0

�� Dα;2αq2αΔ
α�k

Γðαk þ 1Þ

¼
X∞
k¼0

ð � 1ÞkðD1;2bÞαk
Γðαk þ 1Þ ;

[Eq. 4]

where signal attenuation is parameterised by b ¼ q2Δ and the diffusion
coefficient, D1;2, is in conventional units of mm2s�1. The two variants of
Eq. (4) allow fitting with respect to q- or b-value. The fractional α
exponent represents a range of properties from Gaussian diffusion (α¼ 1)
through non-Gaussian (quasi) diffusion (0 < α < 1). Specifically, QDI
parameterises the signal decay by b-value according to the rate of decay,
D1,2, and the shape of the power law tail, α. Both D1,2 and α are quanti-
tative measures. It is important to note that α is analogous to the DKI κ
measure as it represents non-Gaussian diffusion dynamics.

2.1.4. Normalised entropy
QDI does not explicitly allow derivation of diffusional kurtosis (see

Ingo et al., 2015, 2014a), however, we can use the estimates of D1,2 and α
from Eq. (4) to predict diffusion signal attenuation at high b-values and
so create synthetic images with contrast similar to κ. To achieve this we
compute the information content in the fitted signal decay curve (i.e. a
composite measure of the rate of decay and shape of the curve) as the
normalised Shannon entropy Hnðpðq;ΔÞÞ (Ingo et al., 2014b, 2014a),

Hnðpðq;ΔÞÞ¼ 1
logðNÞ

Z N

i¼1
pðqi;ΔÞlnðpðqi;ΔÞÞ; [Eq. 5]

where 0 � Hnðpðq;ΔÞÞ � 1 and N is the total number of samples taken
along the curve. The normalised entropymeasure is not fully quantitative
as it is affected by altering the number of samples along the curve or the
range of q- or b-values it is computed across. Greater Hn values corre-
spond to larger deviation of the signal decay curve from Gaussian



Fig. 1. Stochastic properties of diffusion processes
that may be determined using the general CTRW
model. Graph (a) shows mean-squared displacement
with respect to diffusion time for sub-diffusion (black
line), super-diffusion (grey line) and regular Gaussian
diffusion (dotted line). Graph (b) shows the diffusion
phase diagram and indicates the type of diffusion
processes as identified by the time, α, and space, β,
fractional exponents (adapted from Metzler and
Klafter, 2000). Regular Gaussian diffusion occurs
when α ¼ 1 and β ¼ 2, with super diffusion when
2α/β > 1 and sub diffusion when 2α/β < 1.
Quasi-diffusion occurs when 2α/β ¼ 1 (i.e. 2α ¼ β).
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diffusion. Intuitively, Hn, represents the complex heterogeneity of the
diffusion environment.

2.1.5. Diffusion MRI acquisition strategies for QDI
The minimum number of MR images needed to estimate D1;2 and α

from Eq. (4) along a single diffusion gradient direction corresponds to
dMRI acquisition at 3 b-values (e.g. b ¼ 0 s mm�2 and 2 non-zero b-
values). For QDWI there is a minimum requirement for 7 diffusion
measurements (e.g. b ¼ 0 s mm�2, and 2 non-zero b-values in 3
orthogonal diffusion gradient directions). Similarly, a QDTI acquisition,
which allows computation of D1;2 and α tensor maps requires at least 13
diffusion measurements (e.g. b ¼ 0 s mm�2, and 2 non-zero b-values in 6
non-collinear diffusion gradient directions). Such a minimum QDTI
acquisition requires considerably fewer dMRI acquisitions than DKI
which requires a minimum of 31measurements (e.g. b¼ 0 s mm�2, and 2
non-zero b-values in 15 non-collinear diffusion gradient directions,
Jensen and Helpern (2010)). QDTI can be acquired in 42% of the mini-
mum DKI acquisition time allowing QDTI to be added to routine clinical
protocols without significantly increasing the overall scanning time.

2.1.6. Quasi-diffusion tensor imaging
QDI includes dMRI acquisition along radial lines in q-space from

which 1D estimates of D1;2, α and Hn are computed. These estimates can
be considered as spherical samples from which 3 � 3 tensors may be
computed (Hall and Barrick, 2012). D1;2, α and Hn tensors are computed
separately and provide 3 positive real eigenvalues, λ1, λ2 and λ3, where
λ1>λ2>λ3, at each voxel with 3 corresponding eigenvectors, v1, v2 and
v3. Familiar metrics are computed from the D1,2 tensor as mean D1;2 ¼
ðλ1 þ λ2 þ λ3Þ=3, axial D1;2 ¼ λ1, radial D1;2 ¼ ðλ2 þ λ3Þ= 2) and D1,2

anisotropy (i.e. fractional anisotropy, Pierpaoli and Basser, 1996).
Similar equations are used to calculate α metrics from the exponent
tensor. For the normalised entropy tensor, meanHn andHn anisotropy are
computed as above, but axialHn ¼ λ3 is assumed to be aligned along the
direction of least entropy, with radial Hn ¼ ð λ1 þ λ2Þ= 2). All QDTI
measures are rotationally invariant.

2.2. Participants

Healthy subjects: Eight healthy participants were recruited (age 29
� 8 years, 3 male, 5 female). Ethics approval was obtained for the study
(East London 3 Research Ethics Committee (REC): 10/H0701/36) and
written informed consent was obtained from each participant prior to MR
scanning.

Cerebral small vessel disease patients: Two patients were recruited
as part of the “Magnetic resonance spectroscopy to validate brain
glutamate as a therapeutic target in delirium and dementia” study at St
George’ (SGUL) for which ethical approval was obtained (REC: 18/WA/
0063). Written informed consent was obtained from each participant
prior to MR scanning. Both participants had incidental findings of SVD on
scanning. Case 1 (age 71 years) had extensive leukoariaosis. Case 2 (age
4

75 years) had an incidental acute ischaemic infarct.
Brain tumour patients: Three brain tumour patients were recruited

as part of the “Tissue-type magnetic resonance imaging of brain tumours”
study at SGUL for which ethical approval was obtained (South Central
Hampshire REC: 17/SC/0460). Written informed consent was obtained
from each participant prior to MR scanning. Case 1 (age 72 years) had
two WHO Grade I meningiomas (one angiomatous, the other psam-
momatous), case 2 (age 40 years) had a WHO Grade II astrocytoma, and
case 3 (age 58 years) had a WHO Grade IV glioblastoma.
2.3. Magnetic resonance image acquisition

MR images were acquired on a 3T Philips Achieva Dual TX MR
scanning system (Philips Healthcare, Best, Netherlands) using a 32-chan-
nel head coil at St George’s Hospital, London, UK. Acquisition included
T1-weighted and QDI protocols. T1-weighted volume images were ac-
quired using a Turbo Field Echo (TFE) sequence (TE ¼ 3.7 ms, TR ¼ 8.1
ms, TI¼ 1010 ms, flip angle 8� with a field of view (FOV) 240 mm� 240
mm T1-weighted images were acquired on young, healthy controls with
128 sagittal slices and voxel resolution 1 mm � 1 mm � 1.25 mm in 6
min 1 s, and for patients with 193 sagittal slices with 1 mm isotropic
resolution in 6 min 47 s. Patient MRI acquisition was performed as part of
a multimodal MRI protocol.

2.3.1. Diffusion image acquisition and pre-processing
Our QDI protocol was developed to provide voxel resolutions similar

to conventional clinical DWI and to take advantage of ultra-high b-value
tissue contrast. The TR is sufficiently long to ensure that significant T1
effects are not present in dMRI for healthy or pathological brain tissue.

