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Abstract 

Background Most clinical risk stratification models are based on measurement at a 

single time-point rather than serial measurements. Artificial intelligence (AI) is able 

to predict one-dimensional outcomes from multi-dimensional datasets. Using data 

from GARFIELD-AF registry, a new AI model was developed for predicting clinical 

outcomes in atrial fibrillation (AF) patients up to 1 year based on sequential measures 

of PT-INR within 30 days of enrolment. 

Methods and results Patients with newly diagnosed AF who were treated with 

vitamin K antagonists (VKA) and had at least 3 measurements of PT-INR taken over 

the first 30 days after prescription were analyzed. The AI model was constructed with 

multilayer neural network including long short-term memory (LSTM) and one-

dimensional convolution layers. The neural network was trained using PT-INR 

measurements within days 0–30 after starting treatment and clinical outcomes over 

days 31–365 in a derivation cohort (cohorts 1–3; n = 3185). Accuracy of the AI model 

at predicting major bleed, stroke/SE, and death was assessed in a validation cohort 

(cohorts 4–5; n = 1523). The model's c-statistic for predicting major bleed, stroke/SE, 

and all-cause death was 0.75, 0.70, and 0.61, respectively. 

Conclusions Using serial PT-INR values collected within 1 month after starting VKA, 

the new AI model performed better than time in therapeutic range (TTR) at predicting 

clinical outcomes occurring up to 12 months thereafter. Serial PT-INR values contain 

important information that can be analyzed by computer to help predict adverse 

clinical outcomes. 

Keywords atrial fibrillation (AF), artificial intelligence (AI), machine learning 
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Introduction 

In chronic diseases such as atrial fibrillation (AF) risk stratification using prediction 

models is useful for clinical decision making. Several models predict clinical events 

such as stroke and bleeding.
1–3

 The CHA2DS2-VASc and HAS-BLED scores are 

widely used to select suitable AF patients for oral anticoagulation (OAC).
4–6

 However, 

some of the variables in these scoring systems are not consistently related to 

outcomes.
7
 Novel machine learning technology has facilitated the development of 

more accurate models such as the GARFIELD-AF risk model.
8
 However, these 

models incorporate data obtained at a single time-point, baseline. Although computers 

can process multi-dimensional data such as changes of variables over time, few 

models have used these inputs to predict future clinical events.
9,10

 

 

Vitamin K antagonists (VKAs) continue to be prescribed for the prevention of stroke 

in patients with AF, despite the more recent introduction of non-VKA oral 

anticoagulants (NOACs).
11,12

 VKAs are the only recommended choice of OAC for AF 

patients with hemodynamically overt mitral stenosis and mechanical heart valve. 

Clinicians adjust the dose of VKA based on an individual patient's prothrombin time 

international normalized ratio (PT-INR) at each visit. Time in therapeutic range 

(TTR) is widely used to standardize the effects of VKA therapy over periods beyond 

6 months.
13–17

 Various bleeding risk scores feature a TTR component to enhance 

accuracy,
18

 and TTR has predictive power for thrombotic and bleeding events.
19,20

 

However, information on serial changes in PT-INR during early-phase VKA therapy, 

which may reflect many occult clinical characteristics of patients such as 

genotype,
21,22

 concomitant medications,
23

 and lifestyle,
24

 were not included in these 

TTR-based models. 
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Advances in artificial intelligence (AI) using recurrent neural networks (RNN) allow 

the identification and translation of multi-dimensional data including time-series data 

directly into meaningful models.
25

 Herein, we describe a new AI model for predicting 

clinical outcomes over 31–365 days after patient enrolment. The model evaluates 

serially measured PT-INR within the first 30 days of treatment only without other 

clinical parameters, using data from the largest multinational prospective registry in 

AF, Global Anticoagulant Registry in the Field (GARFIELD)-AF. The predictive 

accuracy of the AI model was compared with that of TTR. The working hypothesis 

was to test whether serially measured PT-INR in early phase can provide information 

to predict future clinical events. 

 

Methods 

Design 

The AI model was derived from prospective GARFIELD-AF data gathered in adults 

with newly diagnosed AF.
26

 Three independent AI models were developed with the 

same composite of neural network structure with multi-dimensional patient-level PT-

INR values obtained within the first 30 days after starting treatment. The model 

tabulated the clinical events of major bleed, ischemic stroke/systemic embolism (SE), 

and death occurring within days 31–365. 

 

Registry population 

GARFIELD-AF is an ongoing, international, prospective registry of newly diagnosed 

patients with AF at risk of stroke. The study design, baseline characteristics, and main 

results have been published.
26–29

 Eligible patients were adults aged >18 years who had 
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been diagnosed with nonvalvular AF within the previous 6 weeks and had at least one 

risk factor for stroke as judged by the investigator. Risk factors were not prespecified 

in the protocol. Any use of antithrombotic agents was shared decision between 

clinicians and patients only. Patients with a transient reversible cause of AF and those 

for whom follow-up was not envisaged were excluded. The present analysis was 

conducted in patients enrolled in GARFIELD-AF cohorts 1–5 between March 2010 

and August 2016. Data were extracted from the study database in November 2017. 

 

Study population 

Patients who received anticoagulation therapy with VKA and had 3 or more PT-INR 

measurements within the first 30 days after enrolment were included in the model. 

