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Abstract

To enable application of non-Gaussian diffusion nedig resonance imaging (dMRI)
techniques in large-scale clinical trials and featié translation to clinical practice there is a
requirement for fast, high contrast, techniques @na sensitive to changes in tissue structure
which provide diagnostic signatures at the eardges$ of disease. Here we describe a new
way to compress the acquisition of multi-shell bueeadiffusion data, Quasi-Diffusion MRI
(QDI), which provides a probe of subvoxel tissuenptexity using short acquisition times (1
to 4 minutes). We also describe a coherent frametasrmulti-directional diffusion gradient
acquisition and data processing that allows contimmtaof rotationally invariant quasi-

diffusion tensor imaging (QDTI) maps.

QDI is a quantitative technique that is based ospecial case of the Continuous Time
Random Walk model of diffusion dynamics and assumhes presence of non-Gaussian
diffusion properties within tissue microstructu®DI parameterises the diffusion signal
attenuation according to the rate of decay (i.6usion coefficient, D in mrhs') and the

shape of the power law tail (i.e. the fractionap@xent,a). QDI provides analogous tissue
contrast to Diffusional Kurtosis Imaging (DKI) bylculation of normalised entropy of the
parameterised diffusion signal decay curi#, but does so without the limitations of a

maximum b-value.

We show that QDI generates images with superisuéiscontrast to conventional diffusion
imaging within clinically acceptable acquisitiomts of between 84 and 228 seconds. We
show that QDI provides clinically meaningful imagescerebral small vessel disease and
brain tumour case studies. Our initial findings geg} that QDI may be added to routine
conventional dMRI acquisitions allowing simple apgtion in clinical trials and translation

to the clinical arena.

Key words: Magnetic resonance imaging, brain, continuous tirmaedom walk, non-

Gaussian diffusion, diffusional kurtosis imagingghb-value.



1. Introduction

Over the last decade there have been extensiveneelvan acquisition and analysis of
diffusion magnetic resonance imaging (dMRI) data these have not been routinely
translated into clinical practice. One reason g ts the frequently lengthy acquisition times
required to provide adequate image quality. This lesa prohibitive, for example, in acute
stroke where there is a need for rapid data adguisas patients are not always able to
remain motionless throughout lengthy MRI protoc@snsequently, current clinical use of
dMRl is limited to conventional Diffusion-Weightdohaging (DWI) (i.e. clinical trace DWI)
and the occasional use of Diffusion Tensor Imadipgl). To enable application of new
dMRI techniques in large-scale clinical trials afadilitate translation to clinical practice
there is the requirement to provide high signaldase and high contrast to noise using short
acquisition times (i.e. between 1 and 4 minutegreHve introduce a novel dMRI technique,
Quasi-Diffusion MRI (QDI), which utilises a rapid¢dan acquisition that can be acquired on
clinical MR systems and provides high tissue cattimages. The QDI technique provides a
coherent framework for data acquisition and praogsso give all conventional dMRI
contrasts plus images analogous to Diffusional &gist Imaging (DKI) (Jensen et al., 2005;

Jensen and Helpern, 2010).

The simplest and most widespread assumption usedMRI analysis is that spin
displacements are Gaussian (Jones et al., 2018nSeh-Berg and Behrens, 2014) leading to
prediction of mono-exponential diffusion signalemiation with b-value (Callaghan, 2011).
DWI and DTI use this assumption and can be rowtirsequired in the clinic in 1 to 4
minutes. Although mono-exponential signal decay olsserved in diffusion-weighted

measurements of fluids, this is not the case fifuglon in more structurally complex media



such as tissue, where the signal decays more slinaty described by a single exponential

function and a Gaussian process alone (Clark arigithan, 2000).

The observation of non-mono-exponential decay ledstd the concept that diffusion is
influenced by microstructure which impedes the pmtof spins. Structures with a size
similar to the typical diffusion length-scale withpede spins’ motion in a non-trivial way
(e.g. Grebenkov, 2009, 2008) and cause departu@® fa Gaussian displacement
distribution. This has led to the diffusion sigriaing used as a probe of microstructural
properties of the tissue environment by technigihes model underlying tissue geometry
(e.g. biexponential (Clark and Le Bihan, 2000), GMMED (Assaf and Basser, 2005),
AxCaliber (Assaf et al., 2008), ActiveAx (Alexand@008; Alexander et al., 2010), NODDI
(Zzhang et al., 2012), VERDICT (Panagiotaki et &015, 2014)). These techniques
potentially provide useful clinical information buequire lengthy dMRI acquisition times
due to the requirement for numerous diffusion gratlidirections and b-value shells. In
addition, techniques such as NODDI exhibit acguisibind parameter-based bias (Jelescu et
al., 2015; Jelescu and Budde, 2017) and are ndilyeapplicable to organs outside the
central nervous system without adaption of geomatriassumptions and algorithmic
recalibration (Bonet-Carne et al., 2019). Multidmm®nal dMRI (Topgaard, 2017) is a
technique derived from multidimensional solid-stdfR| that uses qg-vector trajectory
encoding MRI acquisition sequences to provide aesmtation of diffusion in isotropic and
directional tissue dimensions. This technique i$ yet clinically available and requires
lengthy acquisition times and requires gradiens@udhapes to be optimised using bespoke

software and uploaded to the scanner prior to aplication.



Another recent approach is to make an assumptigardeng the overall distribution of
barriers in the environment and estimate a timesddent diffusivity (Novikov and Kiselev,
2010; Novikov et al., 2011, 2014, 2019). In thisea model is derived that involves a
diffusivity with a power-law time dependence. Modgarameters are estimated from
diffusion-weighted measurements at several diffugimes, and the power-law exponent is
related to the presence or absence of disorddreirdiffusion environment. The strength of
this approach and that of Topgaard, (2017) is tlmageometric assumptions regarding the
tissue microstructure are necessary. The techrhi@sebeen applied in humans to estimate
muscle fibre size (Sigmund et al., 2014), prostaterostructure (Lemberskiy et al., 2018)
and properties of the human brain (Veraart et24119). One disadvantage, however, is the
requirement for dMRI acquisition at multiple diffaa times resulting in lengthy acquisition

times.

An alternative to these techniques is DKI, whicloyides a representation (rather than a
biophysical model (Novikov et al., 2018) of non-Gaian diffusion (Jensen et al., 2005;
Jensen and Helpern, 2010). DKI provides greatesiteity to subtle microstructural damage
than DTI in early detection of pathological chari@®ng et al., 2017; Praet et al., 2018) and
histological grade of brain tumours (Falk Delgadale 2018). This technique adds a fourth
order moment to the second order mono-exponernffakin decay curve and computes an
additional termgk, representing departures from Gaussian diffusios t interactions with
the microstructural environment. However, the tégh@ has several limitations: (i) DKI
provides unreliable information for b > 3000 s idensen and Helpern, 2010) and (ii) DKI
has frequent fitting errors that lead to computatd negative kurtosis within an image voxel
(Jensen and Helpern, 2010; Tabesh et al., 201B.fif$t issue represents a limitation for

clinical studies as dMRI of ultra-high b-valuese(ib > 3000 s mif) has potential in



characterising neurodegenerative diseases suchrksson’s disease (Xueying et al., 2015)
and Alzheimer’s disease (Yingnan et al., 2018), ahdracterising brain tumour subtypes
(Tan et al.,, 2018). Secondly, although DKI acqios$ have a theoretical minimum
acquisition of 15 diffusion gradient directions3rb-values (i.e. b=0 s nifrand two non-zero

b-value shells), a routine acquisition typicallwaives 30 or more directions in more than
two non-zero b-value shells. These limitations misat DKI cannot use the higher diffusion
sensitisation capabilities of modern clinical MRiskemsand does not provide a time

efficient scan acquisition.

Our QDI technique has different assumptions witBpeet to the underlying diffusion
process. We apply a special case of a general maideliffusion dynamics based on
anomalous transport theory (Gorenflo et al., 20@2tzler and Klafter, 2000; Zaslavsky,
2005; Klages et al.,, 2008) in which the continubose random walk (CTRW) model
describes the dynamics of the diffusing spins basedractional calculus (Klages et al.,
2008). The CTRW model makes no explicit microstneat assumptions but instead assumes
an effective diffusion process. This provides agyalised diffusion equation and propagator
in which the mean squared-displacement of spingmtipon some (non-integer) powers of
time and space. Diffusion dynamics are describedwayprocesses that are represented by
fractional exponentsa representing the probability density function {(padf waiting times
andp representing the pdf of step lengths in their candvalks. The CTRW model has been
applied to dMRI data but typically involves acqti@ of more than two non-zero b-value
shells across multiple diffusion gradient direcidex-vivo: Ingo et al., 2014b; Gatto et al.,
2019; in-vivo: Karaman et al., 2016; Tang and Zh2019) and hence requires lengthy

acquisition times. Furthermore, dMRI acquisitionrgmaeterised by diffusion gradient



strength and diffusion time may be necessary foul@te quantification of model parameters

(Ingo et al., 2014b) further increasing acquisitiiome.