Whole brain axial dMRI were acquired using a diffusion-sensitized
spin-echo planar imaging (EPI) sequence in enhanced gradient mode
(80mTm�1 at a slew rate of 100 mT m�1 ms�1). Fat suppression was
achieved using Spectral Presaturation by Inversion Recovery (SPIR) and
Slice Selection Gradient Reversal (SSGR). Scan parameters included: TE
¼ 90 ms, TR ¼ 6000 ms, δ ¼ 23.5 ms, Δ ¼ 43.9 ms, field of view (FOV)
210 mm � 210 mm with twenty-two 5 mm thick slices acquired at 2.3
mm � 2.3 mm � 5 mm resolution that was zero-filled (by use of the
Fourier transform) to provide 1.5 mm� 1.5 mm� 5 mm voxels. A SENSE
factor 2 and half scan factor 0.891 were applied to minimise echo-train
length and overall acquisition time. QDI protocols acquired dMRI at b
¼ 0, 1100 and 5000 s mm�2 and DKI protocols at b¼ 0, 1100 and 3000 s
mm�2. Images without diffusion-sensitisation (i.e. b ¼ 0 s mm�2) were
acquired 8 times.

For all young, healthy participants, QDWI was acquired in 3 orthog-
onal diffusion gradient directions (acquisition time 84s). QDTI was ac-
quired in 6 diffusion directions equally spaced on the hemisphere
(acquisition time 120s) and 15 directions equally spaced on the hemi-
sphere (acquisition time 228s). DKI was acquired using identical gradient
directions to 15 direction QDTI data. QDWI and QDTI data were acquired
twice in the same scan session for five of the young, healthy participants
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(age 33 � 7 years, 2 male, 3 female) to allow computation of QDI scan-
rescan reproducibility. The patients were scanned using the 6 diffusion
direction QDTI protocol.

All dMRI acquisitions were denoised usingMRTrix (MRTrix version 3,
http://www.mrtrix.org/) (Veraart et al., 2019) and simultaneously cor-
rected for motion and eddy current distortions by co-registration to the b
¼ 0 s mm�2 image using FSL (version 5.0.11, https://fsl.fmrib.ox
.ac.uk/fsl/fslwiki/) (Andersson et al., 2016).
2.4. Quasi-diffusion image computation

No image smoothing was performed prior to parameter estimation.
D1,2 and αwere estimated in each diffusion gradient direction on a voxel-
by-voxel basis from Eq. (4) using a Levenberg-Marquardt algorithm (htt
Fig. 2. QDI model fitting to dMRI data. QDI model fitting is illustrated for a young,
Data fits are shown for a representative grey matter (panel a) and white matter voxe
arrows on mean D1,2 and α maps (panel c) shown using the radiological convention

5

p://www.gnu.org/software/gsl). Data fitting was initialised at each
image voxel with D1,2 ¼ 2.98 � 10�3mm2s�1 and α ¼ 0.978. Normalised
entropy requires a numerical computation of an integral between b ¼ 0 s
mm�2 and infinity. For practical analysis we computed normalised en-
tropy in each diffusion gradient direction over N ¼ 100 uniform steps in
q-space from b ¼ 0 s mm�2 to b ¼ 1,000,000 s mm�2 (i.e. q ¼ 0 mm�1 to
4772.74 mm�1 in steps of q ¼ 47.73 mm�1). Pad�e approximation was
used to enable rapid estimation of the MLF and its derivatives (Atkinson
and Osselran, 2011; Ingo et al., 2017). Fig. 2 shows QDI model fits to
dMRI data within representative grey and white matter voxels. The grey
matter voxel provided D1,2 ¼ 0.75� 10�3�0.03� 10�3 mm2s�1 and α ¼
0.92 � 0.04, whereas greater variability was apparent in the white voxel
for D1,2 and α by diffusion direction, D1,2 ¼ 0.74 � 10�3�0.37 � 10�3

mm2s�1 and α ¼ 0.78 � 0.07.
healthy subject in application to the 15 diffusion gradient direction dMRI data.
l (panel b) through q-space (in mm�1). Voxel locations are indicated by the red
.

http://www.mrtrix.org/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://www.gnu.org/software/gsl
http://www.gnu.org/software/gsl


T.R. Barrick et al. NeuroImage 211 (2020) 116606
QDWI and QDTI maps were computed as follows:

� QDWI: Each b-value shell was averaged prior to quasi-diffusion
model fitting to provide mean D1,2, α and Hn maps. These maps are
quantitative but not rotationally invariant.

� QDTI: Quasi-diffusion model fitting was performed in each diffusion
direction and rotationally invariant quantitative mean, axial, radial
and anisotropy maps were computed from D1,2, α and Hn tensors.

2.5. Computation of diffusional kurtosis

No data smoothing was performed prior to computation of DKI
metrics. The diffusional kurtosis model was fitted to the diffusion signal
attenuation across 15 diffusion gradient directions (b ¼ 0, 1100, 3000 s
mm�2) using ExploreDTI (http://exploredti.com/) which uses the Robust
Extraction of Kurtosis INDices with Linear Estimation (REKINDLE)
approach (Tax et al., 2019). Mean, axial, radial and anisotropy maps
were computed for the diffusion coefficient, Dκ, and kurtosis, κ.

2.6. Computation of tissue measures within healthy subjects

To allow assessment of QDI diffusion measures within specific brain
tissues the T1-weighted images of the healthy volunteers were
segmented into grey matter, white matter and CSF maps using New
Segment in SPM (SPM version 12) (Ashburner and Friston, 2005) and the
lateral ventricles using Freesurfer (Freesurfer version 5.3, https://surfer
.nmr.mgh.harvard.edu/) (Fischl, 2012). The b ¼ 0 s mm�2 images
were aligned to the T1-weighted images using epi_reg in FSL (Greve and
Fischl, 2009) and the resulting affine transformation was inverted to
align T1-weighted images and anatomical ROIs to the dMRI data. To
ensure tissue means, μ, and standard deviations, σ, were minimally
affected by partial volume effects the tissue segmentations were thresh-
olded at a probability of 0.9. Mean, axial, radial and anisotropy measures
were computed for D1,2, α, Hn, Dκ and κ in grey matter, white matter and
lateral ventricle CSF. All voxels with κ < 0 or κ > 3 were excluded from κ
measures.

Coefficients of variation, CV¼ σ=μ, were computed in grey and white
matter for mean D1,2, α and Hn maps. Tissue intensity contrast, tc, was
computed as follows,

tc ¼
��μwhite � μgrey

��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
white þ σ2

grey

q ;

where higher tc values indicate greater tissue contrast.

2.7. Scan-rescan reproducibility of QDI measures

Scan-rescan reproducibility was performed by computing QDI diffu-
sion measures in grey andwhite matter for mean D1,2, α, andHnmeasures
for the 15, 6 and 3 diffusion gradient directions acquisitions and for D1,2,
α, and Hn anisotropy measures for the 15 and 6 direction protocols. Mean
values, μ, were computed separately for grey and white matter across
both scan sessions. Mean difference between scan sessions (i.e. accuracy),
δ, and 95% confidence limits (i.e. precision) were also computed for each
tissue type.

The scan-rescan data acquired for the 15 diffusion gradient direction
protocol was also used to determine the reproducibility of fitted QDI
signal attenuation curves. χ2 was used to provide a measure of difference
between the scan (i.e. expected) and rescan (i.e. observed) fitted curves,
and was computed across 50 b-values evenly spaced between b ¼ 0 s
mm�2 and b¼ 5000 s mm�2 (sampled from the parameterised QDI decay
curves) at each voxel and along each individual diffusion gradient di-
rection. The χ2 difference was normalised by dividing by the number of
samples. As the distribution of χ2 values did not follow a normal distri-
bution the median, quartiles and 95th percentile were computed for each
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subject.

