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Abstract 

To enable application of non-Gaussian diffusion magnetic resonance imaging (dMRI) 

techniques in large-scale clinical trials and facilitate translation to clinical practice there is a 

requirement for fast, high contrast, techniques that are sensitive to changes in tissue structure 

which provide diagnostic signatures at the early stages of disease. Here we describe a new 

way to compress the acquisition of multi-shell b-value diffusion data, Quasi-Diffusion MRI 

(QDI), which provides a probe of subvoxel tissue complexity using short acquisition times (1 

to 4 minutes). We also describe a coherent framework for multi-directional diffusion gradient 

acquisition and data processing that allows computation of rotationally invariant quasi-

diffusion tensor imaging (QDTI) maps. 

QDI is a quantitative technique that is based on a special case of the Continuous Time 

Random Walk model of diffusion dynamics and assumes the presence of non-Gaussian 

diffusion properties within tissue microstructure. QDI parameterises the diffusion signal 

attenuation according to the rate of decay (i.e. diffusion coefficient, D in mm2 s-1) and the 

shape of the power law tail (i.e. the fractional exponent, α). QDI provides analogous tissue 

contrast to Diffusional Kurtosis Imaging (DKI) by calculation of normalised entropy of the 

parameterised diffusion signal decay curve, Hn, but does so without the limitations of a 

maximum b-value. 

We show that QDI generates images with superior tissue contrast to conventional diffusion 

imaging within clinically acceptable acquisition times of between 84 and 228 seconds. We 

show that QDI provides clinically meaningful images in cerebral small vessel disease and 

brain tumour case studies. Our initial findings suggest that QDI may be added to routine 

conventional dMRI acquisitions allowing simple application in clinical trials and translation 

to the clinical arena. 

Key words: Magnetic resonance imaging, brain, continuous time random walk, non-

Gaussian diffusion, diffusional kurtosis imaging, high b-value.  
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1. Introduction 

Over the last decade there have been extensive advances in acquisition and analysis of 

diffusion magnetic resonance imaging (dMRI) data but these have not been routinely 

translated into clinical practice. One reason for this is the frequently lengthy acquisition times 

required to provide adequate image quality. This can be prohibitive, for example, in acute 

stroke where there is a need for rapid data acquisition as patients are not always able to 

remain motionless throughout lengthy MRI protocols. Consequently, current clinical use of 

dMRI is limited to conventional Diffusion-Weighted Imaging (DWI) (i.e. clinical trace DWI) 

and the occasional use of Diffusion Tensor Imaging (DTI). To enable application of new 

dMRI techniques in large-scale clinical trials and facilitate translation to clinical practice 

there is the requirement to provide high signal to noise and high contrast to noise using short 

acquisition times (i.e. between 1 and 4 minutes). Here we introduce a novel dMRI technique, 

Quasi-Diffusion MRI (QDI), which utilises a rapid scan acquisition that can be acquired on 

clinical MR systems and provides high tissue contrast images. The QDI technique provides a 

coherent framework for data acquisition and processing to give all conventional dMRI 

contrasts plus images analogous to Diffusional Kurtosis Imaging (DKI) (Jensen et al., 2005; 

Jensen and Helpern, 2010). 

 

The simplest and most widespread assumption used in dMRI analysis is that spin 

displacements are Gaussian (Jones et al., 2013; Johansen-Berg and Behrens, 2014) leading to 

prediction of mono-exponential diffusion signal attenuation with b-value (Callaghan, 2011). 

DWI and DTI use this assumption and can be routinely acquired in the clinic in 1 to 4 

minutes. Although mono-exponential signal decay is observed in diffusion-weighted 

measurements of fluids, this is not the case for diffusion in more structurally complex media 
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such as tissue, where the signal decays more slowly than described by a single exponential 

function and a Gaussian process alone (Clark and Le Bihan, 2000).  

 

The observation of non-mono-exponential decay has led to the concept that diffusion is 

influenced by microstructure which impedes the motion of spins. Structures with a size 

similar to the typical diffusion length-scale will impede spins' motion in a non-trivial way 

(e.g. Grebenkov, 2009, 2008) and cause departures from a Gaussian displacement 

distribution. This has led to the diffusion signal being used as a probe of microstructural 

properties of the tissue environment by techniques that model underlying tissue geometry 

(e.g. biexponential (Clark and Le Bihan, 2000), CHARMED (Assaf and Basser, 2005), 

AxCaliber (Assaf et al., 2008), ActiveAx (Alexander, 2008; Alexander et al., 2010), NODDI 

(Zhang et al., 2012), VERDICT (Panagiotaki et al., 2015, 2014)). These techniques 

potentially provide useful clinical information but require lengthy dMRI acquisition times 

due to the requirement for numerous diffusion gradient directions and b-value shells. In 

addition, techniques such as NODDI exhibit acquisition and parameter-based bias (Jelescu et 

al., 2015; Jelescu and Budde, 2017) and are not readily applicable to organs outside the 

central nervous system without adaption of geometrical assumptions and algorithmic 

recalibration (Bonet-Carne et al., 2019). Multidimensional dMRI (Topgaard, 2017) is a 

technique derived from multidimensional solid-state MRI that uses q-vector trajectory 

encoding MRI acquisition sequences to provide a representation of diffusion in isotropic and 

directional tissue dimensions. This technique is not yet clinically available and requires 

lengthy acquisition times and requires gradient pulse shapes to be optimised using bespoke 

software and uploaded to the scanner prior to any application.  

 



5 

 

Another recent approach is to make an assumption regarding the overall distribution of 

barriers in the environment and estimate a time-dependent diffusivity (Novikov and Kiselev, 

2010; Novikov et al., 2011, 2014, 2019). In this case a model is derived that involves a 

diffusivity with a power-law time dependence. Model parameters are estimated from 

diffusion-weighted measurements at several diffusion times, and the power-law exponent is 

related to the presence or absence of disorder in the diffusion environment. The strength of 

this approach and that of Topgaard, (2017) is that no geometric assumptions regarding the 

tissue microstructure are necessary. The technique has been applied in humans to estimate 

muscle fibre size (Sigmund et al., 2014), prostate microstructure (Lemberskiy et al., 2018) 

and properties of the human brain (Veraart et al., 2019). One disadvantage, however, is the 

requirement for dMRI acquisition at multiple diffusion times resulting in lengthy acquisition 

times. 

 

An alternative to these techniques is DKI, which provides a representation (rather than a 

biophysical model (Novikov et al., 2018) of non-Gaussian diffusion (Jensen et al., 2005; 

Jensen and Helpern, 2010). DKI provides greater sensitivity to subtle microstructural damage 

than DTI in early detection of pathological change (Gong et al., 2017; Praet et al., 2018) and 

histological grade of brain tumours (Falk Delgado et al., 2018). This technique adds a fourth 

order moment to the second order mono-exponential diffusion decay curve and computes an 

additional term, κ, representing departures from Gaussian diffusion due to interactions with 

the microstructural environment. However, the technique has several limitations: (i) DKI 

provides unreliable information for b > 3000 s mm-2 (Jensen and Helpern, 2010) and (ii) DKI 

has frequent fitting errors that lead to computation of negative kurtosis within an image voxel 

(Jensen and Helpern, 2010; Tabesh et al., 2011). The first issue represents a limitation for 

clinical studies as dMRI of ultra-high b-values (i.e. b > 3000 s mm-2) has potential in 
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characterising neurodegenerative diseases such as Parkinson’s disease (Xueying et al., 2015) 

and Alzheimer’s disease (Yingnan et al., 2018), and characterising brain tumour subtypes 

(Tan et al., 2018). Secondly, although DKI acquisitions have a theoretical minimum 

acquisition of 15 diffusion gradient directions in 3 b-values (i.e. b=0 s mm-2 and two non-zero 

b-value shells), a routine acquisition typically involves 30 or more directions in more than 

two non-zero b-value shells. These limitations mean that DKI cannot use the higher diffusion 

sensitisation capabilities of modern clinical MRI systems and does not provide a time 

efficient scan acquisition.  

 

Our QDI technique has different assumptions with respect to the underlying diffusion 

process. We apply a special case of a general model of diffusion dynamics based on 

anomalous transport theory (Gorenflo et al., 2002; Metzler and Klafter, 2000; Zaslavsky, 

2005; Klages et al., 2008) in which the continuous-time random walk (CTRW) model 

describes the dynamics of the diffusing spins based on fractional calculus (Klages et al., 

2008). The CTRW model makes no explicit microstructural assumptions but instead assumes 

an effective diffusion process. This provides a generalised diffusion equation and propagator 

in which the mean squared-displacement of spins depends on some (non-integer) powers of 

time and space. Diffusion dynamics are described by two processes that are represented by 

fractional exponents: α representing the probability density function (pdf) of waiting times 

and β representing the pdf of step lengths in their random walks. The CTRW model has been 

applied to dMRI data but typically involves acquisition of more than two non-zero b-value 

shells across multiple diffusion gradient directions (ex-vivo: Ingo et al., 2014b; Gatto et al., 

2019; in-vivo: Karaman et al., 2016; Tang and Zhou, 2019) and hence requires lengthy 

acquisition times. Furthermore, dMRI acquisition parameterised by diffusion gradient 
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strength and diffusion time may be necessary for accurate quantification of model parameters 

(Ingo et al., 2014b) further increasing acquisition time.   