We impose a special case of the CTRW model by assuthere is a scaling relationship
between time and space for diffusion in tissue asitucture. We do this both for practical
and theoretical reasons. The special case is ahigy identifying a relationship betwean
and 3, specifically B=2a, which describes a quasi-diffusion random-walk glodf the
diffusion dynamics for coupled random walks (Juitarvet al., 2012; Luchko et al., 2016;
Meerschaert and Scheffler, 2019). This relationstimplifies the CTRW model and
establishes a mean squared displacement of s@hssthnearly proportional to time but for
which, in general, the diffusion signal decay iswgr than for mono-exponential Gaussian
diffusion. This quasi-diffusion model representsn+i@aussian diffusion dynamics in a
heterogeneous medium and parameterises signaluatitem according to the quantitative
measures of rate of decay (i.e. the diffusion doiefit, D in mnf s*) and the shape of the
power law tail (i.e. the fractional exponend. We can consider quasi-diffusion either as a
model based on emergent diffusion dynamics, or presentation of dMRI data (Novikov
et al.,, 2018) which is more compact than DKI andvptes a better parameterisation of
diffusion signal attenuation at high b-values. halde QDI to provide tissue contrast similar
to K we compute the normalised entropy of the paranserdiffusion signal decay curve,
H, (Ingo et al., 2014b, 2014a). An advantage of tle @chnique is that it estimates D and
o separately ireach diffusion gradient direction and requires a minimacquisition of a b=0

s mm? image followed by two non-zero b-value shellspwlhg rapid dMRI acquisition in
clinically acceptable time. QDI may be applied toy &-value range and Quasi-Diffusion
Weighted Imaging (QDWI) and Quasi-Diffusion Tensmaging (QDTI) maps analogous to

conventional diffusion modalities are computed.



Here we provide the theoretical background to Qid ahow the proof of concept of the
technique. We show QDTI maps for healthy voluntesrd provide an estimate of variance
in brain tissue. We then show that QDTI providegpsnanalogous to DKI and that QDTI is
capable of estimating D arad within image voxels where DKI fails. We also calesi the
performance of QDI for minimal dMRI acquisition sches (using SENSE to speed up the
acquisition, but without multi-band imaging) in and 3 diffusion gradient directions (i.e.
in 228s, 120s and 84s, respectively) indicating ploeential clinical feasibility of the
technique. Finally, we present clinical case stidog six diffusion gradient direction QDTI

in cerebral small vessel disease (SVD) and braimotur patients.

2. Methods

2.1 Theory
2.1.1 Continuous Time Random Walk Model of diffusia dynamics

In this study we use a general model of the undeglygiffusion process known as the
continuous time random walk (CTRW). The crucialfeliénce between the CTRW and
conventional random walks models is that the meguared-displacement of diffusing
particles depends on some (non-integer) powemnud (Metzler and Klafter, 2000; Klages et
al., 2008). This model gives a generalized form,
(x%)~t2</F [Eq.1]

where diffusion dynamics are described by two exptst a which defines the pdf of

waiting times between steps in random walks @nghich defines the pdf of step lengths.
Diffusing particles execute a step, and then rerstationary for a short time before taking

another. The exponents are assumed to be indegeladenboth processes are described by



an inverse power dependency for step lengfh?, and waiting time*~1. This means that
large step lengths and waiting times are much lésdy than shorter ones but are
nevertheless more likely than for a Gaussian thstion. The model reduces to Gaussian

distributions whem=1 andp=2.

2.1.2 Application of the continuous time random wa diffusion model to dMRI

Following an analogous strategy to Gaussian diffushe 1D motion of a diffusing patrticle,
P(x,t), is represented by a fractional partial differehéquation (see Ingo et al., 2014b for

details). For application to dMRI the Fourier Trioms of this solution is derived in g-space

whereq = iyg& (in mm?), y is the gyromagnetic ratio of hydrogem,is the diffusion

gradient strength (in mTM), and the effective diffusion time is denotedAzs A —g (in s)

for a given diffusion gradient pulse durati@n,and separatiod). This provides an equation
for the diffusion signal decay,(q, A) as follows,

p(q,8) = Eo(~DgplqlPA%) [Eq.2]
wherekE, is the single-parameter Mittag-Leffler function (M) (Haubold et al., 2011). The

MLF is defined as a power series foe C such that,

Eq(2) = ;m [Eq.3]

wherel (y) is the Gamma function, a generalization of fdetorial function for all ¥IR. At
low z this equation describes a stretched expoaeatid at high z a power law decay
(Carpinteri and Mainardi, 1997). In Eqg.2 the ordefshe fractional operators andf3 are
fractional exponents that stretch and contracptheer law tails of the waiting time and step

length pdfs and allow inference of asymptotic mscapic diffusion dynamics from



macroscopic experimental data (Mainardi et al.,1200ages et al., 2008; Gorenflo et al.,

2014; Evangelista et al., 2018; Magin et al., 2019)

The fractional time and space exponents are deedupid provide potentially uncorrelated
«a andf exponents that have meaning with respect to the of diffusion that is present
within a voxel (i.e. Gaussian, sub-diffusive (seower than Gaussian) or super-diffusive (i.e.
faster than Gaussian), Figure 1). Such a modellydeequires dMRI acquisition across
multiple g andA values (Ingo et al., 2014b) and is either noticdilly feasible due to long
acquisition times, or is affected by the limitechga of diffusion times available on clinical
MR systems (Magin et al., 2013). Furthermore, tieuslon coefficients, g, computed
from Eq.2 are in units of mfe® and require complex methods to recover units ofgim
(e.g. Ingo et al., 2014b; Karaman et al., 2016; iMag al., 2008). A pragmatic, clinically
feasible solution to ensuring acquisition times shert is to keep\ constant and alte,
however, such a restriction still requires exteasilta acquisition across multiple b-value

shells (Gatto et al., 2019; Ingo et al., 2014b;df@an et al., 2016; Tang and Zhou, 2019).

2.1.3 Quasi-diffusion MRI
We propose a simplification of the CTRW model bgaupling of thea andf exponents.

Mean squared displacement of diffusing particlethaen CTRW model is given b§x2)~t27a

and Gaussian diffusion by=1 andB=2, such that{x?)~t. If the same heuristic Gaussian
scaling relation of position with time continues ltiold for non-Gaussian diffusion then
(x2)~t and2a/pB = 1. In this case the model represents non-Gaussifusidn which is not
super-diffusive or sub-diffusive (see Figure 1}xtead we have a quasi-diffusion process. For

dMRI the quasi-diffusion equation is derived by stitiition of § = 2« in EQ.2 as follows,
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where signal attenuation is parameterised by g?A and the diffusion coefficienD, ,, is in
conventional units of mfs®. The two variants of Eq.4 allow fitting with respeo g- or b-
value. The fractionatt exponent represents a range of properties frons$au diffusion
(a=1) through non-Gaussian (quasi) diffusion &4). Specifically, QDI parameterises the
signal decay by b-value according to the rate achgeD ,, and the shape of the power law
tail, a. Both Dy > anda are quantitative measures. It is important to rlo&a is analogous

to the DKIk measure as it represents non-Gaussian diffusinandigs.

2.1.4 Normalised entropy

QDI does not explicitly allow derivation of diffusnal kurtosis (see Ingo et al., 2015, 2014a),
however, we can use the estimates @k @nd a from Eqg.4 to predict diffusion signal
attenuation at high b-values and so create syutlim@ges with contrast similar ta To
achieve this we compute the information contenthe fitted signal decay curve (i.e. a
composite measure of the rate of decay and shagieeafurve) as the normalised Shannon
entropyH,,(p(g,4)) (Ingo et al., 2014b, 2014a),

N

B 1
Hn(p(q, D)) = log(N) J;—,

where( < Hn(p(q, E)) < 1 and N is the total number of samples taken albegtirve. The

normalised entropy measure is not fully quantieats it is affected by altering the number of
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samples along the curve or the range of g- or beslt is computed across. Grealtr
values correspond to larger deviation of the sigieday curve from Gaussian diffusion.

Intuitively, Hp, represents the complex heterogeneity of the sldfuenvironment.

2.1.5 Diffusion MRI acquisition strategies for QDI

The minimum number of MR images needed to estiateanda from Eq.4 along a single
diffusion gradient direction corresponds to dMR¢uaisition at 3 b-values (e.g. b=0 s fim
and 2 non-zero b-values). For Quasi-Diffusion-Weagh Imaging (QDWI) there is a
minimum requirement for 7 diffusion measurements).(6=0 s mrif, and 2 non-zero b-
values in 3 orthogonal diffusion gradient direcgpnSimilarly, a QDTI acquisition, which
allows computation ob,; , and a tensor maps requires at least 13 diffusion measemes
(e.g. b=0 s mM, and 2 non-zero b-values in 6 non-collinear diffasgradient directions).
Such a minimum QDTI acquisition requires considbréwer dMRI acquisitions than DKI
which requires a minimum of 31 measurements (ef.mn¥, and 2 non-zero b-values in
15 non-collinear diffusion gradient directions, sem and Helpern, (2010)). QDTI can be
acquired in 42% of the minimum DKI acquisition tirakowing QDTI to be added to routine

clinical protocols without significantly increasitige overall scanning time.

