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Homozygous Missense Variants in NTNG2, Encoding a
Presynaptic Netrin-G2 Adhesion Protein, Lead to a
Distinct Neurodevelopmental Disorder
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Daniel L. Polla,17,18 Edward Yang,19 Jamileh Rezazadeh Varaghchi,20 Tadahiro Mitani,3

Ellen van Beusekom,17 Maryam Najafi,21 Alireza Sedaghat,22 Jennifer Keller-Ramey,23 Leslie Durham,9

Zeynep Coban-Akdemir,3 Ender Karaca,3,24 Valeria Orlova,4 Lieke L.M. Schaeken,17 Amir Sherafat,25

Shalini N. Jhangiani,26 Valentina Stanley,27 Gholamreza Shariati,6,28 Hamid Galehdari,5

Joseph G. Gleeson,27 Christopher A. Walsh,1,12 James R. Lupski,3,26,29,30 Elena Seiradake,4

Henry Houlden,8 Hans van Bokhoven,17 and Reza Maroofian8,*

NTNG2 encodes netrin-G2, a membrane-anchored protein implicated in the molecular organization of neuronal circuitry and synaptic

organization and diversification in vertebrates. In this study, through a combination of exome sequencing and autozygosity mapping,

we have identified 16 individuals (from seven unrelated families) with ultra-rare homozygous missense variants in NTNG2; these indi-

viduals present with shared features of a neurodevelopmental disorder consisting of global developmental delay, severe to profound

intellectual disability, muscle weakness and abnormal tone, autistic features, behavioral abnormalities, and variable dysmorphisms.

The variants disrupt highly conserved residues across the protein. Functional experiments, including in silico analysis of the protein

structure, in vitro assessment of cell surface expression, and in vitro knockdown, revealed potential mechanisms of pathogenicity of

the variants, including loss of protein function and decreased neurite outgrowth. Our data indicate that appropriate expression of

NTNG2 plays an important role in neurotypical development.
Based on studies in invertebrates and chicken and mouse,

netrins are considered to be the paradigmatic axon guid-

ance molecules, yet the essential role of this family of pro-

teins in humans remains unclear. Members of the classical

netrin family are secreted proteins that include UNC6 (un-

coordinated-6) in C. elegans and netrins NTN1–4 in verte-

brates.1,2 Netrin-G proteins (NTNG1 and NTNG2) are

distinct from classical netrins in that they are vertebrate-

specific, membrane-bound proteins tethered to the plasma
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anchors.3 NTNG1 (MIM: 608818) and NTNG2 are predom-

inantly expressed in a non-overlapping and complemen-

tary pattern in specific neuronal subsets of the developing

and mature central nervous system.4–6 The proteins

interact with the extracellular region of their specific ne-

trin-G ligand receptors NGL-1/LRRC4C (MIM: 608817)

and NGL-2/LRRC4, respectively.7 Selectivity in binding be-

tween netrin-G molecules and their cognate receptors is
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Figure 1. Pedigrees of All Families with Affected Individuals and Variants and Segregation Findings
þ indicates wild-type allele, - indicates variant allele, P indicates proband.
mediated by the interactions of three loops of the laminin

domain, and the extracellular leucine rich repeats (LRR)

domain of NGLs results in a molecular hand-clasp interac-

tion of high affinity.8

NTNG2 encodes netrin-G2, a vertebrate-specific protein

that is part of a distinct functional sub-class of the highly

conserved netrin family. The netrin family provides axonal

guidance cues during central nervous system develop-

ment.9 NTNG2 is located on 9q34.13, and the canonical

transcript consists of eight exons including seven coding

exons; it encodes a 530-amino-acid protein. NTNG2 dem-

onstrates evidence of missense constraint in the ExAC

database, with a Z score of 4.34, and review of popula-

tion-based (gnomAD) and ethnically diverse in-house

databases reveals an absence of homozygous damaging

and/or deleterious variants. Despite this constraint, its

potential role in human genetic disease is not clear. Here

we show that bi-allelic missense variants in NTNG2 cause

a distinctive neurological and behavioral disorder that

highlights the importance of this family of genes in

human nervous system development.