 

We impose a special case of the CTRW model by assuming there is a scaling relationship 

between time and space for diffusion in tissue microstructure. We do this both for practical 

and theoretical reasons. The special case is achieved by identifying a relationship between α 

and β, specifically β=2α, which describes a quasi-diffusion random-walk model of the 

diffusion dynamics for coupled random walks (Jurlewicz et al., 2012; Luchko et al., 2016; 

Meerschaert and Scheffler, 2019). This relationship simplifies the CTRW model and 

establishes a mean squared displacement of spins that is linearly proportional to time but for 

which, in general, the diffusion signal decay is slower than for mono-exponential Gaussian 

diffusion. This quasi-diffusion model represents non-Gaussian diffusion dynamics in a 

heterogeneous medium and parameterises signal attenuation according to the quantitative 

measures of rate of decay (i.e. the diffusion coefficient, D in mm2 s-1) and the shape of the 

power law tail (i.e. the fractional exponent, α). We can consider quasi-diffusion either as a 

model based on emergent diffusion dynamics, or as a representation of dMRI data (Novikov 

et al., 2018) which is more compact than DKI and provides a better parameterisation of 

diffusion signal attenuation at high b-values. To enable QDI to provide tissue contrast similar 

to κ we compute the normalised entropy of the parameterised diffusion signal decay curve, 

Hn (Ingo et al., 2014b, 2014a). An advantage of the QDI technique is that it estimates D and 

α separately in each diffusion gradient direction and requires a minimum acquisition of a b=0 

s mm-2 image followed by two non-zero b-value shells, allowing rapid dMRI acquisition in 

clinically acceptable time. QDI may be applied to any b-value range and Quasi-Diffusion 

Weighted Imaging (QDWI) and Quasi-Diffusion Tensor Imaging (QDTI) maps analogous to 

conventional diffusion modalities are computed. 
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Here we provide the theoretical background to QDI and show the proof of concept of the 

technique. We show QDTI maps for healthy volunteers and provide an estimate of variance 

in brain tissue. We then show that QDTI provides maps analogous to DKI and that QDTI is 

capable of estimating D and α within image voxels where DKI fails. We also consider the 

performance of QDI for minimal dMRI acquisition schemes (using SENSE to speed up the 

acquisition, but without multi-band imaging) in 15, 6 and 3 diffusion gradient directions (i.e. 

in 228s, 120s and 84s, respectively) indicating the potential clinical feasibility of the 

technique. Finally, we present clinical case studies for six diffusion gradient direction QDTI 

in cerebral small vessel disease (SVD) and brain tumour patients. 

 

2. Methods 

2.1 Theory 

2.1.1 Continuous Time Random Walk Model of diffusion dynamics 

In this study we use a general model of the underlying diffusion process known as the 

continuous time random walk (CTRW). The crucial difference between the CTRW and 

conventional random walks models is that the mean squared-displacement of diffusing 

particles depends on some (non-integer) power of time (Metzler and Klafter, 2000; Klages et 

al., 2008). This model gives a generalized form, 

〈��〉~��∝ �⁄ 										[�
. 1] 
where diffusion dynamics are described by two exponents: α which defines the pdf of 

waiting times between steps in random walks and β which defines the pdf of step lengths. 

Diffusing particles execute a step, and then remain stationary for a short time before taking 

another. The exponents are assumed to be independent, and both processes are described by 
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an inverse power dependency for step length, ����, and waiting time ����. This means that 

large step lengths and waiting times are much less likely than shorter ones but are 

nevertheless more likely than for a Gaussian distribution. The model reduces to Gaussian 

distributions when α=1 and β=2. 

 

2.1.2 Application of the continuous time random walk diffusion model to dMRI 

Following an analogous strategy to Gaussian diffusion the 1D motion of a diffusing particle, 

���, ��, is represented by a fractional partial differential equation (see Ingo et al., 2014b for 

details). For application to dMRI the Fourier Transform of this solution is derived in q-space 

where 
 = �
�� ��� (in mm-1), γ is the gyromagnetic ratio of hydrogen, g is the diffusion 

gradient strength (in mTm-1), and the effective diffusion time is denoted as ∆�= ∆ −  
! (in s) 

for a given diffusion gradient pulse duration, δ, and separation, ∆. This provides an equation 

for the diffusion signal decay, "�
, ∆�� as follows, 

"�
, ∆�� = ��#−$�,�|
|�∆��&				[�
. 2] 
where �� is the single-parameter Mittag-Leffler function (MLF) (Haubold et al., 2011). The 

MLF is defined as a power series for ( ∈ ℂ such that, 

���(� = + (,
-�./ + 1�

1

,23
				[�
. 3] 

where Γ(y) is the Gamma function, a generalization of the factorial function for all y∈R. At 

low z this equation describes a stretched exponential and at high z a power law decay 

(Carpinteri and Mainardi, 1997). In Eq.2 the orders of the fractional operators α and β are 

fractional exponents that stretch and contract the power law tails of the waiting time and step 

length pdfs and allow inference of asymptotic microscopic diffusion dynamics from 
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macroscopic experimental data (Mainardi et al., 2001; Klages et al., 2008;  Gorenflo et al., 

2014; Evangelista et al., 2018; Magin et al., 2019).  

 

The fractional time and space exponents are decoupled and provide potentially uncorrelated 

. and 5 exponents that have meaning with respect to the type of diffusion that is present 

within a voxel (i.e. Gaussian, sub-diffusive (i.e. slower than Gaussian) or super-diffusive (i.e. 

faster than Gaussian), Figure 1). Such a model ideally requires dMRI acquisition across 

multiple q and ∆6 values (Ingo et al., 2014b) and is either not clinically feasible due to long 

acquisition times, or is affected by the limited range of diffusion times available on clinical 

MR systems (Magin et al., 2013). Furthermore, the diffusion coefficients, Dα,β, computed 

from Eq.2 are in units of mmβs-α and require complex methods to recover units of mm2s-1 

(e.g. Ingo et al., 2014b; Karaman et al., 2016; Magin et al., 2008). A pragmatic, clinically 

feasible solution to ensuring acquisition times are short is to keep ∆6 constant and alter q, 

however, such a restriction still requires extensive data acquisition across multiple b-value 

shells (Gatto et al., 2019; Ingo et al., 2014b; Karaman et al., 2016; Tang and Zhou, 2019).  

 

2.1.3 Quasi-diffusion MRI 

We propose a simplification of the CTRW model by a coupling of the . and 5 exponents. 

Mean squared displacement of diffusing particles in the CTRW model is given by 〈��〉~�789  

and Gaussian diffusion by α=1 and β=2, such that 〈��〉~�. If the same heuristic Gaussian 

scaling relation of position with time continues to hold for non-Gaussian diffusion then 

〈��〉~� and 2. 5 = 1⁄ . In this case the model represents non-Gaussian diffusion which is not 

super-diffusive or sub-diffusive (see Figure 1); instead we have a quasi-diffusion process. For 

dMRI the quasi-diffusion equation is derived by substitution of 5 = 2. in Eq.2 as follows, 
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"�
,∆6� = +#−$�,��
��∆6�&,
Γ�./ + 1�

1

,23
 

																																			= + �−1�,#$�,�:&α,
Γ�./ + 1� ,								[�
. 4]		

1

,23
 

where signal attenuation is parameterised by : = 
�∆� and the diffusion coefficient, $�,�, is in 

conventional units of mm2s-1. The two variants of Eq.4 allow fitting with respect to q- or b-

value. The fractional α exponent represents a range of properties from Gaussian diffusion 

(α=1) through non-Gaussian (quasi) diffusion (0<α<1). Specifically, QDI parameterises the 

signal decay by b-value according to the rate of decay, D1,2, and the shape of the power law 

tail, α. Both D1,2 and α are quantitative measures. It is important to note that α is analogous 

to the DKI κ measure as it represents non-Gaussian diffusion dynamics.  

 

2.1.4 Normalised entropy 

QDI does not explicitly allow derivation of diffusional kurtosis (see Ingo et al., 2015, 2014a), 

however, we can use the estimates of D1,2 and α from Eq.4 to predict diffusion signal 

attenuation at high b-values and so create synthetic images with contrast similar to κ. To 

achieve this we compute the information content in the fitted signal decay curve (i.e. a 

composite measure of the rate of decay and shape of the curve) as the normalised Shannon 

entropy	<=#"�
, ∆��& (Ingo et al., 2014b, 2014a),  

<=#"�
, ∆��& = 1
>?��@�A "�
B, ∆��

C

B2�
>D#"�
B, ∆��&,															[�
. 5] 

where 0 ≤ 	<=#"�
, ∆��& ≤ 1 and N is the total number of samples taken along the curve. The 

normalised entropy measure is not fully quantitative as it is affected by altering the number of 
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samples along the curve or the range of q- or b-values it is computed across. Greater Hn 

values correspond to larger deviation of the signal decay curve from Gaussian diffusion. 

Intuitively, Hn, represents the complex heterogeneity of the diffusion environment.  

 

2.1.5 Diffusion MRI acquisition strategies for QDI 

The minimum number of MR images needed to estimate $�,� and α from Eq.4 along a single 

diffusion gradient direction corresponds to dMRI acquisition at 3 b-values (e.g. b=0 s mm-2 

and 2 non-zero b-values). For Quasi-Diffusion-Weighted Imaging (QDWI) there is a 

minimum requirement for 7 diffusion measurements (e.g. b=0 s mm-2, and 2 non-zero b-

values in 3 orthogonal diffusion gradient directions). Similarly, a QDTI acquisition, which 

allows computation of $�,� and α tensor maps requires at least 13 diffusion measurements 

(e.g. b=0 s mm-2, and 2 non-zero b-values in 6 non-collinear diffusion gradient directions). 