Patients were excluded if they had experienced any outcome events such as serious 

bleeding or stroke or died within the first 30 days. In this analysis day of first visit 

was set as day 0. Patients from cohorts 1–3 (recruited between March 2010 and 

October 2014) were included in the derivation cohort whereas those in cohort 4–5 

(recruited March 2014–August 2016) comprised the validation cohort. This study 

design was considered stringent because each GARFIELD-AF cohort exhibited 

substantial differences in terms of participating countries, use of anticoagulants, and 

outcomes.
30

 

 

Follow-up 

Collection of follow-up data occurred at 4-monthly intervals based on medical records 

and, sometimes, telephone interviews up to 24 months. The incidence of ischemic 

stroke, transient ischemic attack (TIA), SE, acute coronary syndrome (ACS), 

hospitalization, death (cardiovascular and non-cardiovascular), chronic heart failure 
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(CHF; occurrence or worsening), and bleeding (severity and location) was 

documented. An audit and quality control programme was applied, and data were 

examined for completeness and accuracy by the coordinating centre (TRI, London, 

UK). By design, 20% of all electronic case report forms in the GARFIELD-AF 

registry were monitored against source documentation at sites over the 8 years of 

recruitment and follow-up. 

 

Outcomes 

Outcome measures used in this analysis were major bleeding, stroke/SE, and all-cause 

death occurring between days 31 and 365. Major bleed was classified by investigators 

according to International Society on Thrombosis and Haemostasis definition.
31

 

Stroke/SE was defined as a combined end point of ischemic stroke, SE, and TIA. 

 

Artificial intelligence model 

The structure of neural networks for the AI model is shown in Figure 1A. To deal 

with serial data on raw PT-INR measurements, the AI model was constructed by 

stacking multiple layers of special neurons that can deal with time-dependent data, 

namely one-dimensional convolution layer and long short-term memory (LSTM) 

layer. The LSTM layer transfer rectified data to each neighboring neuron.
32

 This 

structure allows the layer to learn time-dependent data in sequential order. 

 

The neural network model was trained independently for each outcome event. For 

training, PT-INR measurement patterns for each individual patient were converted to 

a 30-dimension PT-INR vector as shown in Figure 1B. All PT-INR measurements 

obtained within the first 30 days were input to the model. The measured PT-INR 
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value was inserted into nth element of the 30-dimension vector, where n is the number 

of days after starting VKA. Unmeasured data-points were filled with 0. Each vector 

for patients was labelled with the occurrence of outcome (0 for no event and 1 for 

event for all three outcome measures) within days 31–365. The neural networks were 

trained with the multi-dimensional dataset of the PT-INR vector and outcome label as 

shown in Figure 1C. 

 

Model training 

The process of model training is shown in Figure 2. Training was performed using 

only patient data from the derivation cohort. The derivation cohort was further split 

into training (70%) and testing (30%) datasets. Training was performed for 500 

epochs and each training epoch included a mini-batch of 455 patients randomly 

selected from the training dataset. Conceptually, performance of the model is 

designed to improve by training with longer epochs. However, this approach can also 

result in overfitting. To avoid this pitfall and select the model with best performance, 

the model was evaluated using the testing dataset at the end of each epoch. The final 

model was that which performed best with the testing dataset. Performance was 

measured by calculating the c-statistics of the prediction model for all the data in 

testing dataset. No data from validation cohort were used for training. 

 

Model validation 

The derived models were validated by inputting the 30-day PT-INR vector and 

obtaining prediction scores for each outcome. Predicted outcomes were compared 

with the actual clinical course for each individual patient in the validation cohort. 

Receiver operating characteristic (ROC) curves were drawn to evaluate the predictive 
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value of the model. The threshold to achieve overall best accuracy for the model was 

determined and the model's sensitivity and specificity calculated at that threshold. To 

test the ability of the model to discriminate between high- and low-risk patients for 

each event, three sets of Kaplan-Meier plots were drawn for event rates stratified as 

high and low risk with the threshold. 

 

Ethics 

All trial protocols were approved by independent ethics committee and hospital-based 

institutional review board. The registry was conducted in accordance with the 

Declaration of Helsinki, local regulatory requirements, and International Conference 

on Harmonisation-Good Pharmacoepidemiological and Clinical Practice guidelines. 

All patients provided written informed consent to participate. 

 

Statistical analysis 

The neural network was constructed and trained using Keras framework version 2.1.6 

(https://keras.io) and TensorFlow version 1.8.0 as backend.
33

 The neural network was 

trained using the back-propagation supervised training algorithm. The loss function 

that was previously reported to reflect the c-statistics
34

 was minimized using the 

RMSprop optimizer. 

 

The c-statistics, the threshold to achieve best accuracy and corresponding accuracy, 

sensitivity, and specificity of the model at the threshold with its 95% confidence 

intervals (95% CI) were calculated by bootstrap procedure with 2000 bootstrap rounds 

using the pROC package of R version 3.5.1.
35

 Comparison of ROC curve between the 

AI model and TTR was performed similarly with pROC package. Kaplan-Meier plots 
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were produced using the survival package of R. All p-values were calculated by log-

rank test; a p-value <0.05 was considered statistically significant. 

 

Results 

Patients 

The flowchart of patient selection is shown in Figure 3. Of 14,437 de novo AF 

patients treated with VKA, 4806 had at least 3 PT-INR measurements within the first 

30 days and were included in the analysis. Ninety-eight patients were excluded (92 

with an outcome event within the first 30 days and 6 with missing information). Of 

the remainder, 3185 were eligible for inclusion in the derivation cohort and 1523 in 

validation cohort. Baseline characteristics are displayed in Table 1. There was no 

substantial intergroup difference in terms of patients' sex, age, body mass index (BMI), 

and left ventricular ejection fraction (LVEF). Patients with at least 3 PT-INR 

measurements during initial 30 days were slightly less likely to have paroxysmal AF 

and CHF than those with fewer than 3 INR measurements. No difference in baseline 

characteristics was noted between derivation and validation cohorts. 