We have identified 16 individuals (from seven unrelated

families) who have ultra-rare bi-allelic variants in NTNG2

and who present with shared clinical features of a neurode-

velopmental disorder. Consent for clinical data and biolog-

ical material collection, use, and storage was obtained from

all participating families afterwritten informedconsentwas

provided, and studies for each family were approved by

their respective institutional review boards (see Supple-

mental Data for further details). Following genomic

DNA extraction from blood, exome sequencing, and
The American Jour
homozygosity mapping, we identified 16 individuals in

seven unrelated families from different parts of Iran (Fam-

ilies 1, 2, 3), Mexico (Family 4), Turkey (Family 5), Egypt

(Family 6), and Bangladesh (Family 7) who have a similar

clinical phenotype and have homozygous missense vari-

ants in NTNG2 (Figure S1,Table S1). Researchers and physi-

cians for all families were connected using the Gene-

Matcher/Matchmaker exchange.10,11 All families except

for Families 4 and 7 had a known history of consanguinity,

and all of the variants were segregated in the affected fam-

ilies in accordancewithMendelian expectations for a reces-

sive disease trait (Figure 1). Autozygosity mapping for Fam-

ilies 4 and 7 revealed distant relatedness, and parents of the

proband in Family 7 come from the same village (Figure S2,

Table S2). There was no evidence of neuropsychiatric disor-

ders in the heterozygous family members presented here.

Clinical features of affected individuals are presented in

Table 1. Affected individuals presented with global devel-

opmental delay with severe to profound intellectual

disability; the majority were non-verbal and non-ambula-

tory. Most individuals also had features of autism and all

were noted to have mood and/or behavioral challenges,

many of which were similar to those seen in Rett syn-

drome, such as hand stereotypy, episodes of laughing

and/or screaming, and bruxism, and in Angelman syn-

drome (Videos S1–S4). Gastrointestinal symptoms,

including constipation and bloating, were also common.

Growth parameters were below average, and four individ-

uals had documented failure to thrive. Secondary micro-

cephaly was also observed. Dysmorphic features were var-

iable and included low-set ears, hypotelorism, and frontal
nal of Human Genetics 105, 1048–1056, November 7, 2019 1049



Table 1. Clinical Features of Affected Individuals

Family 1 1 2 2 2 3 3 4 4 5 5 5 5 6 6 7

Individual IV:2 IV:3 IV:1 IV:2 IV:3 IV:1 IV:2 II:1 II:2 IV:1 IV:2 IV:4 IV:5 IV:1 IV:2 II:1

Age (years) 18 10 11 16 9 15 11 11 21 11 1.25 9 5 11 8 3

Sex M F M M F F F F M M M F M M M F

ID/GDD þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ

Motor delay þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ

Language delay þ þ þ þ þ þ þ þ þ þ NA þ þ þ þ þ

Autistic features/stereotypy þ þ þ þ þ þ þ þ - þ NA þ þ þ - þ

Hyperactivity - þ þ þ þ - - - þ - - - - þ þ -

Screaming/laughing spells þ þ þ þ þ þ þ þ þ þ NA þ - þ - þ

Self-injury/hand-biting þ þ þ þ þ - - þ þ - - - - - - -

Bruxism - þ þ þ þ - - - - - NA þ þ þ - -

Hypotonia in infancy þ þ þ þ þ þ þ þ þ þ þ þ þ - - þ

Nonambulatory þ þ þ þ þ þ þ þ þ þ NA þ þ - - -

Brain imaging abnormalities - NA þ NA NA - þ - NA NA NA þ þ þ þ þ

Seizures - - þ - - - - þ þ - - - - þ - þ

Microcephaly - þ - þ þ - - þ NA NA - þ - - - -

Secondary Microcephaly þ NA þ NA NA

Dysmorphic features - - þ - - þ þ - - NA þ þ þ þ þ -

Ophthalmologic features - - - - - þ þ - - - - þ þ - - -

GI symptoms þ þ þ þ þ þ þ þ þ þ þ þ þ - - þ

ID/GDD, intellectual disability/global developmental delay; GI, gastrointestinal; -, absent; þ, present; NA, not ascertained/not applicable
bossing (Figure 2A). Neurologically, hypotonia in infancy

and muscle weakness and/or atrophy were common find-

ings. Five individuals had early-onset seizures, and four

were noted to have ocular findings of esotropia,

nystagmus, or strabismus. Brain imaging, conducted in

both infancy and childhood, demonstrated findings

ranging from normal to mild brain atrophy with white

matter abnormalities (Figure 2B). In summary, affected in-

dividuals display a neurodevelopmental disorder of severe-

to-profound intellectual disability with marked motor

involvement and mood and behavioral challenges

including autistic features, as well as poor growth and

facial dysmorphisms. Detailed phenotypic descriptions

are provided in Table 1, Table S1, Figure 2, and the Supple-

mental Note: Case Reports in Supplemental Data.