2.8. Statistical analysis

Spearman’s rank correlation coefficients were used to investigate the
relationship between mean tissue QDI measures with the hypotheses that
D1,2 and α represent different properties of the diffusion, and that D1,2
and α are related to the composite Hn measure. The hypothesis that QDI
and DKI measures are related was also tested between D1,2 and Dκ, α and
κ, and Hn and κ. Wilcoxon signed-rank tests were used to investigate
differences between similar measures (n.b. diffusion coefficients,
anisotropy and tc measures) and were considered significant at p<0.05.

2.9. Data and code availability statement

De-identified study data are available on request. The code is not
available as it is subject to patent filing and commercialisation.

3. Results

3.1. QDI measures in healthy subjects

QDTI D1,2, α and Hn maps acquired using the 15 direction dMRI
protocol are shown in Fig. 3 with brain tissue means and standard de-
viations presented in Table 1.

3.1.1. D1,2 and α maps
Mean, axial, radial and anisotropy D1,2, maps (Fig. 3a & Table 1)

exhibited conventional DTI tissue contrast. D1,2 metrics had similar
magnitudes to conventional DTI (Table 1) and were heterogeneous
within brain tissue as indicated by high coefficients of variation and low
tissue contrast between grey and white matter. In contrast, α maps
(Fig. 3b & Table 1) provide information pertaining to properties of the
diffusion dynamics within brain tissue. Diffusion dynamics within lateral
ventricle CSF were Gaussian (mean α: 0.99 � 0.01) with non-Gaussian
diffusion in grey matter (mean α: 0.88 � 0.01) and the greatest devia-
tion from Gaussianity in white matter (mean α: 0.77 � 0.01). Axial α
values exhibited diffusion dynamics closer to Gaussianity than radial α
values (Table 1). α anisotropy was smaller in magnitude than D1,2

anisotropy (e.g. white matter: D1,2 0.60 � 0.03; α 0.13 � 0.01) and was
significantly smaller in brain tissue (grey and white matter, p ¼ 0.008).

Mean, axial and radial α maps had greater tissue intensity homoge-
neity than D1,2 maps as indicated by low coefficients of variation (e.g.
mean α: CVgrey 6.13 � 0.46%, CVwhite 6.92 � 0.80%) and high tc mea-
sures (e.g. mean α: tc 1.45 � 0.14). tc was significantly greater in mean,
axial and radial α maps than D1,2 maps (p ¼ 0.008 for each measure).
Conversely, tissue contrast was greater in D1,2 anisotropy (p ¼ 0.008).
Spearman’s rank correlation coefficients indicated that, D1,2 and α
represent different aspects of the diffusion signal, with no significant
relationships in grey and white matter between the metrics (p> 0.05). In
general, D1,2 and α tensor metrics were moderately to weakly related
(ρ < 0:43) with high correlation in white matter radial measures only (ρ
¼ 0.69, p ¼ 0.058).

3.1.2. Normalised entropy
QDTI Hn maps (Fig. 3c & Table 1) provide a composite measure

representing the diffusion signal attenuation curve. Lowest values of Hn
were found in CSF (mean Hn: 0.32 � 0.01), with greater values in grey
matter (mean Hn: 0.49 � 0.01) and highest values in white matter (mean
Hn: 0.62 � 0.01). Axial Hn measures were lower than radial values
(Table 1). Hn anisotropy measures were significantly lower than D1,2 and
higher than α anisotropy in grey and white matter (p ¼ 0.008).

Tissue Hn values were homogeneous (e.g. mean Hn: CVgrey 9.66 �
0.79%, CVwhite 7.51 � 0.75%) and provided high tissue contrast (e.g.
mean Hn: tc 1.99 � 0.18). Tissue contrast was greater in mean, axial and
radial Hn maps than D1,2 maps (p ¼ 0.008 for each measure) and was

http://exploredti.com/
https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/


Fig. 3. QDTI data of a young, healthy subject for the 15 diffusion gradient direction acquisition (b ¼ 0, 1100, 5000 s mm�2, acquisition time 228 s). Mean, axial, radial
and anisotropy maps are shown for row (a) D1,2, (b) α and (c) Hn. Axial images are shown using the radiological convention.
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significantly greater in mean and radial (p ¼ 0.008), but not axial αmaps
(p ¼ 0.109). Furthermore, Hn anisotropy maps had significantly lower tc
than D1,2 anisotropy maps (p ¼ 0.008) and higher tc than α anisotropy (p
¼ 0.039). Spearman’s correlation coefficients indicate that, in general,
Hn is more related to α than D1,2. Specifically, D1,2 and Hn were highly
correlated in white matter radial measures (ρ ¼ -0.69, p ¼ 0.058), but all
other tensor metrics exhibited weak to moderate correlations
(jρj < 0:595). In contrast, α and Hn were highly correlated (p < 0.05) in
all tensor metrics (grey matter: mean ρ ¼ �0.90, axial ρ ¼ -0.79, radial ρ
¼ 0.95, anisotropy ρ ¼ 0.86; white matter: mean ρ ¼ �0.71, radial ρ ¼
�1.00, anisotropy ρ ¼ 0.83) except white matter axial diffusivity (ρ ¼
�0.381). Together these results indicate that Hn values are weighted
towards the α measure.
3.2. Comparison of QDI and DKI measures in healthy subjects

This section compares D1,2 and Dκ, and α and κ measures computed
from the 15 direction dMRI data. Table 1 presents brain tissue means and
standard deviations for Dκ and κ in healthy subjects. Mean axial, radial
and anisotropy κ maps are illustrated in Fig. 4a.

3.2.1. Relationship between D1,2 and Dκ

Diffusivities calculated by the DKI technique were significantly
greater than those computed by QDTI in grey and white matter tissue (p
¼ 0.008 for mean, axial, and radial diffusivities) except for white matter
axial diffusivity (p ¼ 0.547). In addition, significantly greater anisotropy
was observed in D1,2 maps compared to Dκ in grey and white matter (p ¼
0.008). Tissue contrast was greater in D1,2 than Dκ maps and showed
significant differences in mean (p ¼ 0.039), radial (p ¼ 0.008) and
anisotropy (p ¼ 0.008) maps but not axial diffusivity (p ¼ 0.148).
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Spearman’s correlation coefficients indicated that D1,2 and Dκ tensor
metrics were positively correlated and significant (p < 0.05) in grey
matter for mean ρ ¼ 0.91, axial ρ ¼ 0.81, and radial ρ ¼ 0.87 measures
and white matter for radial diffusivity (ρ¼ 0.76) all other measures were
highly correlated (0.548< ρ < 0.595).

3.2.2. Relationship between α and κ
Mean, axial and radial α maps (Fig. 3b & Table 1) exhibited inverted

tissue intensities to κ (Fig. 4a & Table 1) in grey matter (e.g. mean α 0.88
� 0.01; mean κ 0.58 � 0.02), white matter (e.g. mean α 0.77 � 0.01;
mean κ 0.92 � 0.03) and CSF (e.g. mean α 0.99 � 0.01; mean κ 0.33 �
0.02). Anisotropy values were significantly greater in κ than α maps in
grey and white matter (p ¼ 0.008). All tissue κ values were in agreement
with previous DKI studies of brain tissue (Jensen et al., 2005; Jensen and
Helpern, 2010).