2.1.6 Quasi-diffusion tensor imaging

QDI includes dMRI acquisition along radial lines gaspace from which 1D estimates of
D, ,, a andH, are computed. These estimates can be considergghascal samples from
which 3x3 tensors may be computed (Hall and Bar2Kl2).D, ,, a and H, tensors are

computed separately and provide 3 positive re@migluesii, A, andiz wherei;>\,>\3, at
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each voxel with 3 corresponding eigenvecteoisy, andvs. Familiar metrics are computed
from the D, tensor as mead, , = (A; + A, + A3)/3, axialD,, = A;, radialD;, =

(A, + 23)/2) and O, anisotropy (i.e. fractional anisotropy, Pierpaatfid Basser, 1996).
Similar equations are used to calculatemetrics from the exponent tensor. For the
normalised entropy tensor, me&ly and H,, anisotropy are computed as above, but axial
H, = A3 is assumed to be aligned along the direction a$tlentropy, with radial,, =

(A + 2,)/2). All QDTI measures are rotationally invariant.

2.2 Participants
Healthy subjects: Eight healthy participants were recruited (age %#ars, 3 male, 5

female). Ethics approval was obtained for the st@Hgst London 3 Research Ethics
Committee (REC): 10/H0701/36) and written informeahsent was obtained from each

participant prior to MR scanning.

Cerebral small vessel disease patientsTwo patients were recruited as part of the
“Magnetic resonance spectroscopy to validate bglitamate as a therapeutic target in
delirium and dementia” study at St George’(SGUL)dich ethical approval was obtained
(REC: 18/WA/0063). Written informed consent wasanfsed from each participant prior to
MR scanning. Both participants had incidental firgdi of SVD on scanning. Case 1 (age 71
years) had extensive leukoariaosis. Case 2 (aged¥fs) had an incidental acute ischaemic

infarct.

Brain tumour patients: Three brain tumour patients were recruited as ghathe “Tissue-
type magnetic resonance imaging of brain tumoutsitlys at SGUL for which ethical
approval was obtained (South Central Hampshire REQSC/0460). Written informed
consent was obtained from each participant prigvi® scanning. Case 1 (age 72 years) had

two WHO Grade | meningiomas (one angiomatous, therggsammomatous), case 2 (age 40

13



years) had a WHO Grade Il astrocytoma, and casg8 %8 years) had a WHO Grade IV

glioblastoma.

2.3 Magnetic resonance image acquisition

MR images were acquired on a 3T Philips AchievalO0& MR scanning system (Philips
Healthcare, Best, Netherlands) using a 32-charee keoil at St George’s Hospital, London,
UK. Acquisition included T1-weighted and QDI protde. T1-weighted volume images were
acquired using a Turbo Field Echo (TFE) sequené&e=8T7/ms, TR=8.1ms, TI=1010ms, flip
angle 8 with a field of view (FOV) 240mm240mm. T1-weighted images were acquired on
young, healthy controls with 128 sagittal sliced &nxel resolution Immilmnx1.25mm in

6 minutes 1 second, and for patients with 193 sdglices with 1mm isotropi@solution in

6 minutes 47 seconds. Patient MRI acquisition werfopmed as part of a multimodal MRI

protocol.

2.3.1 Diffusion image acquisition and pre-processm

Our QDI protocol was developed to provide voxebhegons similar to conventional clinical
DWI and to take advantage of ultra-high b-valusuescontrast. The TR is sufficiently long
to ensure that significant T1 effects are not pregsedMRI for healthy or pathological brain

tissue.

Whole brain axial dMRI were acquired using a diffusssensitized spin-echo planar imaging
(EPI) sequence in enhanced gradient mode (80rhdna slew rate of 100mT hms?). Fat
suppression was achieved using Spectral Presaturhyi Inversion Recovery (SPIR) and
Slice Selection Gradient Reversal (SSGR). Scan npetexs included: TE=90ms,

TR=6000ms,06=23.5ms,A=43.9ms, field of view (FOV) 210mr210mm with twenty-two

14



5mm thick slices acquired at 2.3mth3mmx5mm resolution that was zero-filled (by use of
the Fourier transform) to provide 1.5min5mmx5mm voxels. A SENSE factor 2 and half
scan factor 0.891 were applied to minimise echio-ttlength and overall acquisition time.
QDI protocols acquired dMRI at b=0, 1100 and 5000ns* and DKI protocols at b=0, 1100
and 3000 s mifi Images without diffusion-sensitisation (i.e. bs@nn?) were acquired 8

times.

For all young, healthy participants, QDWI was acediin 3 orthogonal diffusion gradient
directions (acquisition time 84s). QDTI was acqdine 6 diffusion directions equally spaced
on the hemisphere (acquisition time 120s) and Ifctions equally spaced on the
hemisphere (acquisition time 228s). DKI was acqluiising identical gradient directions to
15 direction QDTI data. QDWI and QDTI data werewdced twice in the same scan session
for five of the young, healthy participants (agetB3years, 2 male, 3 female) to allow
computation of QDI scan-rescan reproducibility. Tpe&tients were scanned using the 6

diffusion direction QDT]I protocol.

All dMRI acquisitions were denoised using MRTrix KRMrix version 3,

http://www.mrtrix.org/) (Veraart et al., 2016) asdnultaneously corrected for motion and

eddy current distortions by co-registration to #w0 s mnf image using FSL (version

5.0.11, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) (#dersson et al., 2016).

2.4 Quasi-diffusion image computation
No image smoothing was performed prior to parametémation. R, anda were estimated
in each diffusion gradient direction on a voxelAmxel basis from Eq.4 using a Levenberg-

Marquardt algorithm _(http://www.gnu.org/softwardjgPata fitting was initialised at each

15



image voxel with B-=2.98x10°mn?s’ and 0=0.978. Normalised entropy requires a
numerical computation of an integral between b:ns? and infinity. For practical analysis
we computed normalised entropy in each diffusicadgmt direction over N=100 uniform
steps in g-space from b=0 s Mrto b=1,000,000 s mM(i.e. g=0 mnt to 4772.74 mrd in
steps of q=47.73 mi). Padé approximation was used to enable rapithatn of the MLF
and its derivatives (Atkinson & Osselran, 2011;dreg al., 2017). Figure 2 shows QDI model
fits to dMRI data within representative grey andite/imatter voxels. The grey matter voxel
provided 0 »,-0.75¢<10°+0.03x10° mnfs™* anda=0.92+0.04, whereas greater variability was
apparent in B, and a by diffusion direction, B,-0.74x10°+0.37%10° mn?s* and

0=0.78%0.07.

QDWI and QDTI maps were computed as follows:

« QDWI: Each b-value shell was averaged prior to quasiigldn model fitting to
provide mean B,, a andH, maps. These maps are quantitative but not rotton
invariant.

* QDT Quasi-diffusion model fitting was performed in keatiffusion direction and
rotationally invariant quantitative mean, axialdied and anisotropy maps were

computed from B, a andH, tensors.

2.5 Computation of diffusional kurtosis
No data smoothing was performed prior to computattd DKI metrics. The diffusional

kurtosis model was fitted to the diffusion signéileauation across 15 diffusion gradient

directions (b=0, 1100, 3000 s rifinusing ExploreDT! (http://exploredti.com/) whiclses

the Robust Extraction of Kurtosis INDices with LareEstimation (REKINDLE) approach
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(Tax et al., 2019). Mean, axial, radial and anmoyrmaps were computed for the diffusion

coefficient, , and kurtosisk.

2.6 Computation of tissue measures within healthyubjects

To allow assessment of QDI diffusion measures witlecific brain tissues the T1-weighted
images of the healthy volunteers were segmentedgrgy matter, white matter and CSF
maps using New Segment in SPM (SPM version 12) lfaster and Friston, 2005) and the

lateral ventricles using Freesurfer (Freesurfer sioer 5.3,

https://surfer.nmr.mgh.harvard.edu/) (Fischl, 20IY)e b=0 s mMimages were aligned to
the T1-weighted images using epi_reg in FSL (Grand Fischl, 2009) and the resulting
affine transformation was inverted to align T1-wegd images and anatomical ROIls to the
dMRI data. To ensure tissue meansand standard deviations, were minimally affected
by partial volume effects the tissue segmentativese thresholded at a probability of 0.9.
Mean, axial, radial and anisotropy measures wengpabed for 3 5, o, H,, D¢ andk in grey
matter, white matter and lateral ventricle CSF. vidkels withk<O or k>3 were excluded

from K measures.