The ultra-rare variants we identified from family based

genomic studies in the above individuals were notable

for several reasons (Table S2). All variants were absent

from both local ethnically diverse in-house databases, as

well as large population databases. Because most of the

NTNG2missense variants observed are rare to their specific

‘‘clan,’’ they may reflect variants that arose recently and ac-

cording to the clan genomics hypothesis are therefore ex-

pected to have a larger influence on disease.12 All variants

were predicted by amajority of prediction tools (FATHMM,
1050 The American Journal of Human Genetics 105, 1048–1056, Nov
MutationAssessor, MutationTaster, PolyPhen-2, SIFT, PRO-

VEAN, and CADD) to be likely damaging to protein func-

tion, and genomic evolutionary rate profiling (GERP) indi-

cated that these sites may be under evolutionary constraint

(Table S2). In fact, all variants impact residues conserved in

NTNG1, a result that gives further evidence for the argu-

ment that they are pathogenic. Annotation of the variant

locations on the protein domains of NTNG2 revealed

that they are not confined to one domain, but they fall

within the laminin and EGF domains and are predicted

to disrupt structural motifs within NTNG2 (Figure 3A).

No other alternative candidate variants common to the

families were identified (Table S3).

The available NGL2/netrin-G2 crystal structure contains a

model of the netrin-G2 N terminus up to the first EGF

domain. We used MODELER13 to create a homology for the

EGF domains 2–4, which were not included in that crystal

structure. Using these models, we found that the variants

are located in the laminin, EGF2, or EGF4 domain

(Figure 3B–3C, Figure S3). In addition to possible effects on

specific protein-to-protein interaction sites, this suggests a

more global mechanism of functional disruption. Strikingly,

we found that four of the seven, i.e., 57% of the variants,

involve the loss or addition of cysteine residues (GenBank:

NM_032536.3: c.242G>A [p.Cys81Tyr], c.1065C>G
ember 7, 2019



Figure 2. Clinical Features of Affected Individuals
(A) Representative photographs demonstrating clinical features of affected individuals; these features include facial features, muscular
atrophy, and hand stereotypy. Top row from left to right: Family 2 IV:2, IV:3, IV:1; Family 1 IV:3, IV:2. Bottom row: Family 3 IV:1,
IV:2; Family 6 IV:2, IV:1; Family 7 II:1.
(B) Representative MRIs of affected individuals, demonstrating decreased brain volume. From top to bottom: Family 6 IV:2; Family 5
IV:4; Family 5 IV:5.
(C) Bar graph summarizing proportions of various clinical findings affecting individuals.

The American Journal of Human Genetics 105, 1048–1056, November 7, 2019 1051



Figure 3. Structural Mapping and Cell Surface Expression
(A) Netrin-G2 domain overview. The positions of altered residues relative to the protein domains are indicated. Domain nomenclature is:
SP, signal peptide; b-hp, N-terminal b-hairpin domain; EGF, epidermal-growth factor like; GPIa, GPI anchor. Corresponding exons are
represented underneath the domain organization in blue.
(B) Full-length model of netrin-G2 based on the crystal structure of the Laminin-like domain and EGF18 (purple) and on homology
models of EGF2-4 (gray), in complex with its ligand NGL2 (cyan). The residues that are mutated in the presented variants are indicated
as green spheres.
(C) Close-up views of Met149 and Cys456 residues as found in the structural model shown in panel B. For close-up views of the other
mutated residues, see Figure S3.
(D) The quantification of the cell surface expression levels of wild type (WT) and mutant netrin-G2 constructs (see panel E) is shown
(mean 5 SEM). The variants show significantly reduced cell-surface expression compared to the WT (****p < 0.0001).
(E) Netrin-G2 constructs were expressed in HeLa cells with an N-terminal flag tag. Flag-tagged protein was detected via cell-surface im-
munostaining (magenta). DAPI (blue) highlights cell nuclei. Representative images are shown for WT netrin-G2, untransfected cells
(negative control), p.Met149Thr and p.Cys456Tyr variants. Representative images of other variants are shown in Figure S3. Scale bar
is 15 mm.
[p.Cys355Trp], c.1076C>G [p.Ser359Cys], c.1367G>A