Tissue contrast was not significantly different between mean or radial
α and κ maps (p > 0.05) but was significantly greater in axial α than κ
maps (p ¼ 0.008). Anisotropy tissue contrast was significantly greater in
κ than α maps (p ¼ 0.008). Spearman’s correlation coefficients indicate
that α and κ tensor metrics are, in general, significantly negatively
correlated (p< 0.05, grey matter: mean ρ¼�0.74; axial ρ¼ -0.79; radial
ρ ¼ -0.79; white matter: radial ρ ¼ �0.76; anisotropy ρ ¼ 0.79). There
was moderate to high correlation between α and κ in grey matter
anisotropy (ρ ¼ 0.62) and white matter mean (ρ ¼ 0.48) and axial
measures (ρ ¼ 0.57).

3.2.3. Relationship between entropy and κ
Fig. 4 showsmean, axial, radial and anisotropy maps of κ (Fig. 4a) and

Hn (Fig. 4b) in a healthy subject. Brain tissue means and standard de-
viations are presented in Table 1. All maps and tissue values are



Table 1
Mean (μ) and standard deviation (σ) values computed from QDI and DKI data for healthy grey matter, white matter and lateral ventricle cerebrospinal
fluid (n ¼ 8, age 29 � 8 years). Measurements were computed from the 15 diffusion gradient direction dMRI data. Mean, axial, radial and anisotropy
measurements are presented for D1,2, α and Hn for QDI, and Dκ and κ for DKI.

Grey Matter White Matter Cerebrospinal Fluid

(μ�σ) (μ�σ) (μ�σ)

D1,2 Mean ( � 10�3) 0.874 � 0.036 0.701 � 0.020 2.960 � 0.028
(mm2 s�1) Axial ( � 10�3) 1.032 � 0.040 1.265 � 0.043 3.000 � 0.001

Radial ( � 10�3) 0.796 � 0.035 0.420 � 0.024 2.941 � 0.043
Anisotropy 0.173 � 0.007 0.602 � 0.026 0.018 � 0.013

α Mean 0.878 � 0.004 0.769 � 0.005 0.985 � 0.002
Axial 0.935 � 0.005 0.868 � 0.010 0.993 � 0.006
Radial 0.850 � 0.005 0.720 � 0.008 0.981 � 0.005
Anisotropy 0.069 � 0.004 0.131 � 0.013 0.010 � 0.008

Hn Mean 0.489 � 0.006 0.621 � 0.007 0.316 � 0.016
Axial 0.433 � 0.006 0.502 � 0.006 0.272 � 0.010
Radial 0.517 � 0.007 0.680 � 0.009 0.337 � 0.021
Anisotropy 0.113 � 0.006 0.179 � 0.009 0.134 � 0.027

Dk Mean ( � 10�3) 0.962 � 0.049 0.820 � 0.021 3.680 � 0.307
(mm2 s�1) Axial ( � 10�3) 1.107 � 0.051 1.276 � 0.025 4.160 � 0.388

Radial ( � 10�3) 0.888 � 0.048 0.592 � 0.025 3.440 � 0.267
Anisotropy 0.162 � 0.010 0.472 � 0.021 0.125 � 0.015

κ Mean 0.575 � 0.020 0.923 � 0.025 0.332 � 0.020
Axial 0.593 � 0.020 0.736 � 0.016 0.308 � 0.016
Radial 0.589 � 0.017 1.181 � 0.038 0.346 � 0.024
Anisotropy 0.126 � 0.006 0.302 � 0.021 0.024 � 0.004
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computed from the 15 direction dMRI data. HighestHn and κ values were
in white matter (e.g. mean Hn 0.62 � 0.01; mean κ 0.92 � 0.03) with
lower values in grey matter (e.g. mean Hn 0.49 � 0.01; mean κ 0.58 �
0.02) and CSF (e.g. mean Hn 0.32 � 0.02; mean κ 0.33 � 0.02). κ
anisotropy values were significantly greater than Hn anisotropy in grey
and white matter (p ¼ 0.008). Hn and κ tensor metrics were, in general,
significantly positively correlated (grey matter: mean ρ ¼ 0.86, axial ρ ¼
0.81, radial ρ ¼ 0.88; white matter: mean ρ ¼ 0.88; radial ρ ¼ 0.76) or
highly correlated in anisotropy measures (grey matter ρ ¼ 0.60, white
matter ρ ¼ 0.62) with moderate correlations in white matter axial mea-
sures (ρ¼ 0.33).Hnmaps had greater tissue intensity homogeneity than κ
maps as indicated by lower coefficients of variation and significantly
greater tissue contrast in mean, axial and radial maps (p ¼ 0.008) except
for anisotropy where greater tissue contrast was observed for κ (p ¼
0.008).

Brain tissue voxels that exhibit poor diffusional kurtosis model fitting
(i.e. κ < 0 and κ > 3) were prevalent in κ maps and are represented by
black voxels in Fig. 4a. Fitting errors occurred in 7.46 � 1.29% of the
total brain volume, with negative kurtosis values contributing to 99.40�
0.55% of this error. The QDI model was adequately fitted in these voxels
(Fig. 4b).
3.3. Effect of reducing the number of diffusion gradient directions on QDI
data

Fig. 5 shows mean D1,2 (Fig. 5a) and Hn (Fig. 5b) maps for 15, 6 and 3
direction dMRI. Table 2 presents tissue means, voxel intensity standard
deviations, coefficients of variation and tissue contrast measures for
mean D1,2, α and Hn maps. Acquisition times as a percentage of the 15
direction dMRI protocol were: 62.63% for 6 directions and 36.84% for 3
directions. Reducing the number of diffusion gradient directions caused a
small decrease in mean tissue D1,2 and α values, and an increase in Hn
(Table 2). For 15 vs 6 diffusion directions these differences were not
significant (p > 0.05), but for 15 vs 3 directions significant differences
were found in D1,2, α and Hn values in grey and white matter (p¼ 0.008),
potentially due to the lack of rotational invariance of the QDWI (i.e. 3
diffusion direction) measures when compared to QDTI data. There were
no significant differences in tissue contrast for 15 vs 6 directions (p >

0:05), but there were significant differences for 15 vs 3 directions in D1,2,
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α and Hn (p ¼ 0.001). All Hn maps showed significantly greater tissue
contrast when compared to κ maps (Hn vs κ: 15 directions p ¼ 0.008; 6
directions p ¼ 0.008; 3 directions p ¼ 0.016), but no significant differ-
ences were found for α compared to κ (15 directions p ¼ 1.00; 6 di-
rections p ¼ 0.250) except for 15 vs 3 (p ¼ 0.008 with κ contrast greater
than α.

3.4. Reproducibility of QDI measures

Scan-rescan reproducibility results are presented in Table 3. Repro-
ducibility was good for all mean QDI measures as indicated by mean
percentage error (E ¼ 100 � δ/μ) less than �0.75% in grey and white
matter for D1,2, α and Hn for each of the 3, 6 and 15 diffusion gradient
direction acquisitions. Accuracy and precision of measurements were
improved, and mean percentage error was reduced by increasing the
numbers of acquired diffusion directions. This effect was greater in white
than grey matter. Anisotropy measures showed lower accuracy and
precision than mean QDI measures. Increasing the number of diffusion
directions improved accuracy and precision of anisotropy measurements.
Mean percentage error was less than �0.5% for D1,2 anisotropy in both
grey and white matter, but was greater for α and Hn anisotropy measures
(e.g. 6 directions: α anisotropy Egrey ¼ 4.07%, Ewhite ¼ 2.74%; Hn
anisotropy Egrey ¼ 3.74%, Ewhite ¼ 1.17%) and was improved by
increasing the number of diffusion gradient directions (15 directions: α
anisotropy Egrey ¼ 1.13%, Ewhite ¼ 0.23%; Hn anisotropy Egrey ¼ 1.26%,
Ewhite ¼ �0.14%).