 

Predictive value of artificial intelligence model 

ROC curve compiled for the validation cohort (Figure 4A) revealed that the AI model 

had a statistically higher predictive value compared with TTR with c-statistics for 

major bleeding and all-cause death 0.75 and 0.61, respectively (both p = 0.01 vs. 

TTR). A similar trend albeit nonsignificant was observed for stroke, with a c-statistic 

0.70 (p = 0.08 vs. TTR). Forest plots of 95% CI for AUC of ROC curves (Figure 4B) 

show that the AI model performed better than random; c-statistics for major bleed, 

stroke, and all-cause death were 0.75 (95% CI, 0.62–0.87), 0.70 (95% CI, 0.56–0.83), 
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and 0.61 (95% CI, 0.54–0.67), respectively, whereas TTR was not significantly 

different compared with random (for same outcomes: 0.47 [95% CI, 0.32–0.61], 0.47 

[95% CI, 0.31–0.64], and 0.48 [95% CI, 0.42–0.54], respectively). Table 2 shows the 

accuracies, sensitivities, and specificities for the best thresholds derived from the 

ROC curve for major bleed, stroke, and all-cause death. The model showed good 

predictive accuracy for major bleeding with a sensitivity 0.79 and specificity 0.78. 

These results were similar for the training dataset (Online Table 1, Online Figure 1A 

and 1B). 

 

Survival analysis 

Kaplan-Meier plots stratified by risk determined from the AI model are shown in 

Figure 5. The threshold of prediction score was calculated for each event to achieve 

the best accuracy according to the ROC curve. The best thresholds for major bleed, 

stroke/SE, and all-cause death were 0.27, 0.44, and 0.49, respectively. Note that these 

output values from our model are arbitrary numbers related to risk of future events but 

not actual probabilities. Patients who had a model output higher than or equal to 

threshold were classified as high risk and the remainder were low risk. Among 1523 

patients in the validation cohort, 354 were classified high risk for major bleeding, 738 

for stroke, and 560 for death. High-risk patients had higher cumulative event rates 

(major bleed, stroke/SE, and all-cause death) compared with low-risk patients. 

 

The same analysis was performed for the derivation dataset. No threshold calculations 

were performed for the derivation dataset and the same thresholds obtained from the 

validation dataset were used for this analysis. The results were similar, supporting the 

robustness of the threshold (Online Figure 2). 
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Discussion 

We created a new method to convert early time-series measurements of PT-INR to a 

long-term prediction model. The novel AI model, constructed with neural networks 

including 1-dimensional convolution and LSTM, garnered useful information from 

the raw PT-INR values and measurement dates over 30 days after VKA initiation and 

converted this to predict major bleeding events over the next 11 months. Although 

TTR is widely used to standardize VKA therapy over the long term,
14–17

 its accuracy 

for predicting future thrombotic/bleeding events is low.
36

 A previous report showed 

that GARFIELD-AF patients with 1-year TTR less than 65% had worse outcomes 

than those with greater values.
37

 Within 30 days, TTR has low predictive power 

because early-phase PT-INR values vary greatly due to a number of influencing 

factors including genetics,
21,22

 choice of commercial thromboplastin and coagulometer 

device,
38–40

 and patients' lifestyles.
41

 With the use of AI, we show here the presence of 

important information in raw PT-INR patterns over first 30 days that can predict 

clinical events occurring from days 31 to 365.  

 

Multiple useful models exist to predict clinical outcomes in patients with AF.
1–3,8,42,43

 

However, most use single time-point data. HAS-BLED score, on the other hand, does 

include time-series data on PT-INR in the guise of labile PT-INR, which is expressed 

by TTR.
3
 Our AI model using time-series PT-INR values has better predictive power 

than TTR for major clinical events, at least in the early phase of VKA initiation. Even 

with multi-dimensional data including 31 datasets our AI model output is a prediction 

score given as a single value. Thus, output of the new model may be included in 

conventional scoring models by introducing a cutoff, similarly to integration of 
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TTR.
18

 ROC analysis in validation cohort revealed that our AI model has modest 

predictive power with a best c-statistic 0.78, for major bleeding. However, the model 

could be usefully incorporated into previous models and thereby improve their 

accuracy, as has been done with TTR.
18

 Our prediction model could expand to 

automatic prediction of clinical outcomes from multi-dimensional data when 

incorporated into electrical patient recording systems, for example. Since our models 

are able to predict clinical outcomes in the early phase of treatment, they may 

discriminate patients who are unsuitable for VKA therapy and suggest switching them 

to NOACs, which are associated with lower bleeding risk compared with VKA. 

 

Our novel AI model comprising a neural network can efficiently connect multiple 

time-dependent measurements to clinical outcomes to form a prediction model. 

Although in this study the network was used only to learn PT-INR patterns as specific 

target, the same structure may have the ability to convert other multi-dimensional 

time-dependent measurements to prediction models. Therefore, the network may 

provide a new means to incorporate time-dependent data in prediction models. 

 

Output values from our AI model are related to risk of future events but not their 

probability. Therefore, calibration of the model with typical Hosmer-Lemeshow 

goodness-of-fit (GOF) test is not feasible.  