[p.Cys456Tyr]). Given that the cysteine content of NTNG2

is only 7.9% inhumans, the enrichment for cysteine variants

in this cohort suggests amechanismof pathogenicity. Due to

the oxidizing environment in the endoplasmic reticulum

(ER) and extracellular space, cysteine residues found in extra-

cellular proteins typically appear in pairs and form disulfide

bridges. Such bridges can stabilize a protein by reducing the

entropy of the unfolded state and/or they can facilitate the

path to the native state if they link parts of a protein that

must come into contact early during a folding reaction.14

Unpaired exposed cysteines are detected by the ER quality

control machinery and targeted for refolding or degrada-

tion.14 We hypothesize that the NTNG2 variants involving

cysteine could have a negative effect on protein stability

and cell surface expression.
1052 The American Journal of Human Genetics 105, 1048–1056, Nov
Three out of the seven variants do not involve cysteines:

c.599C>T (p.Ser200Leu), c.319T>G (p.Trp107Gly), and

c.446T>C, (p.Met149Thr). For both p.Trp107Gly and

p.Met149Thr, a large hydrophobic residue (Trp or Met) is

changed to either one lacking a side chain (Gly) or one

bearing a small polar side chain (Thr). Both of these resi-

dues form part of the hydrophobic core that stabilizes

the folding of the netrin-G2 laminin domain. Disruption

likely causes protein misfolding and lack of expression at

the cell surface. Thus the consequence of both types of var-

iants, cysteine-dependent or hydrophobic core disruptive,

is potentially a similar reduction in protein stability and

expression at the cell surface. The p.Ser200Leu variant

does not fit into either of the above categories, with

Ser200 located at the periphery of the laminin domain. It

is also located �0.9 nm away from the surface of NGL2
ember 7, 2019



Figure 4. Ntng2 Knockdown in N2a Cells
(A) Knockdown of endogenousNtng2 byNtng2-specific siRNAs as normalized to control siRNA. Results of quantitative RT-PCR 30 h post-
transfection.
(B–D) Effects of Ntng2 knockdown on neurite outgrowth. Data presented as mean and SD; *p < 0.05, **p < 0.01, ***p < 0.001.
Quantification was conducted by counting the absolute number of cells with neurites (B), measuring the neurite length by NeuroLucida
tracing (C), and quantification of the Convex hull area (D). All analyses show a significant reduction of neurite number and length as a
consequence of Ntng2 knockdown.
(E–F) Example of the N2a appearance at 30 h post-transfection with control (E) and Ntng2-specific siRNA (F). Visualization was done
using MAP2 counterstaining (red).
as found in the crystal structure (Figure S3). With typical

hydrogen bonds about 0.25 nm in length, Ser200 is not in-

teracting directly with NGL2, although allosteric effects

could still influence the netrin-G2 binding loops.

We tested all variants for function by overexpressing

wild-type (WT) and variant netrin-G2 constructs in HeLa

cells and assessing their presence at the cell surface

through the use of indirect immunofluorescence and

immunoblotting validation (Figure S4). All variants dis-

played substantially decreased cell surface expression as

compared to WT (Figures 3D–3E). Notably, some of these

variants had more cell surface expression compared to

others, suggesting that some netrin-G2 may still be local-

ized in these individuals. The variants may nevertheless

show deficient ligand-receptor binding or signaling since

we did not observe a clear association with cell surface

expression levels and clinical phenotype severity.
The American Jour
Given the decreased cell surface expression pattern

observed in all seven variants, we sought to determine

the more global effects of NTNG2 loss of function. Using

siRNA to target endogenous Ntng2 expression in mouse

N2A cells, we first confirmed that transfection with our

Ntng2-specific siRNA led to decreased expression with

quantitative polymerase chain reaction (Figure 4A). We

next assessed neurite outgrowth and found a significant

reduction for all parameters assessed, which included neu-

rite number, neurite length, and convex hull area—a

measurement used for measuring dendritic field (Figures

4B–4F). These findings demonstrate a potential mecha-

nism by which the NTNG2 variants may contribute to

pathological neurodevelopment.