Reproducibility of fitted QDI diffusion signal attenuation curves was
high in both grey (χ2: LQ 0.0006� 0.0003; median 0.0017� 0.0009; UQ
0.0047 � 0.0028; 95th percentile 0.0312 � 0.0250) and white matter
(χ2: LQ 0.0005� 0.0001; median 0.0016� 0.0004; UQ 0.0041� 0.0015;
95th percentile 0.0262 � 0.0189). χ2 values were similar in grey and
white matter indicating that there is not a tissue specific bias in
reproducibility.

3.5. Application of QDI to patient cases

Case studies of two SVD patients (Fig. 6) and three brain tumour
patients (Fig. 7) are described in the following section. QDI was acquired
using the 6 direction QDTI protocol in 120s. Mean D1,2, α and Hn maps



Fig. 4. Comparison of mean, axial, radial and anisotropy maps computed by QDTI (on b ¼ 0, 1100, 5000 s mm�2) and DKI (on b ¼ 0, 1100, 3000 s mm�2) for the 15
diffusion gradient direction acquisition (acquisition time 228 s). Axial images are shown for κ (row a) and Hn maps (row b). All images are shown using the
radiological convention for a young, healthy subject.

Fig. 5. Comparison of QDI maps computed using different numbers of diffusion gradient directions. From left to right the numbers of gradients are 15 (acquisition
time 228 s), 6 (acquisition time 120 s) and 3 (acquisition time 84 s). Row (a) shows mean D1,2 maps and row (b) shows mean Hn maps. All images are shown using the
radiological convention for a young, healthy subject.
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are shown with D1,2 anisotropy in Fig. 6, and direction encoded colour
maps (Pajevic and Pierpaoli, 1999) in Fig. 7.

Fig. 6a shows a SVD patient with periventricular white matter lesions
(WML) and enlarged ventricles. WML exhibited higher D1,2, and included
regions of reduced D1,2 anisotropy and Hn and elevated α (yellow ar-
rows). The α and Hn maps indicate that diffusion dynamics are closer to
9

Gaussian and that WML tissue microstructure is less complex and more
damaged than healthy white matter. Regions of elevated α and reduced
Hn extend into normal appearing white matter beyond regions of high
mean D1,2 and reduced D1,2 anisotropy. This effect was more apparent in
α than Hn maps. Fig. 6b shows a SVD patient with an incidental acute
ischaemic infarct in the left thalamus and posterior limb of the internal



Table 2
Mean (μ), standard deviation (σ), coefficients of variation (CV) and tissue contrast measurements for healthy grey and white matter tissue in QDI and DKI data (n ¼ 8,
age 29 � 8 years). Measurements are computed from dMRI data acquisitions with 3, 6 and 15 diffusion gradient directions for maps of mean D1,2, mean α, mean Hn and
mean κ. All measures are presented as mean � standard deviation.

Gradient directions 3 6 15

D1,2(mm2 s�1) μgrey ( � 10�3) 0.863 � 0.036 0.868 � 0.033 0.874 � 0.036
σgrey ( � 10�3) 0.338 � 0.044 0.330 � 0.046 0.331 � 0.049
CVgrey (%) 39.106 � 4.116 37.958 � 4.351 37.763 � 4.567
μwhite ( � 10�3) 0.638 � 0.029 0.695 � 0.019 0.701 � 0.020
σwhite ( � 10�3) 0.292 � 0.052 0.248 � 0.048 0.239 � 0.046
CVwhite (%) 45.835 � 8.128 35.665 � 6.996 34.208 � 6.847
Tissue Contrast 0.506 � 0.060 0.417 � 0.059 0.442 � 0.056

α μgrey 0.873 � 0.006 0.877 � 0.004 0.879 � 0.004
σgrey 0.064 � 0.007 0.056 � 0.004 0.054 � 0.004
CVgrey (%) 7.289 � 0.812 6.346 � 0.495 6.126 � 0.464
μwhite 0.739 � 0.005 0.768 � 0.004 0.769 � 0.005
σwhite 0.080 � 0.006 0.056 � 0.006 0.053 � 0.006
CVwhite (%) 10.983 � 0.776 7.337 � 0.818 6.920 � 0.803
Tissue Contrast 1.319 � 0.151 1.392 � 0.137 1.445 � 0.140

Hn μgrey 0.495 � 0.008 0.491 � 0.005 0.489 � 0.006
σgrey 0.055 � 0.007 0.049 � 0.004 0.047 � 0.004
CVgrey (%) 11.157 � 1.224 9.918 � 0.858 9.656 � 0.789
μwhite 0.653 � 0.005 0.623 � 0.005 0.621 � 0.007
σwhite 0.074 � 0.005 0.049 � 0.005 0.047 � 0.005
CVwhite (%) 11.327 � 0.694 7.890 � 0.800 7.508 � 0.750
Tissue Contrast 1.731 � 0.169 1.928 � 0.167 1.990 � 0.188

κ μgrey – – 0.575 � 0.020
σgrey – – 0.158 � 0.013
CVgrey (%) – – 27.525 � 2.420
μwhite – – 0.923 � 0.025
σwhite – – 0.177 � 0.018
CVwhite (%) – – 19.165 � 1.991
Tissue Contrast – – 1.472 � 0.129
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capsule (red arrows). The acute infarct exhibited low D1,2 and α values,
with high Hn values, corresponding to an increase in restriction of the
diffusion environment.

Fig. 7 shows patients with a Grade I meningioma (Fig. 7a), a Grade II
astrocytoma (Fig. 7b) and a Grade IV glioblastoma (Fig. 7c) with tumour
cores (red arrows) and oedema (yellow arrows) indicated. The high-
grade tumour core (i.e. glioblastoma) exhibited low D1,2 and α, and
high Hn, in regions corresponding to high tumour cellularity as indicated
by blood brain barrier breakdown due to active tumour growth and the
presence of neovascularisation (as shown by gadolinium contrast
enhancement on T1-weighted images). This ring of viable tumour sur-
rounds a necrotic region with high D1,2 and α, and low Hn. Infiltrative
Table 3
Scan-rescan reproducibility of QDI measures in grey and white matter for mean and
ducibility of D1,2, α and Hn measures is presented for mean and anisotropy metrics acr
both scan sessions, μ, are presented with mean difference between scan sessions (i.e.

Number of directions μgrey μwh

Mean
D1,2 ( £ 10-3 mm2s-1) 3 0.861 0.6

6 0.867 0.7
15 0.869 0.7

α 3 0.866 0.7
6 0.872 0.7
15 0.872 0.7

Hn 3 0.502 0.6
6 0.496 0.6
15 0.496 0.6

Anisotropy
D1,2 6 0.200 0.5

15 0.183 0.5
α 6 0.084 0.1

15 0.070 0.1
Hn 6 0.131 0.2

15 0.112 0.1
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oedema adjacent to the tumour core exhibited elevated D1,2, higher α and
lower Hn compared to healthy white matter. The more ‘benign’ tumour
cores (i.e. meningioma, Fig. 7a, and low-grade astrocytoma, Fig. 7b)
exhibited elevated D1,2 and α and lower Hn values than healthy white
matter, with Hn values greater than grey matter in meningioma and less
than grey matter in astrocytoma. The astrocytoma core was characterised
by high D1,2 and α, and lowHn, and likely represents an infiltrative mix of
tumour and normal brain tissue, as compared to the meningioma and
high-grade cores that are more likely cellularly dense tumour tissue.
Oedema surrounding the meningioma exhibited elevated D1,2 and α and
lower Hn compared to healthy white matter.
anisotropy measures for the 3, 6 and 15 diffusion direction protocols. Repro-
oss 5 young, healthy subjects (n ¼ 5, age 33 � 7 years). Mean tissue values across
accuracy), δ, and 95% confidence limits (i.e. precision) for each tissue type.