 

Study limitations 

Several limitations of this analysis should be noted. First, validation of the AI models 

was performed using datasets derived from the GARFIELD-AF registry. External 

validations of the AI model were not conducted. Thus, validity of this model beyond 
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GARFIELD-AF patients is unknown. On the other hand, large dissimilarities between 

cohorts 1–3 and 4 and 5 were noted, suggesting that our model is sufficiently robust to 

apply in daily clinical practice. PT-INR within 30 days may be influenced by 

concomitant dosing with parenteral anticoagulants. However, our model attempted to 

account for all influencing factors beyond the effects of VKA. We hope that other 

researchers will test our model's performance in external datasets. 

 

Second, the AI model was trained only with PT-INR data, and did not include other 

information such as sex, age, biomarkers, concomitant drugs, or other serially 

measured values. Although consecutive patient data were analyzed, unrecognized 

confounders may exist. Many other known risk factors for adverse outcome events 

were not considered in our models. 

Third, by selecting only patients with more than 3 PT-INR measurements within 30 

days, two thirds of the entire cohort were excluded, which could introduce selection 

bias. Furthermore, patients do not necessarily remain stable after day 31 and our 

model cannot capture changes at time-points later than day 31. Future studies will 

examine the impact of time periods beyond 30 days in relation to AI risk prediction.  

 

Fourth, although our results suggest the presence of crucial information within the PT-

INR measurement pattern to predict patients' clinical course, the nature of that 

information is unknown. It might be present in the target PT-INR value, PT-INR 

fluctuations, PT-INR measurement frequency, or elsewhere.  
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Fifth. The c-statistics, sensitivity, and specificity of our models are far from perfect. 

Further studies to improve predictive accuracy possibly by adding other clinical 

characteristics and measurements are necessary. 

 

Sixth, statistical significance was not achieved in either the derivation or validation 

cohort in comparison with TTR for prediction of all-cause death and stroke. This 

could be explained by low numbers of events limiting statistical power. Moreover, 

even though the number of deaths observed was not low, they could have been caused 

by factors not related to anticoagulation. Validation of the model in larger cohorts 

with higher numbers of events may demonstrate better predictive power for death and 

stroke. Despite these limitations, our results suggest that serially measured PT-INR 

values within 30 days contain information enabling us to predict serious bleeding 

outcomes up to 1 year. Trained AI may thus be able to detect individuals at high risk 

for major adverse cardiac events early in the treatment course. 

 

Conclusions 

In AF patients treated with VKA we developed new AI models to predict all-cause 

death, stroke, and major bleeding events occurring between months 2 and 12. The 

models' predictive accuracy was greatest for major bleeding, followed by all-cause 

mortality and stroke/SE. Our results imply that AI can capture important information 

to predict future outcomes from early-phase PT-INR measurements. 

 

Acknowledgments Alex Kahney of Thrombosis Research Institute, London, UK, 

provided editorial support. 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ehjcvp/advance-article-abstract/doi/10.1093/ehjcvp/pvz076/5671699 by St G

eorge's U
niversity of London user on 16 D

ecem
ber 2019



 

16 

 

Funding 

The GARFIELD-VTE registry is an independent academic research initiative 

sponsored by the Thrombosis Research Institute (London, UK) and supported by an 

unrestricted research grant from Bayer Pharma AG (Berlin, Germany). 

 

Conflict of interest 

S.G. (first author) has no financial competing interest to disclose. S.G. (second author) 

acknowledges financial support from MEXT/JSPS KAKENHI 17K19669, partly by 

18H01726 and 19H03661, and from Bristol-Myers Squibb for independent research 

support project (33999603). S.G. (second author) acknowledges grant support from 

Vehicle Racing Commemorative Foundation and Nakatani Foundation for 

Advancement of Measuring Technologies in Biomedical Engineering. S.G. (second 

author) received research funding from Sanofi, Pfizer, and Ono, and a modest 

personal fee from Bayer. S.G. (second author) is an Associate Editor for Circulation, 

Journal of Biorheology, and Archives of Medical Science and Section Editor for 

Thrombosis and Haemostasis. K.S.P. has no financial competing interest to disclose. 

J.P.B. reports personal fees from Thrombosis Research Institute, during the conduct of 

the study. S.H. has received consulting fees and honoraria from Aspen, Bayer 

HealthCare, BMS/Pfizer, Daiichi-Sankyo, Portola, and Sanofi. A.P. has received 

consultation fees and honoraria from Bayer HealthCare, Sanofi, and Portola. F.M. is 

an employee of Bayer AG and a significant shareholder of Bayer shares. A.G.G.T. has 

received consulting fees from Bayer Health Care and honoraria from Portola and 

Janssen Pharmaceuticals. A.J.C. has received personal fees and institutional grants 

from Boehringer Ingelheim, Bayer, Daiichi Sankyo, and Pfizer/BMS. F.W.A.V. has 

received consulting fees and honoraria from Bayer HealthCare, Boehringer-

D
ow

nloaded from
 https://academ

ic.oup.com
/ehjcvp/advance-article-abstract/doi/10.1093/ehjcvp/pvz076/5671699 by St G

eorge's U
niversity of London user on 16 D

ecem
ber 2019



 

17 

 

Ingelheim, BMS/Pfizer, and Daiichi-Sankyo. K.A.A.F. has received grants from 

Bayer/Janssen and AstraZeneca and consultation fees from Bayer/Janssen, 

Sanofi/Regeneron, and Verseon. B.J.G. is a consultant for Janssen Pharmaceuticals. 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/ehjcvp/advance-article-abstract/doi/10.1093/ehjcvp/pvz076/5671699 by St G

eorge's U
niversity of London user on 16 D

ecem
ber 2019



 

18 

 

References 

1. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk 

stratification for predicting stroke and thromboembolism in atrial fibrillation 

using a novel risk factor-based approach: the euro heart survey on atrial 

fibrillation. Chest 2010;137:263–272. 

2. Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ. 

Validation of clinical classification schemes for predicting stroke: results from 

the National Registry of Atrial Fibrillation. JAMA 2001;285:2864–2870. 

3. Pisters R, Lane DA, Nieuwlaat R, de Vos CB, Crijns HJ, Lip GY. A novel 

user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in 

patients with atrial fibrillation: the Euro Heart Survey. Chest 2010;138:1093–

1100. 

4. JCS Joint Working Group. Guidelines for Pharmacotherapy of Atrial 

Fibrillation (JCS 2013). Circ J 2014;78:1997–2021. 

5. January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC Jr, 

Ellinor PT, Ezekowitz MD, Field ME, Furie KL, Heidenreich PA, Murray KT, 

Shea JB, Tracy CM, Yancy CW. 2019 AHA/ACC/HRS Focused Update of the 

2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial 

Fibrillation. Circulation 2019:140;e125–e151. 

6. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, 

Diener HC, Heidbuchel H, Hendriks J, Hindricks G, Manolis AS, Oldgren J, 

Popescu BA, Schotten U, Van Putte B, Vardas P, Agewall S, Camm J, Baron 

G, Esquivias W, Budts S, Carerj F, Casselman A, Coca R, De Caterina R, 

Deftereos S, Dobrev D, Ferro JM, Filippatos G, Fitzsimons D, Gorenek B, 

Guenoun M, Hohnloser SH, Kolh P, Lip GY, Manolis A, McMurray J, 

D
ow

nloaded from
 https://academ

ic.oup.com
/ehjcvp/advance-article-abstract/doi/10.1093/ehjcvp/pvz076/5671699 by St G

eorge's U
niversity of London user on 16 D

ecem
ber 2019



 

19 

 

Ponikowski P, Rosenhek R, Ruschitzka F, Savelieva I, Sharma S, Suwalski P, 

Tamargo JL, Taylor CJ, Van Gelder IC, Voors AA, Windecker S, Zamorano 

JL Zeppenfeld K. 2016 ESC Guidelines for the Management of Atrial 

Fibrillation Developed in Collaboration with EACTS. Europace 

2016;18:1609–1678. 

7. Lip GYH, Skjøth F, Nielsen PB, Kjældgaard JN, Larsen TB. The HAS-BLED, 

ATRIA, and ORBIT bleeding scores in atrial fibrillation patients using non-

vitamin K antagonist oral anticoagulants. Am J Med 2018;131:574.e13–

574.e27. 

8. Fox KAA, Lucas JE, Pieper KS, Bassand JP, Camm AJ, Fitzmaurice DA, 

Goldhaber SZ, Goto S, Haas S, Hacke W, Kayani G, Oto A, Mantovani LG, 

Misselwitz F, Piccini JP, Turpie AGG, Verheugt FWA, Kakkar AK. Improved 

risk stratification of patients with atrial fibrillation: an integrated GARFIELD-

AF tool for the prediction of mortality, stroke and bleed in patients with and 

without anticoagulation. BMJ Open 2017;7:e017157. 

9. Sun D, Wang M, Li A. A multimodal deep neural network for human breast 

cancer prognosis prediction by integrating multi-dimensional data. IEEE/ACM 

Trans Comput Biology Bioinform 2018. doi: 10.1109/TCBB.2018.2806438. 

10. Capasso R, Zurlo MC, Smith AP. Ethnicity, work-related stress and subjective 

reports of health by migrant workers: a multi-dimensional model. Ethn Health 

2018;23:174–193. 

11. Camm AJ, Accetta G, Ambrosio G, Atar D, Bassand JP, Berge E, Cools F, 

Fitzmaurice DA, Goldhaber SZ, Goto S, Haas S, Kayani G, Koretsune Y, 

Mantovani LG, Misselwitz F, Oh S, Turpie AG, Verheugt FW, Kakkar AK. 

Evolving antithrombotic treatment patterns for patients with newly diagnosed 

D
ow

nloaded from
 https://academ

ic.oup.com
/ehjcvp/advance-article-abstract/doi/10.1093/ehjcvp/pvz076/5671699 by St G

eorge's U
niversity of London user on 16 D

ecem
ber 2019



 

20 

 

atrial fibrillation. Heart 2017;103:307–314. 

12. Kjerpeseth LJ, Ellekjaer H, Selmer R, Ariansen I, Furu K, Skovlund E. Trends 

in use of warfarin and direct oral anticoagulants in atrial fibrillation in Norway, 

2010 to 2015. Eur J Clin Pharmacol 2017;73:1417–1425. 

13. Rosendaal FR, Cannegieter SC, van der Meer FJ, Briet E. A method to 

determine the optimal intensity of oral anticoagulant therapy. Thromb 

Haemost 1993;69:236–239. 

14. Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, 

Al-Khalidi HR, Ansell J, Atar D, Avezum A, Bahit MC, Diaz R, Easton JD, 

Ezekowitz JA, Flaker G, Garcia D, Geraldes M, Gersh BJ, Golitsyn S, Goto S, 

Hermosillo AG, Hohnloser SH, Horowitz J, Mohan P, Jansky P, Lewis BS, 

Lopez-Sendon JL, Pais P, Parkhomenko A, Verheugt FW, Zhu J, Wallentin L. 

Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 

2011;365:981–992. 

15. Giugliano RP, Ruff CT, Braunwald E, Murphy SA, Wiviott SD, Halperin JL, 

Waldo AL, Ezekowitz MD, Weitz JI, Spinar J, Ruzyllo W, Ruda M, 

Koretsune Y, Betcher J, Shi M, Grip LT, Patel SP, Patel I, Hanyok JJ, Mercuri 

M, Antman EM; Investigators EA-T. Edoxaban versus warfarin in patients 

with atrial fibrillation. N Engl J Med 2013;369:2093–2104. 

16. Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, Breithardt G, 

Halperin JL, Hankey GJ, Piccini JP, Becker RC, Nessel CC, Paolini JF, 

Berkowitz SD, Fox KA, Califf RM; Investigators RA. Rivaroxaban versus 

warfarin in nonvalvular atrial fibrillation. N Engl J Med 2011;365:883–891. 

17. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, 

Pogue J, Reilly PA, Themeles E, Varrone J, Wang S, Alings M, Xavier D, Zhu 

D
ow

nloaded from
 https://academ

ic.oup.com
/ehjcvp/advance-article-abstract/doi/10.1093/ehjcvp/pvz076/5671699 by St G

eorge's U
niversity of London user on 16 D

ecem
ber 2019



 

21 

 

J, Diaz R, Lewis BS, Darius H, Diener HC, Joyner CD, Wallentin L. 

Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 

2009;361:1139–1151. 

18. Proietti M, Senoo K, Lane DA, Lip GY. Major bleeding in patients with non-

valvular atrial fibrillation: impact of time in therapeutic range on 

contemporary bleeding risk scores. Sci Rep 2016;6:24376. 

19. Williams BA, Evans MA, Honushefsky AM, Berger PB. Clinical prediction 

model for time in therapeutic range while on warfarin in newly diagnosed 

atrial fibrillation. J Am Heart Assoc 2017;6. doi: 10.1161/JAHA.117.006669. 

20. Pokorney SD, Simon DN, Thomas L, Gersh BJ, Hylek EM, Piccini JP, 

Peterson ED. Stability of international normalized ratios in patients taking 

long-term warfarin therapy. JAMA 2016;316:661–663. 

21. Schwarz UI, Ritchie MD, Bradford Y, Li C, Dudek SM, Frye-Anderson A, 

Kim RB, Roden DM, Stein CM. Genetic determinants of response to warfarin 

during initial anticoagulation. N Engl J Med 2008;358:999–1008. 

22. International Warfarin Pharmacogenetics Consortium; Klein TE, Altman RB, 

Eriksson N, Gage BF, Kimmel SE, Lee MT, Limdi NA, Page D, Roden DM, 

Wagner MJ, Caldwell MD, Johnson JA. Estimation of the warfarin dose with 

clinical and pharmacogenetic data. N Engl J Med 2009;360:753–764. 

23. Wells PS, Holbrook AM, Renee Crowther N, Hirsh J. Interaction of warfarin 

with drugs and food. Ann Intern Med 1994;121:676–683. 

24. Nathisuwan S, Dilokthornsakul P, Chaiyakunapruk N, Morarai T, Yodting T. 

Piriyachananusorn N. Assessing evidence of interaction between smoking and 

warfarin: a systematic review and meta-analysis. Chest 2011;139:1130–1139. 

25. Goto S, Kimura M, Katsumata Y, Goto S, Kamatani T, Ichihara G, Ko S, 

D
ow

nloaded from
 https://academ

ic.oup.com
/ehjcvp/advance-article-abstract/doi/10.1093/ehjcvp/pvz076/5671699 by St G

eorge's U
niversity of London user on 16 D

ecem
ber 2019



 

22 

 

Sasaki J, Fukuda K, Sano M. Artificial intelligence to predict needs for urgent 

revascularization from 12-leads electrocardiography in emergency patients. 

PloS One 2019;14:e0210103. 

26. Kakkar AK, Mueller I, Bassand JP, Fitzmaurice DA, Goldhaber SZ, Goto S, 

Haas S, Hacke W, Lip GY, Mantovani LG, Verheugt FW, Jamal W, 

Misselwitz F, Rushton-Smith S, Turpie AG. International longitudinal registry 

of patients with atrial fibrillation at risk of stroke: Global Anticoagulant 

Registry in the FIELD (GARFIELD). Am Heart J 2012;163:13–19.e1. 

27. Kakkar AK, Mueller I, Bassand JP, Fitzmaurice DA, Goldhaber SZ, Goto S, 

Haas S, Hacke W, Lip GY, Mantovani LG, Turpie AG, van Eickels M, 

Misselwitz F, Rushton-Smith S, Kayani G, Wilkinson P, Verheugt FW. Risk 

profiles and antithrombotic treatment of patients newly diagnosed with atrial 

fibrillation at risk of stroke: perspectives from the international, observational, 

prospective GARFIELD registry. PloS One 2013;8:e63479. 