Such a minimum QDTI acquisition requires considerably fewer dMRI acquisitions than DKI 

which requires a minimum of 31 measurements (e.g. b=0 s mm-2, and 2 non-zero b-values in 

15 non-collinear diffusion gradient directions, Jensen and Helpern, (2010)). QDTI can be 

acquired in 42% of the minimum DKI acquisition time allowing QDTI to be added to routine 

clinical protocols without significantly increasing the overall scanning time.  

 

2.1.6 Quasi-diffusion tensor imaging 

QDI includes dMRI acquisition along radial lines in q-space from which 1D estimates of 

$�,�, α and Hn are computed. These estimates can be considered as spherical samples from 

which 3×3 tensors may be computed (Hall and Barrick, 2012). $�,�, α and Hn tensors are 

computed separately and provide 3 positive real eigenvalues, λ1, λ2 and λ3, where λ1>λ2>λ3, at 
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each voxel with 3 corresponding eigenvectors, v1, v2 and v3. Familiar metrics are computed 

from the D1,2 tensor as mean	$�,� = �	λ� + 	λ� + 	λ!� 3⁄ , axial	$�,� = 	λ�, radial	$�,� =
�	λ� + 	λ!� 2⁄ ) and D1,2 anisotropy (i.e. fractional anisotropy, Pierpaoli and Basser, 1996). 

Similar equations are used to calculate α metrics from the exponent tensor. For the 

normalised entropy tensor, mean Hn and Hn anisotropy are computed as above, but axial 

<= = 	λ! is assumed to be aligned along the direction of least entropy, with radial <= =
�	λ� + 	λ�� 2⁄ ). All QDTI measures are rotationally invariant. 

 

2.2 Participants  

Healthy subjects: Eight healthy participants were recruited (age 29±8 years, 3 male, 5 

female). Ethics approval was obtained for the study (East London 3 Research Ethics 

Committee (REC): 10/H0701/36) and written informed consent was obtained from each 

participant prior to MR scanning. 

Cerebral small vessel disease patients: Two patients were recruited as part of the 

“Magnetic resonance spectroscopy to validate brain glutamate as a therapeutic target in 

delirium and dementia” study at St George’(SGUL) for which ethical approval was obtained 

(REC: 18/WA/0063). Written informed consent was obtained from each participant prior to 

MR scanning. Both participants had incidental findings of SVD on scanning. Case 1 (age 71 

years) had extensive leukoariaosis. Case 2 (age 75 years) had an incidental acute ischaemic 

infarct.  

Brain tumour patients:  Three brain tumour patients were recruited as part of the “Tissue-

type magnetic resonance imaging of brain tumours” study at SGUL for which ethical 

approval was obtained (South Central Hampshire REC: 17/SC/0460). Written informed 

consent was obtained from each participant prior to MR scanning. Case 1 (age 72 years) had 

two WHO Grade I meningiomas (one angiomatous, the other psammomatous), case 2 (age 40 
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years) had a WHO Grade II astrocytoma, and case 3 (age 58 years) had a WHO Grade IV 

glioblastoma.  

 

2.3 Magnetic resonance image acquisition 

MR images were acquired on a 3T Philips Achieva Dual TX MR scanning system (Philips 

Healthcare, Best, Netherlands) using a 32-channel head coil at St George’s Hospital, London, 

UK. Acquisition included T1-weighted and QDI protocols. T1-weighted volume images were 

acquired using a Turbo Field Echo (TFE) sequence (TE=3.7ms, TR=8.1ms, TI=1010ms, flip 

angle 8° with a field of view (FOV) 240mm×240mm. T1-weighted images were acquired on 

young, healthy controls with 128 sagittal slices and voxel resolution 1mm×1mm×1.25mm in 

6 minutes 1 second, and for patients with 193 sagittal slices with 1mm isotropic resolution in 

6 minutes 47 seconds. Patient MRI acquisition was performed as part of a multimodal MRI 

protocol. 

 

2.3.1 Diffusion image acquisition and pre-processing 

Our QDI protocol was developed to provide voxel resolutions similar to conventional clinical 

DWI and to take advantage of ultra-high b-value tissue contrast. The TR is sufficiently long 

to ensure that significant T1 effects are not present in dMRI for healthy or pathological brain 

tissue. 

 

Whole brain axial dMRI were acquired using a diffusion-sensitized spin-echo planar imaging 

(EPI) sequence in enhanced gradient mode (80mTm-1 at a slew rate of 100mT m-1 ms-1). Fat 

suppression was achieved using Spectral Presaturation by Inversion Recovery (SPIR) and 

Slice Selection Gradient Reversal (SSGR). Scan parameters included: TE=90ms, 

TR=6000ms, δ=23.5ms, ∆=43.9ms, field of view (FOV) 210mm×210mm with twenty-two 
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5mm thick slices acquired at 2.3mm×2.3mm×5mm resolution that was zero-filled (by use of 

the Fourier transform) to provide 1.5mm×1.5mm×5mm voxels. A SENSE factor 2 and half 

scan factor 0.891 were applied to minimise echo-train length and overall acquisition time. 

QDI protocols acquired dMRI at b=0, 1100 and 5000 s mm-2 and DKI protocols at b=0, 1100 

and 3000 s mm-2. Images without diffusion-sensitisation (i.e. b=0 s mm-2) were acquired 8 

times.  

 

For all young, healthy participants, QDWI was acquired in 3 orthogonal diffusion gradient 

directions (acquisition time 84s). QDTI was acquired in 6 diffusion directions equally spaced 

on the hemisphere (acquisition time 120s) and 15 directions equally spaced on the 

hemisphere (acquisition time 228s). DKI was acquired using identical gradient directions to 

15 direction QDTI data. QDWI and QDTI data were acquired twice in the same scan session 

for five of the young, healthy participants (age 33±7 years, 2 male, 3 female) to allow 

computation of QDI scan-rescan reproducibility. The patients were scanned using the 6 

diffusion direction QDTI protocol.  

 

All dMRI acquisitions were denoised using MRTrix (MRTrix version 3, 

http://www.mrtrix.org/) (Veraart et al., 2016) and simultaneously corrected for motion and 

eddy current distortions by co-registration to the b=0 s mm-2 image using FSL (version 

5.0.11, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) (Andersson et al., 2016). 

 

2.4 Quasi-diffusion image computation  

No image smoothing was performed prior to parameter estimation. D1,2 and α were estimated 

in each diffusion gradient direction on a voxel-by-voxel basis from Eq.4 using a Levenberg-

Marquardt algorithm (http://www.gnu.org/software/gsl). Data fitting was initialised at each 
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image voxel with D1,2=2.98×10-3mm2s-1 and α=0.978. Normalised entropy requires a 

numerical computation of an integral between b=0 s mm-2 and infinity. For practical analysis 

we computed normalised entropy in each diffusion gradient direction over N=100 uniform 

steps in q-space from b=0 s mm-2 to b=1,000,000 s mm-2 (i.e. q=0 mm-1 to 4772.74 mm-1 in 

steps of q=47.73 mm-1). Padé approximation was used to enable rapid estimation of the MLF 

and its derivatives (Atkinson & Osselran, 2011; Ingo et al., 2017). Figure 2 shows QDI model 

fits to dMRI data within representative grey and white matter voxels. The grey matter voxel 

provided D1,2=0.75×10-3±0.03×10-3 mm2s-1 and α=0.92±0.04, whereas greater variability was 

apparent in D1,2 and α by diffusion direction, D1,2=0.74×10-3±0.37×10-3 mm2s-1 and 

α=0.78±0.07.  

 

QDWI and QDTI maps were computed as follows: 

• QDWI:  Each b-value shell was averaged prior to quasi-diffusion model fitting to 

provide mean D1,2, α and Hn maps. These maps are quantitative but not rotationally 

invariant.  

• QDTI:  Quasi-diffusion model fitting was performed in each diffusion direction and 

rotationally invariant quantitative mean, axial, radial and anisotropy maps were 

computed from D1,2, α and Hn tensors.  

 

2.5 Computation of diffusional kurtosis 

No data smoothing was performed prior to computation of DKI metrics. The diffusional 

kurtosis model was fitted to the diffusion signal attenuation across 15 diffusion gradient 

directions (b=0, 1100, 3000 s mm-2) using ExploreDTI (http://exploredti.com/) which uses 

the Robust Extraction of Kurtosis INDices with Linear Estimation (REKINDLE) approach 
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(Tax et al., 2019). Mean, axial, radial and anisotropy maps were computed for the diffusion 

coefficient, Dκ, and kurtosis, κ.  

 

2.6 Computation of tissue measures within healthy subjects 

To allow assessment of QDI diffusion measures within specific brain tissues the T1-weighted 

images of the healthy volunteers were segmented into grey matter, white matter and CSF 

maps using New Segment in SPM (SPM version 12) (Ashburner and Friston, 2005) and the  

lateral ventricles using Freesurfer (Freesurfer version 5.3, 

https://surfer.nmr.mgh.harvard.edu/) (Fischl, 2012). The b=0 s mm-2 images were aligned to 

the T1-weighted images using epi_reg in FSL (Greve and Fischl, 2009) and the resulting 

affine transformation was inverted to align T1-weighted images and anatomical ROIs to the 

dMRI data. To ensure tissue means, µ, and standard deviations, σ, were minimally affected 

by partial volume effects the tissue segmentations were thresholded at a probability of 0.9. 