ite δgrey [95% confidence limits] δwhite [95% confidence limits]

44 0.006 [-0.005, 0.018] 0.004 [-0.013, 0.021]
00 �0.000 [-0.013, 0.013] �0.000 [0.024, 0.024]
05 0.002 [-0.009, 0.014] �0.002 [0.009, 0.005]
42 �0.003 [-0.008, 0.001] �0.002 [-0.012, 0.008]
67 �0.001 [-0.005, 0.003] 0.001 [-0.008, 0.010]
68 �0.001 [-0.003, 0.002] 0.000 [-0.002, 0.003]
50 0.002 [-0.001, 0.005] 0.001 [-0.007, 0.008]
23 0.001 [-0.004, 0.006] �0.001 [-0.008, 0.005]
21 0.000 [-0.001, 0.002] 0.000 [-0.003, 0.002]

91 0.000 [-0.020, 0.021] 0.001 [-0.009, 0.011]
83 �0.001 [-0.004, 0.002] �0.001 [-0.003, 0.001]
68 0.003 [-0.008, 0.015] 0.005 [-0.009, 0.018]
30 0.001 [-0.003, 0.005] 0.000 [-0.006, 0.007]
21 0.005 [-0.007, 0.017] 0.003 [-0.007, 0.012]
78 0.001 [-0.005, 0.008] 0.000 [-0.006, 0.005]



Fig. 6. Application of QDTI to a patient with small
vessel disease (row a), and a patient with an acute
ischemic infarct (row b). Mean maps of D1,2, α and
Hn are shown with. D1,2 anisotropy. All axial images
are shown using the radiological convention and
were acquired using the 6 diffusion gradient di-
rection QDTI sequence (acquisition time 120 s).
Yellow arrows indicate the location of periven-
tricular white matter lesions (row a) and red arrows
show the location of the acute ischemic infarct (row
b).

Fig. 7. Application of QDTI to patients
with brain tumour. Row (a) shows a
Grade I meningioma, row (b) a Grade II
astrocytoma and row (c) a Grade IV
glioblastoma. Mean maps of D1,2, α and
Hn are shown with Direction Encoded
Colour maps (DEC) that are modulated
by D1,2 anisotropy. The DECs are
computed from the principal eigen-
vector of the D1,2 tensor map and
represent the gross orientation of brain
tissue within a voxel (red – left/right,
green – anterior/posterior, blue supe-
rior/inferior). All axial images are
shown using the radiological convention
and were acquired using the 6 diffusion
gradient direction QDTI sequence
(acquisition time 120 s). Red arrows
indicate the location of the tumour cores
and yellow arrows show the location of
oedematous regions.
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4. Discussion

We have described a new quantitative dMRI method, QDI that is
based on a special case of the CTRW model and describes non-Gaussian
diffusion. This method may be applied to diffusion signal attenuation
within a voxel and can be used to estimate the rate of diffusion, D1,2, and
the shape of the diffusion signal decay curve, α. Our QDI method also
overcomes several limitations of DKI. QDI can be used to generate maps
analogous to k (i.e. α and Hn) and can be added to existing single b-value
shell acquisition protocols by acquiring an additional high b-value along
each diffusion gradient direction. We have shown that QDTI provides
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maps with high tissue contrast and allows computation of mean, axial,
radial and anisotropy maps. Acquisition of the maps utilises a rapid MR
imaging protocol which may be implemented on standard clinical MRI
systems in 84s for QDWI and 120s for QDTI. We have also shown that
QDTI provides clinically meaningful tissue contrast.
4.1. Conceptualisation of the quasi-diffusion model in application to
biological systems and MRI

The assumption of particle collision dynamics (i.e. the presence of
waiting time and step length pdfs) in diffusion processes is a widespread
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and standard notion. It is central to the standard model of Brownian
motion (Einstein, 1905; Mazo, 2009) which assumes that particles
remain stationary for sufficient time such that their next displacement is
not correlated with the previous one. In such models the particle dis-
placements are instantaneous. The interpretation of this mathematical
assumption is either that a series of observations are made at fixed time
increments, or that a large number of collisions with other particles are
required to displace the diffusing particle. The difference between the
CTRW approach and conventional Brownian motion lies in the distri-
butions of step lengths and waiting times that are assumed. For Brownian
motion, these are assumed to be distributed with a well-defined mean,
which is considered to be a fixed increment in the simplest treatises
(Mazo, 2009), but any waiting time distribution with a well-defined
mean will lead to ordinary (i.e. Brownian) diffusion dynamics in some
time regime. The CTRW model allows a generalisation of possible
diffusion dynamics by not assuming that waiting time and step length
pdfs are Gaussian. We acknowledge that this is an assumption, but it is a
very general assumption with a well-studied mathematical basis and
includes ordinary Gaussian diffusion as a limiting case.

Translating fractional diffusion models of CTRW processes to scien-
tific applications is challenging (Metzler et al., 2014). The mathematics
of fractional diffusion equations represent a generalisation of the diffu-
sion equation (Mainardi et al., 2001) but often it is not clear which types
of fractional equations should be applied as mathematical models of
particular physical phenomena. A limitation of the QDI technique is that
we do not have empirical evidence of quasi-diffusion processes within
biological tissue. Nevertheless, there are several good reasons for use of
the quasi-diffusion special case, β ¼ 2α, of the fractional diffusion
equations in dMRI. Firstly, the quasi-diffusion case assumes that the
ensemble average of diffusing spins within a voxel has mean-squared
displacement proportional to linear time. This assumption ensures that
QDI models non-Gaussian diffusion dynamics using the same spatial and
temporal scaling relationship as for ordinary diffusion (i.e. where α ¼ 1
and β ¼ 2 and 2α/β ¼ 1), a side effect of which it is possible to estimate
the diffusion coefficient, D1,2, in conventional units of mm2s�1. Secondly,
this assumption ensures that super- and sub-diffusive dynamics are not
considered within the model causing diffusion dynamics to be anomalous
for α6¼1 but not exotic. Instead QDI allows an extension of ordinary
diffusion at α ¼ 1 to non-Gaussian but Brownian-like diffusion dynamics
when 0< α< 1. Finally, the diffusion dynamics of the QDI model may be
interpreted with respect to mathematical results pertaining to the
fundamental solution of the space-time fractional diffusion equations
(Mainardi et al., 2001) in the QDI case (Luchko, 2016, 2019) which is
referred to as α-fractional diffusion by Luchko. For the QDI case, the
diffusion propagator is a Gaussian-like function which becomes Gaussian
when α ¼ 1 (Luchko, 2016, 2019). Furthermore, the entropy production
rate of the propagator is independent of α, and identical to ordinary
diffusion (Luchko, 2016). Together these results suggest that QDI may be
considered a “natural fractionalisation” (Luchko, 2016) of ordinary
diffusion and that it represents a model of quasi-Brownian diffusion,
hence the moniker Quasi-Diffusion Imaging.