Coefficients of variation, C¥ ¢ /u, were computed in grey and white matter for meag D

o andH, maps. Tissue intensity contrast, was computed as follows,

— |Hwhite_ﬂgrey|

1
2 2
4/Uwhite+"grey

where highet, values indicate greater tissue contrast.

te
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2.7 Scan-rescan reproducibility of QDI measures

Scan-rescan reproducibility was performed by comgu@DI diffusion measures in grey
and white matter for mean;R a, andH, measures for the 15, 6 and 3 diffusion gradient
directions acquisitions and for; R a, andH, anisotropy measures for the 15 and 6 direction
protocols. Mean values,, were computed separately for grey and white matteoss both
scan sessions. Mean difference between scan segsmmaccuracy), and 95% confidence

limits (i.e. precision) were also computed for etisbue type.

The scan-rescan data acquired for the 15 diffugradient direction protocol was also used
to determine the reproducibility of fited QDI sanattenuation curves(* was used to
provide a measure of difference between the scandxpected) and rescan (i.e. observed)
fitted curves, and was computed across 50 b-vauenly spaced between b=0 s rhand
b=5000 s mrif (sampled from the parameterised QDI decay curaesjch voxel and along
each individual diffusion gradient direction. Tkedifference was normalised by dividing by
the number of samples. As the distributionxdfvalues did not follow a normal distribution

the median, quartiles and"®percentile were computed for each subject.

2.8 Statistical analysis

Spearman’s rank correlation coefficients were umethvestigate the relationship between
mean tissue QDI measures with the hypotheses thaala represent different properties
of the diffusion, and that I3 anda are related to the composki measure. The hypothesis
that QDI and DKI measures are related was alseddsttween b, and [}, a andk, andH,

and k. Wilcoxon signed-rank tests were used to investigdifferences between similar
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measures (n.b. diffusion coefficients, anisotropy @, measures) and were considered

significant afp<0.05.

2.9 Data and code availability statement

De-identified study data are available on requEisé code is not available as it is subject to

patent filing and commercialisation.

3. Results

3.1 QDI measures in healthy subjects

QDTI Dy, a and H, maps acquired using the 15 direction dMRI protoaa shown in

Figure 3 with brain tissue means and standard tiemsgpresented in Table 1.

3.1.1 Db and a maps

Mean, axial, radial and anisotropy ) maps (Figure 3a & Table 1) exhibited conventional
DTI tissue contrast. D» metrics had similar magnitudes to conventional Diidble 1) and
were heterogeneous within brain tissue as indidayeligh coefficients of variation and low
tissue contrast between grey and white matter.ohtrast,a maps (Figure 3b & Table 1)
provide information pertaining to properties of thiéfusion dynamics within brain tissue.
Diffusion dynamics within lateral ventricle CSF weGaussian (meaa: 0.99+0.01) with
non-Gaussian diffusion in grey matter (mean0.88+£0.01) and the greatest deviation from
Gaussianity in white matter (meam: 0.77+0.01). Axiala values exhibited diffusion

dynamics closer to Gaussianity than radiatalues (Table 1)a anisotropy was smaller in
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magnitude than D, anisotropy (e.g. white matter:; 0.60+0.03;a 0.13+0.01) and was

significantly smaller in brain tissue (grey and tehinatterjp=0.008).

Mean, axial and radiak maps had greater tissue intensity homogeneity Blhgnmaps as
indicated by low coefficients of variation (e.g. ameda: CVgey 6.13+0.46%, CVhite
6.92+0.80%) and high tneasures (e.g. mean t; 1.45+0.14). fwas significantly greater in
mean, axial and radial maps than B, maps p=0.008 for each measure). Conversely, tissue
contrast was greater in;p anisotropy [(=0.008). Spearman’s rank correlation coefficients
indicated that, B, and a represent different aspects of the diffusion digmath no
significant relationships in grey and white matbetween the metricg$0.05). In general,
D1, anda tensor metrics were moderately to weakly relageet (0.43) with high correlation

in white matter radial measures onpr(0.69, p=0.058).

3.1.2 Normalised entropy

QDTI H, maps (Figure 3c & Table 1) provide a compositesusarepresenting the diffusion
signal attenuation curve. Lowest valuedHafwere found in CSF (medt,: 0.32+0.01), with
greater values in grey matter (mddn 0.49+0.01) and highest values in white mattergime
Hn: 0.62+0.01). AxialH, measures were lower than radial values (Tablé&disotropy was
significantly H, anisotropy measures were significantly lower titan and higher tham

anisotropy in grey and white mattg=(Q.008).

TissueH, values were homogeneous (e.g. mEanCVgyrey 9.66+0.79%, CVhite 7.51+0.75%)
and provided high tissue contrast (e.g. midgnt. 1.99+0.18). Tissue contrast was greater in
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mean, axial and radiaH, maps than B, maps p=0.008 for each measure) and was
significantly greater in mean and radig=0.008), but not axiala maps (=0.109).
Furthermore,H,, anisotropy maps had significantly lowey than 0O, anisotropy maps
(p=0.008) and higher.tthan a anisotropy [(=0.039). Spearman’s correlation coefficients
indicate that, in general, is more related ta than O , Specifically, O, andH, were
highly correlated in white matter radial measures-0.69, p=0.058), but all other tensor
metrics exhibited weak to moderate correlatiops € 0.595). In contrasta andH, were
highly correlated (p<0.05) in all tensor metricsefg matter: meap=-0.90, axialo=-0.79,
radial pg=0.95, anisotropyo=0.86; white matter: meap=-0.71, radialp=-1.00, anisotropy
0=0.83) except white matter axial diffusivitp<-0.381). Together these results indicate that

H, values are weighted towards theneasure.

3.2 Comparison of QDI and DKI measures in healthybjects

This section compares;P and d, anda andk measures computed from the 15 direction
dMRI data. Table 1 presents brain tissue meansstatard deviations for Dandk in

healthy subjects. Mean axial, radial and anisottopyaps are illustrated in Figure 4a.

3.2.1 Relationship between B, and Dy

Diffusivities calculated by the DKI technique wesignificantly greater than those computed
by QDTI in grey and white matter tissuge=0.008 for mean, axial, and radial diffusivities)
except for white matter axial diffusivityp€0.547). In addition, significantly greater
anisotropy was observed i Pmaps compared to0On grey and white mattep£€0.008).

Tissue contrast was greater in dhan Qh maps and showed significant differences in mean
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(p=0.039), radial §=0.008) and anisotropyp£0.008) maps but not axial diffusivity
(p=0.148). Spearman’s correlation coefficients ¢ated that B, and 0 tensor metrics were
positively correlated and significant (p<0.05) ireg matter for meawp=0.91, axialp=0.81,

and radial p=0.87 measures and white matter for radial diffingi0=0.76) all other

measures were highly correlated (0.5488.595).

3.2.2 Relationship betweem and k

Mean, axial and radial maps (Figure 3b & Table 1) exhibited inverteduestensities t&
(Figure 4a & Table 1) in grey matter (e.g. mear®.88+0.01; meark 0.58+0.02), white
matter (e.g. meaa 0.77+0.01; mear 0.92+0.03) and CSF (e.g. mear0.99+0.01; mear
0.33%£0.02). Anisotropy values were significantheagter ink thana maps in grey and white
matter p=0.008). All tissuex values were in agreement with previous DKI studiebrain

tissue (Jensen et al., 2005; Jensen and Helpet).20

Tissue contrast was not significantly differentvibetn mean or radial andk maps p>0.05)
but was significant greater in axialthank maps p=0.008). Anisotropy tissue contrast was
significantly greater irk thana maps p=0.008). Spearman’s correlation coefficients intica
thata andk tensor metrics are, in general, significantly riegdy correlated (p<0.05, grey
matter: meanp=-0.74; axial o=-0.79; radial pg=-0.79; white matter: radialo=-0.76;
anisotropy=0.79). There was moderate to high correlation betva andk in grey matter

anisotropy p=0.62) and white matter meap=0.48) and axial measures40.57).
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3.2.3 Relationship between entropy and

Figure 4 shows mean, axial, radial and anisotroppsyofk (Figure 4a) andH, (Figure 4b)

in a healthy subject. Brain tissue means and stdrdkviations are presented in Table 1. All
maps and tissue values are computed from the Eetwin dMRI data. Highedt,, and

K values were in white matter (e.g. mé&n0.62+0.01; mear 0.92+0.03) with lower values
in grey matter (e.g. meahl, 0.49+0.01; meark 0.58+0.02) and CSF (e.g. meé&h,
0.32+0.02; meark 0.33+0.02).k anisotropy values were significantly greater thdp
anisotropy in grey and white mattgr=0.008).H,, and Kk tensor metrics were, in general,
significantly positively correlated (grey matteream 0=0.86, axialp=0.81, radialp=0.88;
white matter: meaw=0.88; radialo=0.76) or highly correlated in anisotropy measymgsy
matter p0=0.60, white matterp=0.62) with moderate correlations in white matteiah
measures 40.33). H, maps had greater tissue intensity homogeneity thamaps as
indicated by lower coefficients of variation andrsficantly greater tissue contrast in mean,
axial and radial mapsp€0.008) except for anisotropy where greater tissoitrast was

observed fok (p=0.008).