Mean, axial, radial and anisotropy measures were computed for D1,2, α, Hn, Dκ and κ in grey 

matter, white matter and lateral ventricle CSF. All voxels with κ<0 or κ>3 were excluded 

from κ measures. 

 

Coefficients of variation, CV= I J⁄ , were computed in grey and white matter for mean D1,2, 

α and Hn maps. Tissue intensity contrast, �K, was computed as follows, 

�K = LMNOPQR�MSTRUL
VWNOPQR7 XWSTRU7 , 

where higher �K values indicate greater tissue contrast.  
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2.7 Scan-rescan reproducibility of QDI measures 

Scan-rescan reproducibility was performed by computing QDI diffusion measures in grey 

and white matter for mean D1,2, α, and Hn measures for the 15, 6 and 3 diffusion gradient 

directions acquisitions and for D1,2, α, and Hn anisotropy measures for the 15 and 6 direction 

protocols. Mean values, µ, were computed separately for grey and white matter across both 

scan sessions. Mean difference between scan sessions (i.e. accuracy), δ, and 95% confidence 

limits (i.e. precision) were also computed for each tissue type. 

 

The scan-rescan data acquired for the 15 diffusion gradient direction protocol was also used 

to determine the reproducibility of fitted QDI signal attenuation curves. χ2 was used to 

provide a measure of difference between the scan (i.e. expected) and rescan (i.e. observed)  

fitted curves, and was computed across 50 b-values evenly spaced between b=0 s mm-2 and 

b=5000 s mm-2 (sampled from the parameterised QDI decay curves) at each voxel and along 

each individual diffusion gradient direction. The χ2 difference was normalised by dividing by 

the number of samples. As the distribution of χ2 values did not follow a normal distribution 

the median, quartiles and 95th percentile were computed for each subject.  

 

2.8 Statistical analysis 

Spearman’s rank correlation coefficients were used to investigate the relationship between 

mean tissue QDI measures with the hypotheses that D1,2 and α represent different properties 

of the diffusion, and that D1,2 and α are related to the composite Hn measure. The hypothesis 

that QDI and DKI measures are related was also tested between D1,2 and Dκ, α and κ, and Hn 

and κ. Wilcoxon signed-rank tests were used to investigate differences between similar 
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measures (n.b. diffusion coefficients, anisotropy and �K measures) and were considered 

significant at p<0.05.  

 

2.9 Data and code availability statement 

De-identified study data are available on request. The code is not available as it is subject to 

patent filing and commercialisation. 

 

3. Results   

3.1 QDI measures in healthy subjects 

QDTI D1,2, α and Hn maps acquired using the 15 direction dMRI protocol are shown in 

Figure 3 with brain tissue means and standard deviations presented in Table 1. 

 

3.1.1 D1,2 and αααα maps 

Mean, axial, radial and anisotropy D1,2, maps (Figure 3a & Table 1) exhibited conventional 

DTI tissue contrast. D1,2 metrics had similar magnitudes to conventional DTI (Table 1) and 

were heterogeneous within brain tissue as indicated by high coefficients of variation and low 

tissue contrast between grey and white matter. In contrast, α maps (Figure 3b & Table 1) 

provide information pertaining to properties of the diffusion dynamics within brain tissue. 

Diffusion dynamics within lateral ventricle CSF were Gaussian (mean α: 0.99±0.01) with 

non-Gaussian diffusion in grey matter (mean α: 0.88±0.01) and the greatest deviation from 

Gaussianity in white matter (mean α: 0.77±0.01). Axial α values exhibited diffusion 

dynamics closer to Gaussianity than radial α values (Table 1). α anisotropy was smaller in 
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magnitude than D1,2 anisotropy (e.g. white matter: D1,2 0.60±0.03; α 0.13±0.01) and was 

significantly smaller in brain tissue (grey and white matter, p=0.008).  

 

Mean, axial and radial α maps had greater tissue intensity homogeneity than D1,2 maps as 

indicated by low coefficients of variation (e.g. mean α: CVgrey 6.13±0.46%, CVwhite 

6.92±0.80%) and high tc measures (e.g. mean α: tc 1.45±0.14). tc was significantly greater in 

mean, axial and radial α maps than D1,2 maps (p=0.008 for each measure). Conversely, tissue 

contrast was greater in D1,2 anisotropy (p=0.008). Spearman’s rank correlation coefficients 

indicated that, D1,2 and α represent different aspects of the diffusion signal, with no 

significant relationships in grey and white matter between the metrics (p>0.05). In general, 

D1,2 and α tensor metrics were moderately to weakly related (ρ < 0.43) with high correlation 

in white matter radial measures only (ρ=0.69, p=0.058).  

 

3.1.2 Normalised entropy 

QDTI Hn maps (Figure 3c & Table 1) provide a composite measure representing the diffusion 

signal attenuation curve. Lowest values of Hn were found in CSF (mean Hn: 0.32±0.01), with 

greater values in grey matter (mean Hn: 0.49±0.01) and highest values in white matter (mean 

Hn: 0.62±0.01). Axial Hn measures were lower than radial values (Table 1). Anisotropy was 

significantly Hn anisotropy measures were significantly lower than D1,2 and higher than α 

anisotropy in grey and white matter (p=0.008).  

 

Tissue Hn values were homogeneous (e.g. mean Hn: CVgrey 9.66±0.79%, CVwhite 7.51±0.75%) 

and provided high tissue contrast (e.g. mean Hn: tc 1.99±0.18). Tissue contrast was greater in 
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mean, axial and radial Hn maps than D1,2 maps (p=0.008 for each measure) and was 

significantly greater in mean and radial (p=0.008), but not axial α maps (p=0.109). 

Furthermore, Hn anisotropy maps had significantly lower tc than D1,2 anisotropy maps 

(p=0.008) and higher tc than α anisotropy (p=0.039). Spearman’s correlation coefficients 

indicate that, in general, Hn is more related to α than D1,2. Specifically, D1,2 and Hn were 

highly correlated in white matter radial measures (ρ=-0.69, p=0.058), but all other tensor 

metrics exhibited weak to moderate correlations (|ρ| < 0.595�. In contrast, α and Hn were 

highly correlated (p<0.05) in all tensor metrics (grey matter: mean ρ=-0.90, axial ρ=-0.79, 

radial ρ=0.95, anisotropy ρ=0.86; white matter: mean ρ=-0.71, radial ρ=-1.00, anisotropy 

ρ=0.83) except white matter axial diffusivity (ρ=-0.381). Together these results indicate that 

Hn values are weighted towards the α measure.  

 

3.2 Comparison of QDI and DKI measures in healthy subjects 

This section compares D1,2 and Dκ, and α and κ measures computed from the 15 direction 

dMRI data. Table 1 presents brain tissue means and standard deviations for Dκ and κ in 

healthy subjects. Mean axial, radial and anisotropy κ maps are illustrated in Figure 4a.  

 

3.2.1 Relationship between D1,2 and Dκκκκ 

Diffusivities calculated by the DKI technique were significantly greater than those computed 

by QDTI in grey and white matter tissue (p=0.008 for mean, axial, and radial diffusivities) 

except for white matter axial diffusivity (p=0.547). In addition, significantly greater 

anisotropy was observed in D1,2 maps compared to Dκ in grey and white matter (p=0.008). 

Tissue contrast was greater in D1,2 than Dκ maps and showed significant differences in mean 
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(p=0.039), radial (p=0.008) and anisotropy (p=0.008) maps but not axial diffusivity 

(p=0.148). Spearman’s correlation coefficients indicated that D1,2 and Dκ tensor metrics were 

positively correlated and significant (p<0.05) in grey matter for mean ρ=0.91, axial ρ=0.81, 

and radial ρ=0.87 measures and white matter for radial diffusivity (ρ=0.76) all other 

measures were highly correlated (0.548<ρ<0.595). 

 

3.2.2 Relationship between αααα and κκκκ 

Mean, axial and radial α maps (Figure 3b & Table 1) exhibited inverted tissue intensities to κ 

(Figure 4a & Table 1) in grey matter (e.g. mean α 0.88±0.01; mean κ 0.58±0.02), white 

matter (e.g. mean α 0.77±0.01; mean κ 0.92±0.03) and CSF (e.g. mean α 0.99±0.01; mean κ 

0.33±0.02). Anisotropy values were significantly greater in κ than α maps in grey and white 

matter (p=0.008). All tissue κ values were in agreement with previous DKI studies of brain 

tissue (Jensen et al., 2005; Jensen and Helpern, 2010). 

 

Tissue contrast was not significantly different between mean or radial α and κ maps (p>0.05) 

but was significant greater in axial α than κ maps (p=0.008). Anisotropy tissue contrast was 

significantly greater in κ than α maps (p=0.008). Spearman’s correlation coefficients indicate 

that α and κ tensor metrics are, in general, significantly negatively correlated (p<0.05, grey 

matter: mean ρ=-0.74; axial ρ=-0.79; radial ρ=-0.79; white matter: radial ρ=-0.76; 

anisotropy ρ=0.79). There was moderate to high correlation between α and κ in grey matter 

anisotropy (ρ=0.62) and white matter mean (ρ=0.48) and axial measures (ρ=0.57). 
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3.2.3 Relationship between entropy and κκκκ 

Figure 4 shows mean, axial, radial and anisotropy maps of κ (Figure 4a) and Hn (Figure 4b) 

in a healthy subject. Brain tissue means and standard deviations are presented in Table 1. All 

maps and tissue values are computed from the 15 direction dMRI data. Highest Hn and 

κ values were in white matter (e.g. mean Hn 0.62±0.01; mean κ 0.92±0.03) with lower values 

in grey matter (e.g. mean Hn 0.49±0.01; mean κ 0.58±0.02) and CSF (e.g. mean Hn 

0.32±0.02; mean κ 0.33±0.02). κ anisotropy values were significantly greater than Hn 

anisotropy in grey and white matter (p=0.008). Hn and κ tensor metrics were, in general, 

significantly positively correlated (grey matter: mean ρ=0.86, axial ρ=0.81, radial ρ=0.88; 

white matter: mean ρ=0.88; radial ρ=0.76) or highly correlated in anisotropy measures (grey 

matter ρ=0.60, white matter ρ=0.62) with moderate correlations in white matter axial 

measures (ρ=0.33). Hn maps had greater tissue intensity homogeneity than κ maps as 

indicated by lower coefficients of variation and significantly greater tissue contrast in mean, 

axial and radial maps (p=0.008) except for anisotropy where greater tissue contrast was 

observed for κ (p=0.008).  