The quasi-diffusion model has several advantages over the general
CTRW model in application to dMRI data. Firstly, QDI requires a
considerably reduced imaging protocol compared to the general CTRW
model (e.g. Karaman et al., 2016). Our coupling of fractional exponents
allows data acquisition across q-space alone and represents a pragmatic,
clinically feasible solution to ensuring acquisition times are short as there
is not a requirement to estimate α and β independently. Secondly, QDI
assumes regular scaling in time and space and allows estimation of
non-Gaussian diffusion within a voxel and similar inference of the un-
derlying tissue microstructural environment to DKI. Finally, the QDI
technique provides a diffusion coefficient in conventional units of
mm2s�1. This is advantageous over the CTRW model as estimation of
additional measures to allow recovery of units from mmβs�α (Ingo et al.,
2014b; Karaman et al., 2016; Magin et al., 2013, 2019) are not required.
Overall the QDI technique has advantages in parameter inference,
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improves stability of model fitting and allows rapid dMRI acquisition
with good tissue contrast.

Conceptually, quasi-diffusion is a model of transport (i.e. diffusion
dynamics) that describes the dMRI signal and is not based on a model of
tissue microstructure. Consequently, QDI does not have the problems
that are associated with microstructural assumptions in dMRI, such as
acquisition and parameter-based bias (Jelescu et al., 2015; Jelescu and
Budde, 2017), and model degeneracy (Jelescu et al., 2015) that cannot
always be adequately resolved (Novikov et al., 2018b). In dMRI the
quasi-diffusion model may be interpreted as approximating the action of
a heterogeneous environment on diffusing spins. Within a biological
tissue the spin motion will involve interaction with other water mole-
cules, larger molecular species, and the potential for binding and un-
binding with cellular surfaces (i.e. trapping) and constitutes a large
variety of mechanisms that contribute to the observed signal attenuation.
The signal in dMRI is observed as an ensemble average within an image
voxel inside which partial volumes cannot be reliably attributed to
different spin dynamics. The power of QDI is in its simplicity and general
applicability in defining the observed diffusion signal attenuation
without the need for microstructural assumptions relating to separate
contributions of different spin populations within a voxel. In this way
QDI offers a simplified fitting to non-Gaussian diffusion signal attenua-
tion and provides a reliable representation of the signal decay curve.

In this study we have shown the capabilities of this technique by
acquiring dMRI data quickly to obtain high quality images analogous to
DKI, whilst overcoming the inherent limitations of the DKI technique.
QDI can be applied over any b-value range, does not require large
numbers of diffusion gradient directions or make strong geometrical
assumptions. It can be applied to any organ throughout the body to
measure diffusion without theoretical modification and recalibration.
Crucially, as the QDI technique offers a powerful alternative represen-
tation of signal decay it could be used within any dMRI application that
requires reliable parameterisation of non-Gaussian signal attenuation.
4.2. Properties of Quasi-Diffusion Imaging maps

Diffusion coefficient maps computed from QDI have similar tissue
contrast to conventional DWI and DTI. D1,2 maps have lower magnitudes
and higher anisotropy than DKI Dκ maps. Differences in magnitude be-
tween D1,2 and Dκ metrics are similar to those observed after application
of free water elimination techniques to conventional dMRI data (Albi
et al., 2017; Pasternak et al., 2009). Our QDI technique exhibited greater
differences in radial diffusivity (�30.1%) and anisotropy measures
(þ26.2%) and smaller differences in mean (�13.8%) and axial diffusiv-
ities (�0.4%). The similarity between our results and those of Albi et al.
(2017) indicate that use of ultra-high b-values in QDI acquisition
potentially reduces partial volume effects due to free water, however, it
should be noted that changing Δ in QDI acquisitions will alter measured
diffusion coefficients (Topgaard, 2017).

QDI provides maps of α, a fractional exponent representing the shape
of the diffusion signal attenuation within a voxel, which represents the
deviation from Gaussianity of the diffusion process. Our findings indicate
that diffusion in CSF is Gaussian, while grey matter and white matter are
characterised by non-Gaussian diffusion properties. Greater non-
Gaussian diffusion is indicated by a thicker power law tail of the diffu-
sion signal attenuation and represents greater heterogeneity of the
diffusion process. Our findings are in broad agreement with previous
CTRW model studies (Karaman et al., 2016; Magin et al., 2013), but do
not attempt to separate time and space exponents. In particular, lower α
values in white matter than grey matter indicate that step lengths are
shorter and waiting times longer, potentially due to greater heteroge-
neity of the cellular boundaries to diffusion in the tissue microstructural
environment, and consequently greater hindrance or restriction to water
diffusion at shorter length scales in well organised axons, myelin and
oligodendrocytes.
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We computed normalised entropy, Hn, from the parameterised
diffusion signal decay curve to provide a composite measure of D1,2 and
α. The Hn measure provides information relating to the tissue micro-
structural environment as it calculates the information content of the
diffusion signal attenuation over multiple length scales, and potentially
represents a biomarker of tissue organization, structure and complexity
(Ingo et al., 2014a, 2014b; Magin et al., 2013). Higher Hn values corre-
spond to lower rates of diffusion and greater non-Gaussianity and het-
erogeneity of the diffusion dynamics, whereas lower Hn values
correspond to higher rates of diffusion and more Gaussian diffusion dy-
namics (Ingo et al., 2014a, 2014b; Magin et al., 2013, 2019). Tissue
contrast inHnmaps is analogous to DKI κmaps and has similar contrast to
Hn maps in ex vivo rodent brain data (Ingo et al., 2014b). Our results
indicate greater heterogeneity of the diffusion environment in white
matter than grey matter, and consequently more complex diffusion dy-
namics. QDI Hn maps offer a potential alternative to κmaps, with similar
interpretation, but significantly improved tissue contrast.

The D1,2 and α parameters provided by QDI are quantitative, in the
same way that DTI and DKI maps are quantitative. For QDI metrics to be
comparable across studies and scanners it is necessary to acquire dMRI
data with similar diffusion times (Topgaard, 2017). Furthermore, to
ensure that Hn measures are reproducible and comparable across studies
it is necessary to ensure that similar weightings of the D1,2 and α pa-
rameters to normalised entropy are preserved. For instance, the nor-
malised entropy should be computed over the same q- or b-value range
using the same total number of samples taken along the diffusion signal
attenuation curve.

QDI maps are rotationally invariant in the case of QDTI and the usual
limitations of the tensor model are relevant for these images (e.g.
Wheeler-Kingshott and Cercignani, 2009). A further limitation in QDI is
that D1,2 and α tensor maps are computed separately without a mathe-
matical description that allows their simultaneous computation. This
means that principal directions of α maps may not be precisely oriented
along principal diffusion directions. An aim of future research will be to
derive the mathematical form for the QDI tensor. We will also explore
orientation distribution functions of QDI measures in high angular res-
olution dMRI and investigate their application to white matter
tractography.

4.3. Advantages of Quasi-Diffusion Imaging over Diffusional Kurtosis
Imaging

QDI has several advantages over DKI that improve accuracy of
calculated measures and stability of model parameter estimates. Firstly,
no data smoothing was performed in this study and initial parameter
estimates were set to the same values in all voxels (specifically, D1,2 ¼
2.98 � 10�3mm2s�1 and α ¼ 0.978). Such an initialisation was possible
as perturbation of initial conditions provided minimal change to esti-
mated parameters, indicating robust model fitting in the presence of
noise. This is further supported by the capability of QDI to provide: (a)
model fitting along single lines through q-space, and (b) parameter
estimation within voxels characterised by negative kurtosis estimates in
DKI, a phenomenon attributed to low signal to noise ratios (Jensen and
Helpern, 2010; Tabesh et al., 2011). Secondly, QDI can be used to predict
diffusion signal attenuation at extremely high b-values, in contrast to
DKI, a feature exploited in calculation of Hn. Finally, QDI enables diffu-
sion sensitisation to be increased to the maximum capability of current
and future MRI systems. This allows QDI to be applied to any b-value
range given sufficient signal to noise ratios, and consequently takes
advantage of additional tissue contrast provided by ultra-high b-values
and its increased sensitivity to subtle changes in tissue ultrastructure.
Recently, ultra-high b-value imaging has provided additional insight to
diseases such as Alzheimer’s disease (Yingnan et al., 2018), Parkinson’s
disease (Xueying et al., 2015) and brain tumour subtypes (Tan et al.,
2018) but computation of diffusion metrics in these studies has been
limited by a lack of analysis techniques embedded in a physical model for
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diffusion processes (e.g. Tan et al., 2018; Xueying et al., 2015; Yingnan
et al., 2018). QDI provides a quantitative framework for analysing such
data and computes physically meaningful metrics that may be used to
provide additional insight to disease.
4.4. Clinical potential of Quasi-Diffusion Imaging