28. Bassand JP, Virdone S, Goldhaber SZ, Camm AJ, Fitzmaurice DA, Fox KAA, 

Goto S, Haas S, Hacke W, Kayani G, Mantovani LG, Misselwitz F, Pieper KS, 

Turpie AGG, van Eickels M, Verheugt FWA, Kakkar AK. Early risks of death, 

stroke/systemic embolism, and major bleeding in patients with newly 

diagnosed atrial fibrillation. Circulation 2019;139:787–798. 

29. Bassand JP, Accetta G, Camm AJ, Cools F, Fitzmaurice DA, Fox KA, 

Goldhaber SZ, Goto S, Haas S, Hacke W, Kayani G, Mantovani LG, 

Misselwitz F, Ten Cate H, Turpie AG, Verheugt FW, Kakkar AK. Two-year 

outcomes of patients with newly diagnosed atrial fibrillation: results from 

GARFIELD-AF. Eur Heart J 2016;37:2882–2889. 

30. Camm AJ, Accetta G, Ambrosio G, Atar D, Bassand JP, Berge E, Cools F, 

D
ow

nloaded from
 https://academ

ic.oup.com
/ehjcvp/advance-article-abstract/doi/10.1093/ehjcvp/pvz076/5671699 by St G

eorge's U
niversity of London user on 16 D

ecem
ber 2019



 

23 

 

Fitzmaurice DA, Goldhaber SZ, Goto S, Haas S, Kayani G, Koretsune Y, 

Mantovani LG, Misselwitz F, Oh S, Turpie AG, Verheugt FW, Kakkar AK; 

GARFIELD-AF Investigators. Evolving antithrombotic treatment patterns for 

patients with newly diagnosed atrial fibrillation. Heart 2017;103:307–314. 

31. Schulman S, Kearon C; Subcommittee on Control of Anticoagulation of the 

Scientific and Standardization Committee of the International Society on 

Thrombosis and Haemostasis. Definition of major bleeding in clinical 

investigations of antihemostatic medicinal products in non-surgical patients. J 

Thromb Haemost 2005;3:692–694. 

32. Taghavi Namin S, Esmaeilzadeh M, Najafi M, Brown TB, Borevitz JO. Deep 

phenotyping: deep learning for temporal phenotype/genotype classification. 

Plant Methods 2018;14:66. doi: 10.1186/s13007-018-0333-4. 

33. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, 

Irving G, Isard M. Tensorflow: a system for large-scale machine learning. 12th 

{USENIX} Symposium on Operating Systems Design and Implementation 

({OSDI} 16). 2016:265–283. 

34. Yan L, Dodier RH, Mozer M, Wolniewicz RH. Optimizing classifier 

performance via an approximation to the Wilcoxon-Mann-Whitney statistic. 

Proceedings of the 20th International Conference on Machine Learning 

(ICML-03). 2003:848–855. 

35. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M. 

pROC: an open-source package for R and S+ to analyze and compare ROC 

curves. BMC Bioinformatics 2011;12:77. doi: 10.1186/1471-2105-12-77. 

36. Wan Y, Heneghan C, Perera R, Roberts N, Hollowell J, Glasziou P, Bankhead 

C, Xu Y. Anticoagulation control and prediction of adverse events in patients 

D
ow

nloaded from
 https://academ

ic.oup.com
/ehjcvp/advance-article-abstract/doi/10.1093/ehjcvp/pvz076/5671699 by St G

eorge's U
niversity of London user on 16 D

ecem
ber 2019



 

24 

 

with atrial fibrillation: a systematic review. Circ Cardiovasc Qual Outcomes 

2008;1:84–91. 

37. Haas S, Ten Cate H, Accetta G, Angchaisuksiri P, Bassand JP, Camm AJ, 

Corbalan R, Darius H, Fitzmaurice DA, Goldhaber SZ, Goto S, Jacobson B, 

Kayani G, Mantovani LG, Misselwitz F, Pieper K, Schellong SM, Stepinska J, 

Turpie AG, van Eickels M, Kakkar AK. Quality of vitamin K antagonist 

control and 1-year outcomes in patients with atrial fibrillation: a global 

perspective from the GARFIELD-AF Registry. PloS One 2016;11:e0164076. 

38. Poller L, Ibrahim S, Keown M, Pattison A, Jespersen J; European Action on 

Anticoagulation. The prothrombin time/international normalized ratio (PT-

INR) line: derivation of local INR with commercial thromboplastins and 

coagulometers—two independent studies. J Thromb Haemost 2011;9:140–148. 

39. Christensen TD, Larsen TB. Precision and accuracy of point-of-care testing 

coagulometers for self-testing and management of oral anticoagulation therapy. 

J Thromb Haemost 2012;10:251–260. 

40. Hemkens LG, Hilden KM, Hartschen S, Kaiser T, Didjurgeit U, Hansen R, 

Bender R, Sawicki PT. A randomized trial comparing INR monitoring devices 

in patients with anticoagulation self-management: evaluation of a novel error-

grid approach. J Thromb Thrombolysis 2008;26:22–30. 

41. Custódio das Dôres SM, Booth SL, Martini LA, de Carvalho Gouvêa VH, 

Padovani CR, de Abreu Maffei FH, Campana AO, Rupp de Paiva SA. 

Relationship between diet and response to warfarin: a factor analysis. Eur J 

Nutr 2007;46:147–154. 