Brain tissue voxels that exhibit poor diffusionalrtosis model fitting (i.e. k<0 andk>3)
were prevalent ik maps and are represented by black voxels in FidareFitting errors
occurred in 7.46x1.29% of the total brain volumé&hwegative kurtosis values contributing
to 99.40+0.55% of this error. The QDI model wascaagely fitted in these voxels (Figure

4b).
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3.3 Effect of reducing the number of diffusion graént directions on QDI data

Figure 5 shows meaniR (Figure 5a) andH, (Figure 5b) maps for 15, 6 and 3 direction
dMRI. Table 2 presents tissue means, voxel intgrs&@ndard deviations, coefficients of
variation and tissue contrast measures for megn dandH, maps. Acquisition times as a
percentage of the 15 direction dMRI protocol w&263% for 6 directions and 36.84% for 3
directions. Reducing the number of diffusion gratlidirections caused a small decrease in
mean tissue D, and a values, and an increase k, (Table 2). For 15 vs 6 diffusion
directions these differences were not significape0(05), but for 15 vs 3 directions
significant differences were found in;P a and H, values in grey and white matter
(p=0.008), potentially due to the lack of rotatiomalariance of the QDWI (i.e. 3 diffusion
direction) measures when compared to QDTI datareltwere no significant differences in
tissue contrast for 15 vs 6 directioms> 0.05), but there were significant differences for 15
vs 3 directions in B, a andH, (p=0.001). AllH, maps showed significantly greater tissue
contrast when compared komaps M, vsK: 15 directiongp=0.008; 6 directionp=0.008; 3
directions p=0.016), but no significant differences were foulod o compared tok (15
directionsp=1.00; 6 directionp=0.250) except for 15 vs $£0.008 withk contrast greater

thana.

3.4 Reproducibility of QDI measures

Scan-rescan reproducibility results are presemtélchble 3. Reproducibility was good for all
mean QDI measures as indicated by mean percentagegE=100%/p) less than +0.75% in
grey and white matter for B, a andH, for each of the 3, 6 and 15 diffusion gradient

direction acquisitions. Accuracy and precision okasurements were improved, and
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coefficient of error reduced by increasing the namlof acquired diffusion directions. This
effect was greater in white than grey matter. Aimgmy measures showed lower accuracy
and precision than mean QDI measures. Increasiagntimber of diffusion directions
improved accuracy and precision of anisotropy mesmseants. Mean percentage error was
less than +0.5% for [» anisotropy in both grey and white matter, but wesater fora and

Hn anisotropy measures (e.g. 6 directions:anisotropy Fe~=4.07%, Enie=2.74%; Hn
anisotropy [ey=3.74%, Enie=1.17%) and was improved by increasing the numier o
diffusion gradient directions (15 directiona: anisotropy fey=1.13%, Enite=0.23%; Hy

anisotropy frey=1.26%, Enite=-0.14%).

Reproducibility of fitted QDI diffusion signal atteation curves was high in both grey:(
LQ 0.0006+0.0003; median 0.0017+0.0009; UQ 0.0040a28; 9% percentile
0.0312+0.0250) and white matteg’( LQ 0.0005+0.0001; median 0.0016+0.0004; UQ
0.0041+0.0015; 9% percentile 0.0262+0.0189%> values were similar in grey and white

matter indicating that there is not a tissue spebias in reproducibility.

3.5 Application of QDI to patient cases

Case studies of two SVD patients (Figure 6) andetbrain tumour patients (Figure 7) are
described in the following section. QDI was acaditsing the 6 direction QDTI protocol in
120s. Mean By, a andH, maps are shown with ;3 anisotropy in Figure 6, and direction

encoded colour maps (Pajevic and Pierpaoli, 180Bjgure 7.

25



Figure 6a shows a SVD patient with periventricwenite matter lesions (WML) and
enlarged ventricles. WML exhibited higher;  and included regions of reduced, D
anisotropy andH, and elevated (yellow arrows). Thex andH,, maps indicate that diffusion
dynamics are closer to Gaussian and that WML tisaigostructure is less complex and
more damaged than healthy white matter. Regiorddenfateda and reducedH,, extend into
normal appearing white matter beyond regions ofhhigean B, and reduced D,
anisotropy. This effect was more apparent ithanH, maps. Figure 6b shows a SVD patient
with an incidental acute ischaemic infarct in tledt thalamus and posterior limb of the
internal capsule (red arrows). The acute infartit@ied low D, , anda values, with hightH,

values, corresponding to an increase in restriaifahe diffusion environment.

Figure 7 shows patients with a Grade | meningiofigufe 7a), a Grade Il astrocytoma
(Figure 7b) and a Grade IV glioblastoma (Figure W&h tumour cores (red arrows) and
oedema (yellow arrows) indicated. The high-gradedur core (i.e. glioblastoma) exhibited
low D, , anda, and highH, in regions corresponding to high tumour celluiags indicated
by blood brain barrier breakdown due to active tumgrowth and the presence of
neovascularisation as shown by gadolinium contasiancement on T1-weighted images.
This ring of viable tumour surrounds a necroticiosagwith high D >, anda, and lowH,.
Infiltrative oedema adjacent to the tumour coreileiéd elevated B,, highera and lower
H, compared to healthy white matter. The more ‘bentgmour cores (i.e. meningioma,
Figure 7a, and low-grade astrocytoma, Figure 7h)béed elevated B, anda and lowerH,
values than healthy white matter, wij values greater than grey matter in meningioma and
less than grey matter in astrocytoma. The astrotgtoore was characterised by high,D

and a, and lowH,, and likely represents an infiltrative mix of tumoand normal brain
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tissue, as compared to the meningioma and highegeades that are more likely cellularly
dense tumour tissue. Oedema surrounding the menmagexhibited elevated;D anda and

lower H, compared to healthy white matter.

4. Discussion

We have described a new quantitative dMRI methddl Qat is based on a special case of
the CTRW model and describes non-Gaussian diffusidiis method may be applied to
diffusion signal attenuation within a voxel and daused to estimate the rate of diffusion,
D1, and the shape of the diffusion signal decay cunveOur QDI method also overcomes
several limitations of DKI. QDI can be used to gaee maps analogous ko(i.e. a andH,)
and can be added to existing single b-value shejliaition protocols by acquiring an
additional high b-value along each diffusion gratlidirection. We have shown that QDTI
provides maps with high tissue contrast and alloamputation of mean, axial, radial and
anisotropy maps. Acquisition of the maps utilisea@d MR imaging protocol which may be
implemented on standard clinical MRI systems in 8tsQDWI and 120s for QDTI. We

have also shown that QDTI provides clinically meafil tissue contrast.

4.1 Conceptualisation of the Quasi-Diffusion modeh application to biological systems

and MRI

The assumption of particle collision dynamics (ilee presence of waiting time and step
length pdfs) in diffusion processes is a widespraad standard notion. It is central to the
standard model of Brownian motion (Einstein, 190&zo, 2009) which assumes that

particles remain stationary for sufficient time lsuthat their next displacement is not
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correlated with the previous one. In such modedspi#rticle displacements are instantaneous.
The interpretation of this mathematical assumpisoaither that a series of observations are
made at fixed time increments, or that a large remab collisions with other particles are
required to displace the diffusing particle. Th#adence between the CTRW approach and
conventional Brownian motion lies in the distrilaunts of step lengths and waiting times that
are assumed. For Brownian motion, these are asstorieel distributed with a well-defined
mean, which is considered to be a fixed incremenihé simplest treatises (Mazo, 2009), but
any waiting time distribution with a well-definedean will lead to ordinary (i.e. Brownian)
diffusion dynamics in some time regime. The CTRWdeloallows a generalisation of
possible diffusion dynamics by not assuming thatting time and step length pdfs are
Gaussian. We acknowledge that this is an assumptiainit is a very general assumption
with a well-studied mathematical basis and inclugkenary Gaussian diffusion as a limiting

case.