 

Brain tissue voxels that exhibit poor diffusional kurtosis model fitting (i.e.  κ<0 and κ>3) 

were prevalent in κ maps and are represented by black voxels in Figure 4a. Fitting errors 

occurred in 7.46±1.29% of the total brain volume, with negative kurtosis values contributing 

to 99.40±0.55% of this error. The QDI model was adequately fitted in these voxels (Figure 

4b). 
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3.3 Effect of reducing the number of diffusion gradient directions on QDI data 

Figure 5 shows mean D1,2 (Figure 5a) and Hn (Figure 5b) maps for 15, 6 and 3 direction 

dMRI. Table 2 presents tissue means, voxel intensity standard deviations, coefficients of 

variation and tissue contrast measures for mean D1,2, α and Hn maps. Acquisition times as a 

percentage of the 15 direction dMRI protocol were: 62.63% for 6 directions and 36.84% for 3 

directions. Reducing the number of diffusion gradient directions caused a small decrease in 

mean tissue D1,2 and α values, and an increase in Hn (Table 2). For 15 vs 6 diffusion 

directions these differences were not significant (p>0.05), but for 15 vs 3 directions 

significant differences were found in D1,2, α and Hn values in grey and white matter 

(p=0.008), potentially due to the lack of rotational invariance of the QDWI (i.e. 3 diffusion 

direction) measures when compared to QDTI data. There were no significant differences in 

tissue contrast for 15 vs 6 directions (" > 0.05), but there were significant differences for 15 

vs 3 directions in D1,2, α and Hn (p=0.001). All Hn maps showed significantly greater tissue 

contrast when compared to κ maps (Hn vs κ: 15 directions p=0.008; 6 directions p=0.008; 3 

directions p=0.016), but no significant differences were found for α compared to κ (15 

directions p=1.00; 6 directions p=0.250) except for 15 vs 3 (p=0.008 with κ contrast greater 

than α.  

 

3.4 Reproducibility of QDI measures 

Scan-rescan reproducibility results are presented in Table 3. Reproducibility was good for all 

mean QDI measures as indicated by mean percentage error (E=100×δ/µ) less than ±0.75% in 

grey and white matter for D1,2, α and Hn for each of the 3, 6 and 15 diffusion gradient 

direction acquisitions. Accuracy and precision of measurements were improved, and 
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coefficient of error reduced by increasing the numbers of acquired diffusion directions. This 

effect was greater in white than grey matter. Anisotropy measures showed lower accuracy 

and precision than mean QDI measures. Increasing the number of diffusion directions 

improved accuracy and precision of anisotropy measurements. Mean percentage error was 

less than ±0.5% for D1,2 anisotropy in both grey and white matter, but was greater for α and 

Hn anisotropy measures (e.g. 6 directions: α anisotropy Egrey=4.07%, Ewhite=2.74%; Hn 

anisotropy Egrey=3.74%, Ewhite=1.17%) and was improved by increasing the number of 

diffusion gradient directions (15 directions: α anisotropy Egrey=1.13%, Ewhite=0.23%; Hn 

anisotropy Egrey=1.26%, Ewhite=-0.14%). 

 

Reproducibility of fitted QDI diffusion signal attenuation curves was high in both grey (χ2: 

LQ 0.0006±0.0003; median 0.0017±0.0009; UQ 0.0047±0.0028; 95th percentile 

0.0312±0.0250) and white matter (χ2: LQ 0.0005±0.0001; median 0.0016±0.0004; UQ 

0.0041±0.0015; 95th percentile 0.0262±0.0189). χ2 values were similar in grey and white 

matter indicating that there is not a tissue specific bias in reproducibility. 

  

3.5 Application of QDI to patient cases  

Case studies of two SVD patients (Figure 6) and three brain tumour patients (Figure 7) are 

described in the following section. QDI was acquired using the 6 direction QDTI protocol in 

120s. Mean D1,2, α and Hn maps are shown with D1,2 anisotropy in Figure 6, and direction 

encoded colour maps  (Pajevic and Pierpaoli, 1999) in Figure 7. 
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Figure 6a shows a SVD patient with periventricular white matter lesions (WML) and 

enlarged ventricles. WML exhibited higher D1,2, and included regions of reduced D1,2 

anisotropy and Hn and elevated α (yellow arrows). The α and Hn maps indicate that diffusion 

dynamics are closer to Gaussian and that WML tissue microstructure is less complex and 

more damaged than healthy white matter. Regions of elevated α and reduced Hn extend into 

normal appearing white matter beyond regions of high mean D1,2 and reduced D1,2 

anisotropy. This effect was more apparent in α than Hn maps. Figure 6b shows a SVD patient 

with an incidental acute ischaemic infarct in the left thalamus and posterior limb of the 

internal capsule (red arrows). The acute infarct exhibited low D1,2 and α values, with high Hn 

values, corresponding to an increase in restriction of the diffusion environment. 

 

Figure 7 shows patients with a Grade I meningioma (Figure 7a), a Grade II astrocytoma 

(Figure 7b) and a Grade IV glioblastoma (Figure 7c) with tumour cores (red arrows) and 

oedema (yellow arrows) indicated. The high-grade tumour core (i.e. glioblastoma) exhibited 

low D1,2 and α, and high Hn in regions corresponding to high tumour cellularity as indicated 

by blood brain barrier breakdown due to active tumour growth and the presence of 

neovascularisation as shown by gadolinium contrast enhancement on T1-weighted images. 

This ring of viable tumour surrounds a necrotic region with high D1,2 and α, and low Hn. 

Infiltrative oedema adjacent to the tumour core exhibited elevated D1,2, higher α and lower 

Hn compared to healthy white matter. The more ‘benign’ tumour cores (i.e. meningioma, 

Figure 7a, and low-grade astrocytoma, Figure 7b) exhibited elevated D1,2 and α and lower Hn 

values than healthy white matter, with Hn values greater than grey matter in meningioma and 

less than grey matter in astrocytoma. The astrocytoma core was characterised by high D1,2 

and α, and low Hn, and likely represents an infiltrative mix of tumour and normal brain 



27 

 

tissue, as compared to the meningioma and high-grade cores that are more likely cellularly 

dense tumour tissue. Oedema surrounding the meningioma exhibited elevated D1,2 and α and 

lower Hn compared to healthy white matter. 

 

4. Discussion 

We have described a new quantitative dMRI method, QDI that is based on a special case of 

the CTRW model and describes non-Gaussian diffusion. This method may be applied to 

diffusion signal attenuation within a voxel and can be used to estimate the rate of diffusion, 

D1,2, and the shape of the diffusion signal decay curve, α. Our QDI method also overcomes 

several limitations of DKI. QDI can be used to generate maps analogous to / (i.e. α and Hn) 

and can be added to existing single b-value shell acquisition protocols by acquiring an 

additional high b-value along each diffusion gradient direction. We have shown that QDTI 

provides maps with high tissue contrast and allows computation of mean, axial, radial and 

anisotropy maps. Acquisition of the maps utilises a rapid MR imaging protocol which may be 

implemented on standard clinical MRI systems in 84s for QDWI and 120s for QDTI. We 

have also shown that QDTI provides clinically meaningful tissue contrast.  

 

4.1 Conceptualisation of the Quasi-Diffusion model in application to biological systems 

and MRI 

The assumption of particle collision dynamics (i.e. the presence of waiting time and step 

length pdfs) in diffusion processes is a widespread and standard notion. It is central to the 

standard model of Brownian motion (Einstein, 1905; Mazo, 2009) which assumes that 

particles remain stationary for sufficient time such that their next displacement is not 
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correlated with the previous one. In such models the particle displacements are instantaneous. 

The interpretation of this mathematical assumption is either that a series of observations are 

made at fixed time increments, or that a large number of collisions with other particles are 

required to displace the diffusing particle. The difference between the CTRW approach and 

conventional Brownian motion lies in the distributions of step lengths and waiting times that 

are assumed. For Brownian motion, these are assumed to be distributed with a well-defined 

mean, which is considered to be a fixed increment in the simplest treatises (Mazo, 2009), but 

any waiting time distribution with a well-defined mean will lead to ordinary (i.e. Brownian) 

diffusion dynamics in some time regime. The CTRW model allows a generalisation of 

possible diffusion dynamics by not assuming that waiting time and step length pdfs are 

Gaussian. We acknowledge that this is an assumption, but it is a very general assumption 

with a well-studied mathematical basis and includes ordinary Gaussian diffusion as a limiting 

case. 