42. Fang MC, Go AS, Chang Y, Borowsky LH, Pomernacki NK, Udaltsova N, 

Singer DE. A new risk scheme to predict warfarin-associated hemorrhage: the 

D
ow

nloaded from
 https://academ

ic.oup.com
/ehjcvp/advance-article-abstract/doi/10.1093/ehjcvp/pvz076/5671699 by St G

eorge's U
niversity of London user on 16 D

ecem
ber 2019



 

25 

 

ATRIA (Anticoagulation and Risk Factors in Atrial Fibrillation) Study. J Am 

Coll Cardiol 2011;58:395–401. 

43. Gage BF, Yan Y, Milligan PE, Waterman AD, Culverhouse R, Rich MW, 

Radford MJ. Clinical classification schemes for predicting hemorrhage: results 

from the National Registry of Atrial Fibrillation (NRAF). Am Heart J 

2006;151:713–719. 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/ehjcvp/advance-article-abstract/doi/10.1093/ehjcvp/pvz076/5671699 by St G

eorge's U
niversity of London user on 16 D

ecem
ber 2019



 

26 

 

Table 1 Patients' baseline demographics and clinical characteristics* 

 ≥3 PT-INRs 

(N=4708) 

0–2 PT-INRs 

(N=9630) 

≥3 PT-INRs Subgroup 

   Derivation 

(N=3185) 

Validation 

(N=1523) 

Sex, n (%)     

     Female 2085 (44.3) 4330 (45.0) 1420 (44.6) 665 (43.7) 

     Male 2623 (55.7) 5300 (55.0) 1765 (55.4) 858 (56.3) 

Age at dx, years 72.1 (9.9) 70.0 (10.7) 72.2 (9.7) 72.0 (10.2) 

BMI, kg/m
2
 28.7 (5.9) 28.1 (5.7) 28.6 (5.7) 29.0 (6.1) 

LVEF, % 53.7 (12.9) 55.7 (12.7) 53.2 (13.2) 54.7 (12.2) 

Type of AF, n 

(%) 

    

     New 2409 (51.2) 4087 (42.4) 1706 (53.6) 703 (46.2) 

     Paroxysmal 798 (16.9) 2207 (22.9) 567 (17.8) 231 (15.2) 

     Permanent 877 (18.6) 1514 (15.7) 487 (15.3) 390 (25.6) 

     Persistent 624 (13.3) 1822 (18.9) 425 (13.3) 199 (13.1) 

CHF, n (%) 721 (15.3) 2149 (22.3) 466 (14.6) 255 (16.7) 

CAD, n (%) 878 (18.6) 1896 (19.7) 511 (16.0) 367 (24.1) 

ACS 461 (9.8) 872 (9.1) 292 (9.2) 169 (11.1) 

CHA2DS2-VASc 3.4 (1.5) 3.3 (1.5) 34 (1.5) 33 (1.4) 

HAS-BLED 1.4 (0.9) 1.4 (0.9) 15 (0.9) 14 (0.9) 

*Values are mean (SD) unless specified otherwise. 

ACS, acute coronary syndromes; BMI, body mass index; CAD, coronary artery disease; CHF, 

congestive heart failure; LVEF, left ventricular ejection fraction. 
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Table 2 Best predictive accuracies and corresponding sensitivities and 

specificities (95% CIs) for validation cohort 

AI Accuracy Sensitivity Specificity 

Major bleed 0.78 (0.40–0.92) 0.79 (0.50–1.00) 0.78 (0.39–0.93) 

Stroke 0.53 (0.24–0.98) 0.85 (0.31–1.00) 0.53 (0.23–0.99) 

All-cause death 0.64 (0.51–0.69) 0.63 (0.50–0.76) 0.65 (0.50–0.70) 
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Figure legends 

Figure 1 Structure of the neural network and input data for the model. Schematic 

illustration of the neural network model (A). Vector of 30 PT-INR measurements for 

4708 patients used as input to the model (B). The element at n
th

 dimension of the 

vector holds the PT-INR value measured on day n. Un-measured data-points were 

filled with 0. These pairs of PT-INR vectors labeled with outcome for each patient 

were used for model training (C). LSTM, long short-term memory; 1D convolution, 

one-dimensional convolution; INR, prothrombin time international normalized ratio. 

 

Figure 2 Model training process. Schematic illustration of the training process. 

Datasets are indicated with yellow, processes indicated with blue, and models derived 

in each epoch indicated with light red. The derivation cohort was further split into 

training dataset and testing dataset. Training was performed by mini-batch method 

using 455 as batch size. For each epoch, the derived model was compared with the 

best model derived with previous epochs using the testing datasets. Training was 

performed for 500 epochs and the best model using the testing dataset selected. 

 

Figure 3 Patient selection. Schematic illustration of patient selection process. VKA, 

vitamin K antagonist; PT-INR, prothrombin time international normalized ratio. 

 

Figure 4 ROC analysis of the AI model. Comparison of ROC curves compiled from 

AI model and TTR (A). Comparisons were performed using stratified bootstrap 

method with 2000 bootstrap rounds. Forest plots of AUC of the ROC curve for each 

outcome (B). The 95% CIs were calculated by stratified bootstrap method with 2000 
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bootstrap rounds. ROC, receiver operating characteristic; AUC, area under curve; CI, 

confidence interval. 

 

Figure 5 Cumulative event rates according to risk stratified by AI model. Kaplan-

Meier curves stratified with risk according to AI model for major bleed (A), stroke/SE 

(B), and all-cause death (C). The threshold for risk stratification was made by that 

which gave the best accuracy in the validation cohort for each outcome according to 

the ROC curve. The p-values were calculated by log-rank test. ROC, receiver 

operating characteristic; AUC, area under curve. 
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