Translating fractional diffusion models of CTRW pesses to scientific applications is
challenging (Metzler et al., 2014). The mathematuds fractional diffusion equations
represent a generalisation of the diffusion equathainardi et al., 2001) but often it is not
clear which types of fractional equations should dpplied as mathematical models of
particular physical phenomena. A limitation of tQ®I technique is that we do not have
empirical evidence of quasi-diffusion processesvibiological tissue. Nevertheless, there
are several good reasons for use of the quasisihifuspecial casg=2a, of the fractional
diffusion equations in dMRI. Firstly, the quasifdgion case assumes that the ensemble
average of diffusing spins within a voxel has megnared displacement proportional to
linear time. This assumption ensures that QDI nmodan-Gaussian diffusion dynamics
using the same spatial and temporal scaling reisliip as for ordinary diffusion (i.e. where
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a=1 andp=2 and 2/p=1), a side effect of which it is possible to esttenthe diffusion
coefficient, O ,, in conventional units of mfa’. Secondly, this assumption ensures that
super- and sub-diffusive dynamics are not consilevichin the model causing diffusion
dynamics to be anomalous fa¥l but not exotic. Instead QDI allows an extensidn o
ordinary diffusion ata=1 to non-Gaussian but Brownian-like diffusion dynes when
O<o<1. Finally, the diffusion dynamics of the QDI mbdeay be interpreted with respect to
mathematical results pertaining to the fundamestiition of the space-time fractional
diffusion equations (Mainardi et al., 2001) in @®I| case (Luchko, 2016; 2019) which is
referred to as-fractional diffusion by Luchko. For the QDI caslee diffusion propagator is
a Gaussian-like function which becomes Gaussiannwirel (Luchko, 2016; 2019).
Furthermore, the entropy production rate of theppgator is independent af and identical
to ordinary diffusion (Luchko, 2016). Together themesults suggest that QDI may be
considered a “natural fractionalisation” (Luchkd)18) of ordinary diffusion and that it

represents a model of quasi-Brownian diffusion,ceaihe moniker Quasi-Diffusion Imaging.

The quasi-diffusion model has several advantagex ¢he general CTRW model in
application to dMRI data. Firstly, QDI requires ansiderably reduced imaging protocol
compared to the general CTRW model (e.g. Karamah,e2016). Our coupling of fractional
exponents allows data acquisition across g-spaceand represents a pragmatic, clinically
feasible solution to ensuring acquisition times shert as there is not a requirement to
estimatea andp independently. Secondly, QDI assumes regularrsgat time and space
and allows estimation of non-Gaussian diffusionhimita voxel and similar inference of the
underlying tissue microstructural environment tolDRinally, the QDI technique provides a
diffusion coefficient in conventional units of mMst. This is advantageous over the CTRW

model as estimation of additional measures to atievovery of units from mfs® (Ingo et
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al., 2014b; Karaman et al., 2016; Magin et al.,20#agin et al., 2019) are not required.
Overall the QDI technique has advantages in paemeference, improves stability of

model fitting and allows rapid dMRI acquisition tvigood tissue contrast.

Conceptually, quasi-diffusion is a model of tranggoe. diffusion dynamics) that describes
the dMRI signal and is not based on a model oligsmicrostructure. Consequently, QDI
does not have the problems that are associatedmadtostructural assumptions in dMRI,
such as acquisition and parameter-based bias ¢ded¢sl., 2015; Jelescu and Budde, 2017),
and model degeneracy (Jelescu et al.,, 2016) thatotaalways be adequately resolved
(Novikov et al.,, 2018). In dMRI the quasi-diffusiomodel may be interpreted as
approximating the action of a heterogeneous enmmrt on diffusing spins. Within a
biological tissue the spin motion will involve inéetion with other water molecules, larger
molecular species, and the potential for binding anbinding with cellular surfaces (i.e.
trapping) and constitutes a large variety of medras that contribute to the observed signal
attenuation. The signal in dMRI is observed as rsemble average within an image voxel
inside which partial volumes cannot be reliablyibitited to different spin dynamics. The
power of QDI is in its simplicity and general amalbility in defining the observed diffusion
signal attenuation without the need for microsuait assumptions relating to separate
contributions of different spin populations witrarnvoxel. In this way QDI offers a simplified
fitting to non-Gaussian diffusion signal attenuatend provides a reliable representation of

the signal decay curve.

In this study we have shown the capabilities ob ttechnique by acquiring dMRI data

quickly to obtain high quality images analogousDKI, whilst overcoming the inherent
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limitations of the DKI technique. QDI can be apgliever any b-value range, does not
require large numbers of diffusion gradient direes or make strong geometrical
assumptions. It can be applied to any organ througtihe body to measure diffusion without
theoretical modification and recalibration. Crulsiabs the QDI technique offers a powerful
alternative representation of signal decay it cdaddused within any dMRI application that

requires reliable parameterisation of non-Gaussigimal attenuation.

4.2 Properties of Quasi-Diffusion Imaging maps

Diffusion coefficient maps computed from QDI havweitar tissue contrast to conventional
DWI and DTI. D > maps have lower magnitudes and higher anisotrogy DKI D, maps.
Differences in magnitude between Dand O metrics are similar to those observed after
application of free water elimination techniquestmventional dMRI data (Albi et al., 2017,
Pasternak et al., 2009). Our QDI technique extdbgeeater differences in radial diffusivity
(-30.1%) and anisotropy measures (+26.2%) and smdifferences in mean (-13.8%) and
axial diffusivities (-0.4%). The similarity betweemr results and those of Albi et al., (2017)
indicate that use of ultra-high b-values in QDI @sdion potentially reduces partial volume
effects due to free water, however, it should beesdhat changing in QDI acquisitions

will alter measured diffusion coefficients (Topg&a2017).

QDI provides maps afi, a fractional exponent representing the shapaefiiffusion signal
attenuation within a voxel, which represents theiaten from Gaussianity of the diffusion
process. Our findings indicate that diffusion inFGS Gaussian, while grey matter and white
matter are characterised by non-Gaussian diffugiooperties. Greater non-Gaussian

diffusion is indicated by a thicker power law tai the diffusion signal attenuation and
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represents greater heterogeneity of the diffusiocgss. Our findings are in broad agreement
with previous CTRW model studies (Karaman et &01& Magin et al., 2013), but do not
attempt to separate time and space exponents.riicytar, lowera values in white matter
than grey matter indicate that step lengths aretshand waiting times longer, potentially
due to greater heterogeneity of the cellular bougedato diffusion in the tissue
microstructural environment, and consequently grediindrance or restriction to water

diffusion at shorter length scales in well orgadisgons, myelin and oligodendrocytes.

We computed normalised entropys,, from the parameterised diffusion signal decayeuo
provide a composite measure of fanda. TheH,, measure provides information relating to
the tissue microstructural environment as it catad the information content of the diffusion
signal attenuation over multiple length scales, jpoigntially represents a biomarker of tissue
organization, structure and complexity (Ingo et2014a, 2014b; Magin et al., 2013). Higher
H, values correspond to lower rates of diffusion aneater non-Gaussianity and
heterogeneity of the diffusion dynamics, whereageldH,, values correspond to higher rates
of diffusion and more Gaussian diffusion dynamicg¢ et al., 2014a, 2014b; Magin et al.,
2013, Magin et al., 2019). Tissue contrasHinmaps is analogous to DKI maps and has
similar contrast tdH, maps inex vivo rodent brain data (Ingo et al.,, 2014b). Our result
indicate greater heterogeneity of the diffusioniemment in white matter than grey matter,
and consequently more complex diffusion dynamic®! 4, maps offer a potential

alternative tak maps, with similar interpretation, but significgnimproved tissue contrast.

The D> anda parameters provided by QDI are quantitative, g $ame way that DTl and

DKI maps are quantitative. For QDI metrics to benparable across studies and scanners it
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IS necessary to acquire dMRI data with similar wifbn times (Topgaard, 2017).
Furthermore, to ensure thidh measures are reproducible and comparable acrdiesit is

necessary to ensure that similar weightings of fhe and a parameters to normalised
entropy are preserved. For instance, the normaksgbpy should be computed over the
same g- or b-value range using the same total nupnfbgamples taken along the diffusion

signal attenuation curve.

QDI maps are rotationally invariant in the caseQ@®TI and the usual limitations of the
tensor model are relevant for these images (e.gealéhKingshott and Cercignani, 2009). A
further limitation in QDI is that B, anda tensor maps are computed separately without a
mathematical description that allows their simultamns computation. This means that
principal directions ofa maps may not be precisely oriented along princigiffusion
directions. An aim of future research will be taide the mathematical form for the QDI
tensor. We will also explore orientation distrilmuti functions of QDI measures in high

angular resolution dMRI and investigate their aggdion to white matter tractography.