 

Translating fractional diffusion models of CTRW processes to scientific applications is 

challenging (Metzler et al., 2014). The mathematics of fractional diffusion equations 

represent a generalisation of the diffusion equation (Mainardi et al., 2001) but often it is not 

clear which types of fractional equations should be applied as mathematical models of 

particular physical phenomena. A limitation of the QDI technique is that we do not have 

empirical evidence of quasi-diffusion processes within biological tissue. Nevertheless, there 

are several good reasons for use of the quasi-diffusion special case, β=2α, of the fractional 

diffusion equations in dMRI. Firstly, the quasi-diffusion case assumes that the ensemble 

average of diffusing spins within a voxel has mean squared displacement proportional to 

linear time. This assumption ensures that QDI models non-Gaussian diffusion dynamics 

using the same spatial and temporal scaling relationship as for ordinary diffusion (i.e. where 
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α=1 and β=2 and 2α/β=1), a side effect of which it is possible to estimate the diffusion 

coefficient, D1,2, in conventional units of mm2s-1. Secondly, this assumption ensures that 

super- and sub-diffusive dynamics are not considered within the model causing diffusion 

dynamics to be anomalous for α≠1 but not exotic. Instead QDI allows an extension of 

ordinary diffusion at α=1 to non-Gaussian but Brownian-like diffusion dynamics when 

0<α<1. Finally, the diffusion dynamics of the QDI model may be interpreted with respect to 

mathematical results pertaining to the fundamental solution of the space-time fractional 

diffusion equations (Mainardi et al., 2001) in the QDI case (Luchko, 2016; 2019) which is 

referred to as α-fractional diffusion by Luchko. For the QDI case, the diffusion propagator is 

a Gaussian-like function which becomes Gaussian when α=1 (Luchko, 2016; 2019). 

Furthermore, the entropy production rate of the propagator is independent of α, and identical 

to ordinary diffusion (Luchko, 2016). Together these results suggest that QDI may be 

considered a “natural fractionalisation” (Luchko, 2016) of ordinary diffusion and that it 

represents a model of quasi-Brownian diffusion, hence the moniker Quasi-Diffusion Imaging. 

 

The quasi-diffusion model has several advantages over the general CTRW model in 

application to dMRI data. Firstly, QDI requires a considerably reduced imaging protocol 

compared to the general CTRW model (e.g. Karaman et al., 2016). Our coupling of fractional 

exponents allows data acquisition across q-space alone and represents a pragmatic, clinically 

feasible solution to ensuring acquisition times are short as there is not a requirement to 

estimate α and β independently. Secondly, QDI assumes regular scaling in time and space 

and allows estimation of non-Gaussian diffusion within a voxel and similar inference of the 

underlying tissue microstructural environment to DKI. Finally, the QDI technique provides a 

diffusion coefficient in conventional units of mm2s-1. This is advantageous over the CTRW 

model as estimation of additional measures to allow recovery of units from mmβs-α (Ingo et 
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al., 2014b; Karaman et al., 2016; Magin et al., 2013; Magin et al., 2019) are not required. 

Overall the QDI technique has advantages in parameter inference, improves stability of 

model fitting and allows rapid dMRI acquisition with good tissue contrast. 

 

Conceptually, quasi-diffusion is a model of transport (i.e. diffusion dynamics) that describes 

the dMRI signal and is not based on a model of tissue microstructure. Consequently, QDI 

does not have the problems that are associated with microstructural assumptions in dMRI, 

such as acquisition and parameter-based bias (Jelescu et al., 2015; Jelescu and Budde, 2017), 

and model degeneracy (Jelescu et al., 2016) that cannot always be adequately resolved 

(Novikov et al., 2018). In dMRI the quasi-diffusion model may be interpreted as 

approximating the action of a heterogeneous environment on diffusing spins. Within a 

biological tissue the spin motion will involve interaction with other water molecules, larger 

molecular species, and the potential for binding and unbinding with cellular surfaces (i.e. 

trapping) and constitutes a large variety of mechanisms that contribute to the observed signal 

attenuation. The signal in dMRI is observed as an ensemble average within an image voxel 

inside which partial volumes cannot be reliably attributed to different spin dynamics. The 

power of QDI is in its simplicity and general applicability in defining the observed diffusion 

signal attenuation without the need for microstructural assumptions relating to separate 

contributions of different spin populations within a voxel. In this way QDI offers a simplified 

fitting to non-Gaussian diffusion signal attenuation and provides a reliable representation of 

the signal decay curve.  

 

In this study we have shown the capabilities of this technique by acquiring dMRI data 

quickly to obtain high quality images analogous to DKI, whilst overcoming the inherent 
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limitations of the DKI technique. QDI can be applied over any b-value range, does not 

require large numbers of diffusion gradient directions or make strong geometrical 

assumptions. It can be applied to any organ throughout the body to measure diffusion without 

theoretical modification and recalibration. Crucially, as the QDI technique offers a powerful 

alternative representation of signal decay it could be used within any dMRI application that 

requires reliable parameterisation of non-Gaussian signal attenuation. 

 

4.2 Properties of Quasi-Diffusion Imaging maps 

Diffusion coefficient maps computed from QDI have similar tissue contrast to conventional 

DWI and DTI. D1,2 maps have lower magnitudes and higher anisotropy than DKI Dκ maps. 

Differences in magnitude between D1,2 and Dκ metrics are similar to those observed after 

application of free water elimination techniques to conventional dMRI data (Albi et al., 2017; 

Pasternak et al., 2009). Our QDI technique exhibited greater differences in radial diffusivity 

(-30.1%) and anisotropy measures (+26.2%) and smaller differences in mean (-13.8%) and 

axial diffusivities (-0.4%). The similarity between our results and those of Albi et al., (2017) 

indicate that use of ultra-high b-values in QDI acquisition potentially reduces partial volume 

effects due to free water, however, it should be noted that changing ∆� in QDI acquisitions 

will alter measured diffusion coefficients (Topgaard, 2017).  

 

QDI provides maps of α, a fractional exponent representing the shape of the diffusion signal 

attenuation within a voxel, which represents the deviation from Gaussianity of the diffusion 

process. Our findings indicate that diffusion in CSF is Gaussian, while grey matter and white 

matter are characterised by non-Gaussian diffusion properties. Greater non-Gaussian 

diffusion is indicated by a thicker power law tail of the diffusion signal attenuation and 
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represents greater heterogeneity of the diffusion process. Our findings are in broad agreement 

with previous CTRW model studies (Karaman et al., 2016; Magin et al., 2013), but do not 

attempt to separate time and space exponents. In particular, lower α values in white matter 

than grey matter indicate that step lengths are shorter and waiting times longer, potentially 

due to greater heterogeneity of the cellular boundaries to diffusion in the tissue 

microstructural environment, and consequently greater hindrance or restriction to water 

diffusion at shorter length scales in well organised axons, myelin and oligodendrocytes.  

 

We computed normalised entropy, Hn, from the parameterised diffusion signal decay curve to 

provide a composite measure of D1,2 and α. The Hn measure provides information relating to 

the tissue microstructural environment as it calculates the information content of the diffusion 

signal attenuation over multiple length scales, and potentially represents a biomarker of tissue 

organization, structure and complexity (Ingo et al., 2014a, 2014b; Magin et al., 2013). Higher 

Hn values correspond to lower rates of diffusion and greater non-Gaussianity and 

heterogeneity of the diffusion dynamics, whereas lower Hn values correspond to higher rates 

of diffusion and more Gaussian diffusion dynamics (Ingo et al., 2014a, 2014b; Magin et al., 

2013, Magin et al., 2019). Tissue contrast in Hn maps is analogous to DKI κ maps and has 

similar contrast to Hn maps in ex vivo rodent brain data (Ingo et al., 2014b). Our results 

indicate greater heterogeneity of the diffusion environment in white matter than grey matter, 

and consequently more complex diffusion dynamics. QDI Hn maps offer a potential 

alternative to κ maps, with similar interpretation, but significantly improved tissue contrast. 

 

The D1,2 and α parameters provided by QDI are quantitative, in the same way that DTI and 

DKI maps are quantitative. For QDI metrics to be comparable across studies and scanners it 
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is necessary to acquire dMRI data with similar diffusion times (Topgaard, 2017). 

Furthermore, to ensure that Hn measures are reproducible and comparable across studies it is 

necessary to ensure that similar weightings of the D1,2 and α parameters to normalised 

entropy are preserved. For instance, the normalised entropy should be computed over the 

same q- or b-value range using the same total number of samples taken along the diffusion 

signal attenuation curve.  

 

QDI maps are rotationally invariant in the case of QDTI and the usual limitations of the 

tensor model are relevant for these images (e.g. Wheeler-Kingshott and Cercignani, 2009). A 

further limitation in QDI is that D1,2 and α tensor maps are computed separately without a 

mathematical description that allows their simultaneous computation. This means that 

principal directions of α maps may not be precisely oriented along principal diffusion 

directions. An aim of future research will be to derive the mathematical form for the QDI 

tensor. We will also explore orientation distribution functions of QDI measures in high 

angular resolution dMRI and investigate their application to white matter tractography. 