As QDI provides analogous information to DKI it is likely that the
current wealth of findings from clinical DKI studies also represent po-
tential clinical benefits of QDI. In particular, the potential clinical utility
of QDI is in providing additional diagnostic or prognostic information
beyond that of conventional DWI and DTI. We have shown that QDTI is
sensitive to white matter damage beyond white matter lesions (identified
by elevated D1,2) in a SVD patient and showed that damaged tissue
exhibited more Gaussian diffusion dynamics indicating a less complex
tissue microstructural environment potentially caused by axonal degen-
eration, demyelination and gliosis. Numerous studies indicate that con-
ventional DTI measures are sensitive to white matter damage in SVD
(Raja et al., 2019) and Xu et al. (2016) report increases in Dκ and de-
creases in mean κ in normal appearing white matter that are proportional
to disease severity. This indicates the added value of DKI beyond con-
ventional DWI and suggests that QDI would provide increased sensitivity
to white matter damage in SVD.

QDTI was also applied to a SVD patient with an incidental acute
ischaemic infarct. QDTI reproduces the reduction of mean D1,2 observed
due to the effects of cytotoxic oedema (i.e. oncotic swelling of glial and
neuronal cells reducing the extracellular space (von Kummer and Dzia-
lowski, 2017)) in conventional DWI. Mean α and Hn was increased and
provided clear delineation of the infarct. Observation of high mean Hn is
analogous to DKI studies that report high mean κ in acute stroke lesions
(Jensen, 2018; Yin et al., 2018; Zhu et al., 2019) which have been sug-
gested to represent an increase in tissue complexity (Jensen, 2018).
Preclinical DKI studies have shown that stroke lesions with a mismatch
between reduced Dκ and increased κ indicate tissue with less severe
ischemic injury than in lesions where reduced Dκ and increased κ overlap
(Cheung et al., 2012; Lu et al., 2018) and consequently provide more
information than conventional DWI. Furthermore, in a recent clinical DKI
study, Yin et al. (2018) have shown that high mean κwithin acute lesions
indicates brain tissue that is identified as lesion on T2-weighted images at
one month follow-up. As QDI and DKI are analogous, QDI potentially
provides a rapid technique for identifying acute stroke lesions in the
clinic and could include valuable information that is not provided by
conventional DWI regarding patient recovery that could guide future
therapeutic and intervention strategies.

QDTI showed low-grade glioma to exhibit diffusion properties
indicative of increased tissue water content and presence of damaged
tissue due to infiltrative tumour growth. In contrast, the high-grade
tumour exhibited a ring of reduced D1,2 and α, and increased Hn associ-
ated with viable tumour. In this case, high Hn regions likely represent
higher tumour-cell density due to rapid growth, corresponding with
areas of neovascularisation (indicated by T1-weighted contrast
enhancement). Furthermore, these regions surround a core of highly
increased D1,2 and α, and decreased Hn that is likely related to necrosis, a
feature of malignant glioma. The observation of high Hn in high-grade
tumours is analogous to findings in DKI studies that report high mean
κ to be representative of high tumour grade and malignancy (Falk Del-
gado et al., 2018). For the meningioma, its oedema is similar in D1,2 to
the low-grade glioma core and the high grade peripheral oedema, but the
α is not so elevated as for infiltrative tumours. This may reflect the
vasogenic rather than infiltrative oedema seen with meningiomas in
comparison to intrinsic tumours. Additionally, the α and Hn of the me-
ningioma are less distinctly different between the core and oedema. The
differential patterns of these parameters may enable QDI to provide a
rapid technique for aiding identification of tumour type and grade in the
clinic.
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4.5. Overcoming barriers to clinical translation of non-Gaussian diffusion
MRI techniques

QDI overcomes the acquisition time limitation of non-Gaussian dMRI
techniques to allow clinically feasible image acquisition. This innovation
removes the clinical acquisition time barrier potentially enabling large-
scale clinical studies and translation to clinical practice. We have
shown that by addition of an ultra-high b-value shell to conventional
dMRI protocols, QDWI and QDTI can be acquired in a clinically accept-
able time using 3 and 6 diffusion direction protocols. We have also shown
that the scan-rescan reproducibility of QDI model fits along diffusion
gradient directions and QDWI and QDTI measures in regions of interest is
high, albeit with greater accuracy and precision for acquisition protocols
with greater numbers of diffusion gradient directions. Efficacy of 6 di-
rection QDTI is shown by the lack of significant differences in tissue
metrics and high reproducibility of metrics compared to 15 direction
QDTI. Nevertheless there were significant differences in tissue values,
and lower reproducibility of metrics, for QDWI when compared to QDTI
data, potentially due to QDWI measures not being rotationally invariant.
Despite this the mean D1,2, and Hn maps consistently exhibited signifi-
cantly greater tissue contrast than analogous DKI maps indicating that
QDWI and QDTI data can be acquired quickly with sufficient image
quality and measurement reproducibility for research and clinical
applications.

Several recent reports describe fast DKI acquisition protocols for
application in the clinic (Næss-Schmidt et al., 2018, 2017; Tietze et al.,
2015; Yin et al., 2018). For example, Tietze et al. (2015) and
Næss-Schmidt et al. (2018, 2017) used fast DKI (Hansen et al., 2013) to
acquire data in 166s and 225s, respectively. This is in contrast to Yin et al.
(2018) who used a conventional DKI protocol with multi-band imaging
acceleration to acquire data in 130s. It should be noted that fast DKI
(Hansen et al., 2013) only provides mean Dκ and mean κ and is therefore
comparable to our 84s QDWI protocol. Furthermore, our 6 direction
QDTI protocol was acquired quicker than each DKI study (i.e. 120s). If
multi-band imaging was employed to accelerate dMRI acquisition our 15
direction QDTI could be acquired in approximately 120s, our 6 direction
QDTI in approximately 60s, and QDWI in less than 60s, further sup-
porting the potential clinical utility of the technique.

The QDI acquisition protocol described in this study uses high mag-
netic field gradients to acquire ultra-high b-value dMRI. Such high
magnetic resonance field gradients are not ubiquitously available in the
research or clinical setting and are a limitation of the current QDI pro-
tocol. Future studies are required to optimise QDI acquisition for lower
maximum b-values to enable general application of the technique on
research and clinical MR scanners.

5. Conclusion

We have presented theory and proof of concept for a novel quanti-
tative dMRI technique that takes advantage of ultra-high b-values and
minimal acquisition times. This QDI technique acquires images with
analogous tissue contrast to DKI, whilst overcoming limitations of the
DKI technique. QDI has been shown to generate potentially clinically
meaningful tissue contrast, with both quantitative and anisotropy mea-
sures, in clinically acceptable acquisition times. Further studies are
required to fully understand the capabilities of this new technique in
tissue microstructural imaging but our initial findings suggest that QDI
may be easily added to routine dMRI acquisitions allowing simple
translation to the clinic.
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