4.3 Advantages of Quasi-Diffusion Imaging over Diffsional Kurtosis Imaging

QDI has several advantages over DKI that improveui@cy of calculated measures and
stability of model parameter estimates. Firstly, dada smoothing was performed in this
study and initial parameter estimates were sehéostme values in all voxels (specifically,
D1=2.98<10°mn?s* and 0=0.978). Such an initialisation was possible adupeation of
initial conditions provided minimal change to esdted parameters, indicating robust model
fitting in the presence of noise. This is furthepgorted by the capability of QDI to provide:

(&) model fitting along single lines through g-spaand (b) parameter estimation within
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voxels characterised by negative kurtosis estimaté&3KI|, a phenomenon attributed to low
signal to noise ratios (Jensen and Helpern, 204Bg3h et al., 2011). Secondly, QDI can be
used to predict diffusion signal attenuation atexiely high b-values, in contrast to DKI, a
feature exploited in calculation d¢f,. Finally, QDI enables diffusion sensitisation te b
increased to the maximum capability of current anidre MRI systems. This allows QDI to
be applied to any b-value range given sufficieghal to noise ratios, and consequently takes
advantage of additional tissue contrast providedulsa-high b-values and its increased
sensitivity to subtle changes in tissue ultrastieetRecently, ultra-high b-value imaging has
provided additional insight to diseases such adéiimer’'s disease (Yingnan et al., 2018),
Parkinson’s disease (Xueying et al., 2015) andnb@nour subtypes (Tan et al., 2018) but
computation of diffusion metrics in these studies lbeen limited by a lack of analysis
technigues embedded in a physical model for diffugprocesses (e.g. Tan et al., 2018;
Xueying et al., 2015; Yingnan et al., 2018). QDbywdes a quantitative framework for
analysing such data and computes physically meaninggtrics that may be used to provide

additional insight to disease.

4.4 Clinical potential of Quasi-Diffusion Imaging

As QDI provides analogous information to DKI itlisely that the current wealth of findings

from clinical DKI studies also represent potenthhical benefits of QDI. In particular, the

potential clinical utility of QDI is in providing dditional diagnostic or prognostic

information beyond that of conventional DWI and DWe have shown that QDTI is

sensitive to white matter damage beyond white méeons (identified by elevated; ) in

a SVD patient and showed that damaged tissue ¢atiibmore Gaussian diffusion dynamics

indicating a less complex tissue microstructuralirmmment potentially caused by axonal
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degeneration, demyelination and gliosis. Numerdudiss indicate that conventional DTI
measures are sensitive to white matter damage D Raja et al.,, 2019) and Xu et al.,
(2016) report increases inc[and decreases in meann normal appearing white matter that
are proportional to disease severity. This indgatee added value of DKI beyond
conventional DWI and suggests that QDI would previltcreased sensitivity to white matter

damage in SVD.

QDTI was also applied to a SVD patient with an deeital acute ischaemic infarct. QDTI
reproduces the reduction of mean.@bserved due to the effects of cytotoxic oedens (i
oncotic swelling of glial and neuronal cells recwgcithe extracellular space (von Kummer
and Dzialowski, 2017)) in conventional DWI. MeanandH, was increased and provided
clear delineation of the infarct. Observation ajthmearH,, is analogous to DKI studies that
report high meamk in acute stroke lesions (Jensen, 2018; Yin e8l8; Zhu et al., 2019)
which have been suggested to represent an incieasesue complexity (Jensen, 2018).
Preclinical DKI studies have shown that strokedesiwith a mismatch between reduced D
and increased indicate tissue with less severe ischemic injhgntin lesions where reduced
D, and increased overlap (Cheung et al., 2012; Lu et al., 2018) amdsequently provide
more information than conventional DWI. Furthermarea recent clinical DKI study, Yin et
al., (2018) have shown that high mearwithin acute lesions indicates brain tissue tlsat i
identified as lesion on T2-weighted images at oot follow-up. As QDI and DKI are
analogous, QDI potentially provides a rapid techeidpr identifying acute stroke lesions in
the clinic and could include valuable informatidrat is not provided by conventional DWI

regarding patient recovery that could guide futherapeutic and intervention strategies.
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QDTI showed low-grade glioma to exhibit diffusioroperties indicative of increased tissue
water content and presence of damaged tissue duaéltiative tumour growth. In contrast,
the high-grade tumour exhibited a ring of reduced Bnda, and increaseél, associated
with viable tumour. In this case, hidgf, regions likely represent higher tumour-cell densit
due to rapid growth, corresponding with areas abvascularisation (indicated by T1-
weighted contrast enhancement). Furthermore, tlhegmns surround a core of highly
increased B, and a, and decreasedl, that is likely related to necrosis, a feature of
malignant glioma. The observation of high in high-grade tumours is analogous to findings
in DKI studies that report high mean to be representative of high tumour grade and
malignancy (Falk Delgado et al., 2018). For the imgioma, its oedema is similar im Pto

the low-grade glioma core and the high grade perglloedema, but thee is not so elevated
as for infiltrative tumours. This may reflect thasogenic rather than infiltrative oedema seen
with meningiomas in comparison to intrinsic tumoukglditionally, thea and H, of the
meningioma are less distinctly different betweer ttore and oedema. The differential
patterns of these parameters may enable QDI toigeoa rapid technique for aiding

identification of tumour type and grade in the idin

4.5 Overcoming barriers to clinical translation of non-Gaussian diffusion MRI

techniques

QDI overcomes the acquisition time limitation ofnra@aussian dMRI techniques to allow
clinically feasible image acquisition. This innoeat removes the clinical acquisition time
barrier potentially enabling large-scale clinickldes and translation to clinical practice. We
have shown that by addition of an ultra-high b-eafinell to conventional dMRI protocols,

QDWI and QDTI can be acquired in a clinically adedge time using 3 and 6 diffusion
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direction protocols. We have also shown that tlesescan reproducibility of QDI model
fits along diffusion gradient directions and QDWidaQDTI measures in regions of interest
is high, albeit with greater accuracy and precision acquisition protocols with greater
numbers of diffusion gradient directions. Efficamfy6 direction QDTI is shown by the lack
of significant differences in tissue metrics anghhreproducibility of metrics compared to 15
direction QDTI. Nevertheless there were significdifterences in tissue values, and lower
reproducibility of metrics, for QDWI when comparedQDTI data, potentially due to QDWI
measures not being rotationally invariant. Despghes the mean D, and H, maps
consistently exhibited significantly greater tissgentrast than analogous DKI maps
indicating that QDWI and QDTI data can be acquigectkly with sufficient image quality

and measurement reproducibility for research amicel applications.

Several recent reports describe fast DKI acquisippootocols for application in the clinic
(Neess-Schmidt et al., 2018, 2017; Tietze et all52¥in et al., 2018). For example, Tietze
et al., (2015) and Neess-Schmidt et al., (2018, P0%&d fast DKI (Hansen et al., 2013) to
acquire data in 166s and 225s, respectively. Bhis contrast to Yin et al., (2018) who used
a conventional DKI protocol with multi-band imagiagceleration to acquire data in 130s. It
should be noted that fast DKI (Hansen et al., 2@I8y provides mean Dand mear and is
therefore comparable to our 84s QDWI protocol. lkemnore, our 6 direction QDTI protocol
was acquired quicker than each DKI study (i.e. L2Bsnulti-band imaging was employed
to accelerate dMRI acquisition our 15 direction Q@duld be acquired in approximately
120s, our 6 direction QDTI in approximately 60sda@DWI in less than 60s, further

supporting the potential clinical utility of thectenique.

37



The QDI acquisition protocol described in this stugses high magnetic field gradients to
acquire ultra-high b-value dMRI. Such high magnetsonance field gradients are not
ubiquitously available in the research or clinisatting and are a limitation of the current
QDI protocol. Future studies are required to opem@DI acquisition for lower maximum b-

values to enable general application of the teakmn research and clinical MR scanners.

5. Conclusion

We have presented theory and proof of concept faovel quantitative dMRI technique that
takes advantage of ultra-high b-values and miniatgjuisition times. This QDI technique
acquires images with analogous tissue contrastikt Whilst overcoming limitations of the

DKI technique. QDI has been shown to generate piatBnclinically meaningful tissue

contrast, with both quantitative and anisotropy soees, in clinically acceptable acquisition
times. Further studies are required to fully untéerd the capabilities of this new technique
in tissue microstructural imaging but our initiahdings suggest that QDI may be easily

added to routine dMRI acquisitions allowing simpbmnslation to the clinic.
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Tables

Cerebrospinal

Grey Matter White Matter Fluid
(uto) (uto) (uto)

D1 Mean (x10°) 0.874+0.036 0.701+0.020 2.960+0.028
(mn?s?)  Axial (x10°) 1.032+0.040 1.265+0.043 3.000+0.001
Radial (x10°) 0.796+0.035 0.420+0.024 2.941+0.043
Anisotropy 0.173+0.007 0.602+0.026 0.018+0.013

o Mean 0.878+0.004 0.769+0.005 0.985+0.002
Axial 0.935+0.005 0.868+0.010 0.993+0.006
Radial 0.850+0.005 0.720+0.008 0.981+0.005
Anisotropy 0.069+0.004 0.131+0.013 0.010+0.008

Hn Mean 0.489+0.006 0.621+0.007 0.316+0.016
Axial 0.433+0.006 0.502+0.006 0.272+0.010
Radial 0.517+0.007 0.680+0.009 0.337+0.021
Anisotropy 0.113+0.006 0.179+0.009 0.134+0.027

Dy Mean (x10°) 0.962+0.049 0.820+0.021 3.680+0.307
(mn? s Axial (x10°) 1.107+0.051 1.276+0.025 4.160+0.388
Radial (x10°) 0.888+0.048 0.592+0.025 3.440+0.267
Anisotropy 0.162+0.010 0.472+0.021 0.125+0.015

K Mean 0.575+0.020 0.923+0.025 0.332+0.020
Axial 0.593+0.020 0.736+0.016 0.308+0.016
Radial 0.589+0.017 1.181+0.038 0.346+0.024
Anisotropy 0.126+0.006 0.302+0.021 0.024+0.004

Table 1: Mean (1) and standard deviatiow)(values computed from QDI and DKI data for

healthy grey matter, white matter and lateral velarcerebrospinal fluid (n=8, age 29+8

years).