 

4.3 Advantages of Quasi-Diffusion Imaging over Diffusional Kurtosis Imaging 

QDI has several advantages over DKI that improve accuracy of calculated measures and 

stability of model parameter estimates. Firstly, no data smoothing was performed in this 

study and initial parameter estimates were set to the same values in all voxels (specifically, 

D1,2=2.98×10-3mm2s-1 and α=0.978). Such an initialisation was possible as perturbation of 

initial conditions provided minimal change to estimated parameters, indicating robust model 

fitting in the presence of noise. This is further supported by the capability of QDI to provide: 

(a) model fitting along single lines through q-space, and (b) parameter estimation within 
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voxels characterised by negative kurtosis estimates in DKI, a phenomenon attributed to low 

signal to noise ratios (Jensen and Helpern, 2010; Tabesh et al., 2011). Secondly, QDI can be 

used to predict diffusion signal attenuation at extremely high b-values, in contrast to DKI, a 

feature exploited in calculation of Hn. Finally, QDI enables diffusion sensitisation to be 

increased to the maximum capability of current and future MRI systems. This allows QDI to 

be applied to any b-value range given sufficient signal to noise ratios, and consequently takes 

advantage of additional tissue contrast provided by ultra-high b-values and its increased 

sensitivity to subtle changes in tissue ultrastructure. Recently, ultra-high b-value imaging has 

provided additional insight to diseases such as Alzheimer’s disease (Yingnan et al., 2018), 

Parkinson’s disease (Xueying et al., 2015) and brain tumour subtypes (Tan et al., 2018) but 

computation of diffusion metrics in these studies has been limited by a lack of analysis 

techniques embedded in a physical model for diffusion processes (e.g. Tan et al., 2018; 

Xueying et al., 2015; Yingnan et al., 2018). QDI provides a quantitative framework for 

analysing such data and computes physically meaningful metrics that may be used to provide 

additional insight to disease. 

 

4.4 Clinical potential of Quasi-Diffusion Imaging 

As QDI provides analogous information to DKI it is likely that the current wealth of findings 

from clinical DKI studies also represent potential clinical benefits of QDI. In particular, the 

potential clinical utility of QDI is in providing additional diagnostic or prognostic 

information beyond that of conventional DWI and DTI. We have shown that QDTI is 

sensitive to white matter damage beyond white matter lesions (identified by elevated D1,2) in 

a SVD patient and showed that damaged tissue exhibited more Gaussian diffusion dynamics 

indicating a less complex tissue microstructural environment potentially caused by axonal 
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degeneration, demyelination and gliosis. Numerous studies indicate that conventional DTI 

measures are sensitive to white matter damage in SVD (Raja et al., 2019) and Xu et al., 

(2016) report increases in Dκ and decreases in mean κ in normal appearing white matter that 

are proportional to disease severity. This indicates the added value of DKI beyond 

conventional DWI and suggests that QDI would provide increased sensitivity to white matter 

damage in SVD.   

 

QDTI was also applied to a SVD patient with an incidental acute ischaemic infarct. QDTI 

reproduces the reduction of mean D1,2 observed due to the effects of cytotoxic oedema (i.e. 

oncotic swelling of glial and neuronal cells reducing the extracellular space (von Kummer 

and Dzialowski, 2017)) in conventional DWI. Mean α and Hn was increased and provided 

clear delineation of the infarct. Observation of high mean Hn is analogous to DKI studies that 

report high mean κ in acute stroke lesions (Jensen, 2018; Yin et al., 2018; Zhu et al., 2019) 

which have been suggested to represent an increase in tissue complexity (Jensen, 2018). 

Preclinical DKI studies have shown that stroke lesions with a mismatch between reduced Dκ 

and increased κ indicate tissue with less severe ischemic injury than in lesions where reduced 

Dκ and increased κ overlap (Cheung et al., 2012; Lu et al., 2018) and consequently provide 

more information than conventional DWI. Furthermore, in a recent clinical DKI study, Yin et 

al., (2018) have shown that high mean κ within acute lesions indicates brain tissue that is 

identified as lesion on T2-weighted images at one month follow-up. As QDI and DKI are 

analogous, QDI potentially provides a rapid technique for identifying acute stroke lesions in 

the clinic and could include valuable information that is not provided by conventional DWI 

regarding patient recovery that could guide future therapeutic and intervention strategies. 
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QDTI showed low-grade glioma to exhibit diffusion properties indicative of increased tissue 

water content and presence of damaged tissue due to infiltrative tumour growth. In contrast, 

the high-grade tumour exhibited a ring of reduced D1,2 and α, and increased Hn associated 

with viable tumour. In this case, high Hn regions likely represent higher tumour-cell density 

due to rapid growth, corresponding with areas of neovascularisation (indicated by T1-

weighted contrast enhancement). Furthermore, these regions surround a core of highly 

increased D1,2 and α, and decreased Hn that is likely related to necrosis, a feature of 

malignant glioma. The observation of high Hn in high-grade tumours is analogous to findings 

in DKI studies that report high mean κ to be representative of high tumour grade and 

malignancy (Falk Delgado et al., 2018). For the meningioma, its oedema is similar in D1,2 to 

the low-grade glioma core and the high grade peripheral oedema, but the α is not so elevated 

as for infiltrative tumours. This may reflect the vasogenic rather than infiltrative oedema seen 

with meningiomas in comparison to intrinsic tumours. Additionally, the α and Hn of the 

meningioma are less distinctly different between the core and oedema. The differential 

patterns of these parameters may enable QDI to provide a rapid technique for aiding 

identification of tumour type and grade in the clinic.  

 

4.5 Overcoming barriers to clinical translation of non-Gaussian diffusion MRI 

techniques  

QDI overcomes the acquisition time limitation of non-Gaussian dMRI techniques to allow 

clinically feasible image acquisition. This innovation removes the clinical acquisition time 

barrier potentially enabling large-scale clinical studies and translation to clinical practice. We 

have shown that by addition of an ultra-high b-value shell to conventional dMRI protocols, 

QDWI and QDTI can be acquired in a clinically acceptable time using 3 and 6 diffusion 
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direction protocols. We have also shown that the scan-rescan reproducibility of QDI model 

fits along diffusion gradient directions and QDWI and QDTI measures in regions of interest 

is high, albeit with greater accuracy and precision for acquisition protocols with greater 

numbers of diffusion gradient directions. Efficacy of 6 direction QDTI is shown by the lack 

of significant differences in tissue metrics and high reproducibility of metrics compared to 15 

direction QDTI. Nevertheless there were significant differences in tissue values, and lower 

reproducibility of metrics, for QDWI when compared to QDTI data, potentially due to QDWI 

measures not being rotationally invariant. Despite this the mean D1,2, and Hn maps 

consistently exhibited significantly greater tissue contrast than analogous DKI maps 

indicating that QDWI and QDTI data can be acquired quickly with sufficient image quality 

and measurement reproducibility for research and clinical applications.  

 

Several recent reports describe fast DKI acquisition protocols for application in the clinic 

(Næss-Schmidt et al., 2018, 2017; Tietze et al., 2015; Yin et al., 2018). For example, Tietze 

et al., (2015) and Næss-Schmidt et al., (2018, 2017) used fast DKI (Hansen et al., 2013) to 

acquire data in 166s and 225s, respectively. This is in contrast to Yin et al., (2018) who used 

a conventional DKI protocol with multi-band imaging acceleration to acquire data in 130s. It 

should be noted that fast DKI (Hansen et al., 2013) only provides mean Dκ and mean κ and is 

therefore comparable to our 84s QDWI protocol. Furthermore, our 6 direction QDTI protocol 

was acquired quicker than each DKI study (i.e. 120s). If multi-band imaging was employed 

to accelerate dMRI acquisition our 15 direction QDTI could be acquired in approximately 

120s, our 6 direction QDTI in approximately 60s, and QDWI in less than 60s, further 

supporting the potential clinical utility of the technique. 
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The QDI acquisition protocol described in this study uses high magnetic field gradients to 

acquire ultra-high b-value dMRI. Such high magnetic resonance field gradients are not 

ubiquitously available in the research or clinical setting and are a limitation of the current 

QDI protocol. Future studies are required to optimise QDI acquisition for lower maximum b-

values to enable general application of the technique on research and clinical MR scanners. 

 

5. Conclusion 

We have presented theory and proof of concept for a novel quantitative dMRI technique that 

takes advantage of ultra-high b-values and minimal acquisition times. This QDI technique 

acquires images with analogous tissue contrast to DKI, whilst overcoming limitations of the 

DKI technique. QDI has been shown to generate potentially clinically meaningful tissue 

contrast, with both quantitative and anisotropy measures, in clinically acceptable acquisition 

times. Further studies are required to fully understand the capabilities of this new technique 

in tissue microstructural imaging but our initial findings suggest that QDI may be easily 

added to routine dMRI acquisitions allowing simple translation to the clinic. 
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Tables 

 

  Grey Matter White Matter 
Cerebrospinal 

Fluid 
  (µ±σ) (µ±σ) (µ±σ) 

D1,2 Mean (×10-3) 0.874±0.036 0.701±0.020 2.960±0.028 
(mm2 s-1) Axial (×10-3) 1.032±0.040 1.265±0.043 3.000±0.001 

Radial (×10-3) 0.796±0.035 0.420±0.024 2.941±0.043 
Anisotropy 0.173±0.007 0.602±0.026 0.018±0.013 

α  Mean 0.878±0.004 0.769±0.005 0.985±0.002 
Axial 0.935±0.005 0.868±0.010 0.993±0.006 
Radial 0.850±0.005 0.720±0.008 0.981±0.005 
Anisotropy 0.069±0.004 0.131±0.013 0.010±0.008 

Hn Mean 0.489±0.006 0.621±0.007 0.316±0.016 
Axial 0.433±0.006 0.502±0.006 0.272±0.010 
Radial 0.517±0.007 0.680±0.009 0.337±0.021 
Anisotropy 0.113±0.006 0.179±0.009 0.134±0.027 

Dk Mean (×10-3) 0.962±0.049 0.820±0.021 3.680±0.307 
(mm2 s-1) Axial (×10-3) 1.107±0.051 1.276±0.025 4.160±0.388 

 Radial (×10-3) 0.888±0.048 0.592±0.025 3.440±0.267 
 Anisotropy 0.162±0.010 0.472±0.021 0.125±0.015 

κκκκ Mean 0.575±0.020 0.923±0.025 0.332±0.020 
Axial 0.593±0.020 0.736±0.016 0.308±0.016 
Radial 0.589±0.017 1.181±0.038 0.346±0.024 
Anisotropy 0.126±0.006 0.302±0.021 0.024±0.004 

 

Table 1: Mean (µ) and standard deviation (σ) values computed from QDI and DKI data for 

healthy grey matter, white matter and lateral ventricle cerebrospinal fluid (n=8, age 29±8 

years).  Measurements were computed from the 15 diffusion gradient direction dMRI data. 