Measurements were computed from the IGsthh gradient direction dMRI data.

Mean, axial, radial and anisotropy measurementpisented maps ofi3 a, Hy for QDI

and 0 andk for DKI.
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Gradient directions 3 6 15
D1 Ugrey (><103) 0.863+0.036 0.868+0.033 0.874+0.036
(mn¥ s?) Ogrey (x10%)  0.338+0.044  0.330+0.046  0.331%0.049
CVgrey, (%) 39.106+4.116 37.958+4.35137.763+4.567
tunite(x10%)  0.638+0.029  0.695+0.019  0.701+0.020
ownie (x10°%)  0.292+0.052  0.248+0.048  0.239+0.046
CVuhite (%) 45.835£8.128 35.665+6.99634.208+6.847
Tissue Contrast 0.506+0.060  0.417+0.059 0.442+0.056
o Ugrey, 0.873+0.006 0.877+0.004 0.879+0.004
Ogrey, 0.064+0.007  0.056+0.004  0.054+0.004
CVge, (%) 7.289+0.812  6.346+0.495 6.126+0.464
Uwhite  0.739%#0.005  0.768+0.004 0.769+0.005
owhite  0.080+0.006 0.056+£0.006  0.053+0.006
CVunite (%) 10.983+0.776  7.337+0.818 6.920+0.803
Tissue Contrast 1.319+0.151  1.392+0.137  1.445+0.140
Hn Ugre, 0.495+0.008  0.491+0.005 0.489+0.006
Ogey, 0.055+0.007  0.049+0.004  0.047+0.004
CVgrey (%) 11.157+1.224  9.918+0.858 9.656+0.789
whie  0.653%0.005 0.623+£0.005 0.621+0.007
owhite  0.074+0.005  0.049+0.005 0.047+0.005
CVunite (%) 11.327+0.694  7.890+0.800 7.508+0.750
Tissue Contrast 1.731+0.169  1.928+0.167 1.990+0.188
K Ugrey - - 0.575+0.020
Ogrey - - 0.158+0.013
CVyrey (%) - - 27.52542.420
Lwhite - - 0.923+0.025
Owhite - - 0.177+0.018
CVuhite (%) - - 19.165+1.991
Tissue Contrast - - 1.472+0.129

Table 2: Mean (1), standard deviatiors], coefficients of variation (CV) and tissue costra
measurements for healthy grey and white mattendigs QDI and DKI data (n=8, age 2948
years). Measurements are computed from dMRI daaisiions with 3, 6 and 15 diffusion
gradient directions for maps of mean  Dmeana, meanH, and mearx. All measures are

presented as meanztstandard deviation.
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re a/vhite
'gﬁrenct;gnzf Mgrey  Mwhite [95% _(?g_n¥idence [95% confidence
limits] limits]
Mean

5 3 0.861 0.644  0.006 [-0.005,0.018]  0.004 [-0.(1821]
(x107 rlﬁzmzs'l) 6 0.867 0.700  -0.000[-0.013, 0.013]  -0.000 [0.02824]
15 0.869 0.705  0.002[-0.009,0.014]  -0.002 [0.@DOP5]
3 0.866 0.742  -0.003[-0.008, 0.001] -0.002 [-0,0LRO8]
a 6 0.872 0.767  -0.001[-0.005, 0.003]  0.001 [-0.0D810]
15 0.872 0.768  -0.001[-0.003,0.002]  0.000 [-0,aDQ03]

3 0.502 0.650  0.002[-0.001, 0.005] 0.001 [-0.GDBO8]
Hn 6 0.496 0.623  0.001[-0.004, 0.006] -0.001 [-0.0M8P5]
15 0.496 0.621  0.000[-0.001, 0.002]  0.000 [-0.@DBP2]

Anisotropy

5 6 0.200 0.591  0.000[-0.020, 0.021] 0.001 [-0.GDO11]
12 15 0.183 0.583  -0.001[-0.004, 0.002] -0.001 [-B,0m001]

6 0.084 0.168  0.003[-0.008, 0.015] 0.005 [-0.GDO18]
a 15 0.070 0.130  0.001 [-0.003,0.005]  0.000 [-0.@6Q7]

H 6 0.131 0.221  0.005[-0.007, 0.017] 0.003 [-0.GD@12]
n 15 0.112 0.178  0.001 [-0.005, 0.008]  0.000 [-0.@6P5]

Table 3: Scan-rescan reproducibility of QDI measures in greg white matter for mean and

anisotropy measures for the 3, 6 and 15 diffusioection protocolsReproducibility of I »,

a andH, measures is presented for mean and anisotropycmatross 5 young, healthy

subjects (n=5, age 33+7 years). Mean tissue valaess both scan sessiopsare presented

with mean difference between scan sessions (iceiracy),d, and 95% confidence limits (i.e.

precision) for each tissue type.
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Figure Captions

Figure 1: Stochastic properties of diffusion processes thay fme determined using the
general CTRW model. Graph (a) shows mean squaspiadement with respect to diffusion
time for sub-diffusion (black line), super-diffusidgrey line) and regular Gaussian diffusion
(dotted line). Graph (b) shows the diffusion phdsgram and indicates the type of diffusion
processes as identified by the tinte, and spacep, fractional exponents (adapted from
Metzler and Klafter, 2000). Regular Gaussian difnsoccurs whem=1 and[3=2, with

superdiffusion when @&B>1 and subdiffusion wheno?B3<1. Quasi-diffusion occurs when

2a/B=1 (i.e. Z1=P).

Figure 2: QDI model fitting to dMRI data. QDI model fitting illustrated for a young,
healthy subject in application to the 15 diffusgmadient direction dMRI data. Data fits are
shown for a representative grey matter (panel d)vamte matter voxel (panel b) through g-
space (in mil). Voxel locations are indicated by the red arr@nsmean D, a maps (panel

c) shown using the radiological convention.

Figure 3: QDTI data of a young, healthy subject for the iBudion gradient direction
acquisition (b=0, 1100, 5000 s rifmacquisition time 228 secs). Mean, axial, radiad a
anisotropy maps are shown for row (a).PD(b) a and (c)H,. Axial images are shown using

the radiological convention.

Figure 4. Comparison of mean, axial, radial and anisotro@psncomputed by QDTI (on
b=0, 1100, 5000 s mA) and DKI (on b=0, 1100, 3000 s rifinfor the 15 diffusion gradient
direction acquisition (acquisition time 228 s). Akimages are shown féf, (row a) andk
maps (row b). All images are shown using the radjiclal convention for a young, healthy

subject.
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Figure 5: Comparison of QDI maps computed using different nera of diffusion gradient
directions. From left to right the numbers of geads are 15 (acquisition time 228 s), 6
(acquisition time 120 s) and 3 (acquisition timesg4Row (a) shows meam Pmaps and
row (b) shows meahl, maps. All images are shown using the radiologicaivention for a

young, healthy subject.

Figure 6: Application of QDTI to a patient with small vesshtease (row a), and a patient
with an acute ischemic infarct (row b). Mean map®g,, a andH, are shown with. B,
anisotropy. All axial images are shown using thaiai@gical convention and were acquired
using the 6 diffusion gradient direction QDTI seqce (acquisition time 120 s). Yellow
arrows indicate the location of periventricular tehmatter lesions (row a) and red arrows

show the location of the acute ischemic infarci(fy).

Figure 7: Application of QDTI to patients with brain tumouRow (a) shows a Grade |
meningioma, row (b) a Grade Il astrocytoma and (oyva Grade IV glioblastoma. Mean
maps of Q, a andH, are shown with Direction Encoded Colour maps (DHE@t are
modulated by D, anisotropy. The DECs are computed from the pradogigenvector of the
D1, tensor map and represent the gross orientatiolbrah tissue within a voxel (red —
left/right, green — anterior/posterior, blue supgmferior). All axial images are shown using
the radiological convention and were acquired usimg6 diffusion gradient direction QDTI
sequence (acquisition time 120 s). Red arrows atdithe location of the tumour cores and

yellow arrows show the location of oedematous negjio
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