Mean, axial, radial and anisotropy measurements are presented maps of D1,2, α, Hn for QDI 

and Dκ and κ for DKI.  
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Gradient directions 3 6 15 

D1,2 µgrey (×10-3) 0.863±0.036 0.868±0.033 0.874±0.036 

(mm2 s-1) σgrey (×10-3) 0.338±0.044 0.330±0.046 0.331±0.049 
CVgrey (%) 39.106±4.116 37.958±4.351 37.763±4.567 

 µwhite (×10-3)  0.638±0.029 0.695±0.019 0.701±0.020 
 σwhite (×10-3)  0.292±0.052 0.248±0.048 0.239±0.046 
 CVwhite (%) 45.835±8.128 35.665±6.996 34.208±6.847 
  Tissue Contrast 0.506±0.060 0.417±0.059 0.442±0.056 

α  µgrey  0.873±0.006 0.877±0.004 0.879±0.004 
σgrey  0.064±0.007 0.056±0.004 0.054±0.004 

CVgrey (%) 7.289±0.812 6.346±0.495 6.126±0.464 
 µwhite  0.739±0.005 0.768±0.004 0.769±0.005 
 σwhite  0.080±0.006 0.056±0.006 0.053±0.006 
 CVwhite (%) 10.983±0.776 7.337±0.818 6.920±0.803 

  Tissue Contrast 1.319±0.151 1.392±0.137 1.445±0.140 

Hn  µgrey  0.495±0.008 0.491±0.005 0.489±0.006 
σgrey  0.055±0.007 0.049±0.004 0.047±0.004 

CVgrey (%) 11.157±1.224 9.918±0.858 9.656±0.789 
 µwhite  0.653±0.005 0.623±0.005 0.621±0.007 
 σwhite  0.074±0.005 0.049±0.005 0.047±0.005 
 CVwhite (%) 11.327±0.694 7.890±0.800 7.508±0.750 
  Tissue Contrast 1.731±0.169 1.928±0.167 1.990±0.188 

κκκκ µgrey  - - 0.575±0.020 
σgrey  - - 0.158±0.013 

CVgrey (%) - - 27.525±2.420 
 µwhite  - - 0.923±0.025 
 σwhite  - - 0.177±0.018 
 CVwhite (%) - - 19.165±1.991 
  Tissue Contrast - - 1.472±0.129 

 

Table 2: Mean (µ), standard deviation (σ), coefficients of variation (CV) and tissue contrast 

measurements for healthy grey and white matter tissue in QDI and DKI data (n=8, age 29±8 

years). Measurements are computed from dMRI data acquisitions with 3, 6 and 15 diffusion 

gradient directions for maps of mean D1,2, mean α, mean Hn and mean κ. All measures are 

presented as mean±standard deviation. 
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Number of 
directions µgrey µwhite 

δδδδgrey 
[95% confidence 

limits] 

δδδδwhite 
[95% confidence 

limits] 
Mean 

D1,2 

 (×10-3 mm2s-1) 

3 0.861 0.644 0.006 [-0.005, 0.018] 0.004 [-0.013, 0.021] 
6 0.867 0.700 -0.000 [-0.013, 0.013] -0.000 [0.024, 0.024] 
15 0.869 0.705 0.002 [-0.009, 0.014] -0.002 [0.009, 0.005] 

αααα 
3 0.866 0.742 -0.003 [-0.008, 0.001] -0.002 [-0.012, 0.008] 
6 0.872 0.767 -0.001 [-0.005, 0.003] 0.001 [-0.008, 0.010] 
15 0.872 0.768 -0.001 [-0.003, 0.002] 0.000 [-0.002, 0.003] 

Hn 
3 0.502 0.650 0.002 [-0.001, 0.005] 0.001 [-0.007, 0.008] 
6 0.496 0.623 0.001 [-0.004, 0.006] -0.001 [-0.008, 0.005] 
15 0.496 0.621 0.000 [-0.001, 0.002] 0.000 [-0.003, 0.002] 

Anisotropy 

D1,2 
6 0.200 0.591 0.000 [-0.020, 0.021] 0.001 [-0.009, 0.011] 
15 0.183 0.583 -0.001 [-0.004, 0.002] -0.001 [-0.003, 0.001] 

αααα 
6 0.084 0.168 0.003 [-0.008, 0.015] 0.005 [-0.009, 0.018] 
15 0.070 0.130 0.001 [-0.003, 0.005] 0.000 [-0.006, 0.007] 

Hn 
6 0.131 0.221 0.005 [-0.007, 0.017] 0.003 [-0.007, 0.012] 
15 0.112 0.178 0.001 [-0.005, 0.008] 0.000 [-0.006, 0.005] 

 

Table 3: Scan-rescan reproducibility of QDI measures in grey and white matter for mean and 

anisotropy measures for the 3, 6 and 15 diffusion direction protocols. Reproducibility of D1,2, 

α and Hn measures is presented for mean and anisotropy metrics across 5 young, healthy 

subjects (n=5, age 33±7 years). Mean tissue values across both scan sessions, µ, are presented 

with mean difference between scan sessions (i.e. accuracy), δ, and 95% confidence limits (i.e. 

precision) for each tissue type. 
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Figure Captions 

Figure 1: Stochastic properties of diffusion processes that may be determined using the 

general CTRW model. Graph (a) shows mean squared displacement with respect to diffusion 

time for sub-diffusion (black line), super-diffusion (grey line) and regular Gaussian diffusion 

(dotted line). Graph (b) shows the diffusion phase diagram and indicates the type of diffusion 

processes as identified by the time, α, and space, β, fractional exponents (adapted from 

Metzler and Klafter, 2000). Regular Gaussian diffusion occurs when α=1 and β=2, with 

superdiffusion when 2α/β>1 and subdiffusion when 2α/β<1. Quasi-diffusion occurs when 

2α/β=1 (i.e. 2α=β). 

Figure 2: QDI model fitting to dMRI data. QDI model fitting is illustrated for a young, 

healthy subject in application to the 15 diffusion gradient direction dMRI data. Data fits are 

shown for a representative grey matter (panel a) and white matter voxel (panel b) through q-

space (in mm-1). Voxel locations are indicated by the red arrows on mean D1,2 α maps (panel 

c) shown using the radiological convention. 

Figure 3: QDTI data of a young, healthy subject for the 15 diffusion gradient direction 

acquisition (b=0, 1100, 5000 s mm-2, acquisition time 228 secs). Mean, axial, radial and 

anisotropy maps are shown for row (a) D1,2, (b) α and (c) Hn. Axial images are shown using 

the radiological convention.  

Figure 4: Comparison of mean, axial, radial and anisotropy maps computed by QDTI (on 

b=0, 1100, 5000 s mm-2) and DKI (on b=0, 1100, 3000 s mm-2) for the 15 diffusion gradient 

direction acquisition (acquisition time 228 s). Axial images are shown for Hn (row a) and κ 

maps (row b). All images are shown using the radiological convention for a young, healthy 

subject.  
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Figure 5: Comparison of QDI maps computed using different numbers of diffusion gradient 

directions. From left to right the numbers of gradients are 15 (acquisition time 228 s), 6 

(acquisition time 120 s) and 3 (acquisition time 84 s). Row (a) shows mean D1,2 maps and 

row (b) shows mean Hn maps. All images are shown using the radiological convention for a 

young, healthy subject.  

Figure 6: Application of QDTI to a patient with small vessel disease (row a), and a patient 

with an acute ischemic infarct (row b). Mean maps of D1,2, α and Hn are shown with. D1,2 

anisotropy. All axial images are shown using the radiological convention and were acquired 

using the 6 diffusion gradient direction QDTI sequence (acquisition time 120 s). Yellow 

arrows indicate the location of periventricular white matter lesions (row a) and red arrows 

show the location of the acute ischemic infarct (row b). 

Figure 7: Application of QDTI to patients with brain tumour. Row (a) shows a Grade I 

meningioma, row (b) a Grade II astrocytoma and row (c) a Grade IV glioblastoma. Mean 

maps of D1,2, α and Hn are shown with Direction Encoded Colour maps (DEC) that are 

modulated by D1,2 anisotropy. The DECs are computed from the principal eigenvector of the 

D1,2 tensor map and represent the gross orientation of brain tissue within a voxel (red – 

left/right, green – anterior/posterior, blue superior/inferior). All axial images are shown using 

the radiological convention and were acquired using the 6 diffusion gradient direction QDTI 

sequence (acquisition time 120 s). Red arrows indicate the location of the tumour cores and 

yellow arrows show the location of oedematous regions. 
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