Netrin signaling has been implicated in neurologic and

psychiatric disorders. For example, conditional Ntng1

knockout in distinct neuronal subtypes is associated with
nal of Human Genetics 105, 1048–1056, November 7, 2019 1053



alterations in fear and anxiety-like behaviors in rodent

models, and abnormal expression of NTNG2 has been

found in the human brain in refractory epilepsy.15,16

Studies of Ntng2 and Ngl2 knockout mice have shown

that both types of mutant mice have an identical pheno-

type of lack of behavioral startle in response to acoustic

stimulus, with no structural abnormalities noted in the

inner ear.17 Single-nucleotide polymorphisms (SNPs) and

differential expression patterns of NTNG1 and NTNG2

have been associated with schizophrenia and bipolar disor-

der in humans.18–20 A de novo genomic rearrangement

involving NTNG1 was proposed to potentially cause fea-

tures of Rett syndrome in an isolated individual.21

Additionally, de novo missense variants in NTNG1 were re-

ported in two individuals with autism spectrum disorder.22

An in vitro study of variants in the histone demethylase

KDM5C (Lysine demethylase 5C [MIM: 314690]), which

is known to cause intellectual disability, showed that

NTNG2 seemed to be important in mediating effects on

neurite growth and length; these results are consistent

with our findings here.23 In fact, several clinical features,

in addition to intellectual disability, are shared between

these two disorders, including variable neurologic, behav-

ioral, and dysmorphic features. Extensive behavioral bat-

tery on Ntng2 knockout mice demonstrated marked

deficits in learning, memory, and visual and motor func-

tioning.24 Although NTNG2 does not appear to be neces-

sary for axon guidance, it has been shown to be important

in the laminar distribution of its receptors and synaptic

plasticity.25,26 A homozygous founder frameshift variant

in NTNG2 has recently been identified in eight individuals

from four families with a similar clinical phenotype, and

this further strengthens the evidence supporting the

pathogenicity of the variants presented here.27

Other genes involved in netrin signaling have also been

implicated in neurodevelopmental disorders in isolated

case reports, some of which have involved examples of de

novo variation.28 Specifically, variations in LRRC4C and

LRRC4 have both been associated with intellectual

disability and autism.29,30 Furthermore, functional work

in mice has shown that LRRC4 expression regulates

N-methyl-D-aspartate receptor (NMDAR)-dependent syn-

aptic plasticity and prevents autistic-like behaviors.31

LRRC4C and LRRC4have both been shown to be important

in hippocampal synapse formation and function.32,33 The

marked findings of severe intellectual disability and autistic

features in our cohort are particularly intriguing given the

unique role of NTNG2 in vertebrates. As we previously

mentioned, netrin-g family members express in distinct,

non-overlapping, and complementary neuronal circuits,

suggesting a role in establishing appropriate neuronal

patterning. This neuronal compartmentalization parallels

distinct behavioral compartmentalization, as in mouse

knockout models, Ntng2 knockouts demonstrated sensori-

motor, spatial memory, working memory, procedural

learning, and attentional deficits, while Ntng1 knockouts

demonstrated distinct learning and fear conditioning defi-
1054 The American Journal of Human Genetics 105, 1048–1056, Nov
cits.24 Our findings here, in conjunction with the known

role ofNTNG2 in the control of synaptic plasticity andpost-

synapticmembraneorganization, illustrate the clinical rele-

vance of these neuronal functions to higher cognitive pro-

cesses. In fact, given the profound finding of intellectual

disability in the individuals presented here, it is intriguing

that NTNG2 expression is enriched in the human claus-

trum, an enigmatic brain region posited to play a role in

the integration of conscious perception.34

Our work provides the groundwork for establishing a

genotype-to-phenotype relationshipwithNTNG2 variants,

and establishes an initial description of the clinical spec-

trum. NTNG2 should be considered in the clinical evalua-

tion of children with severe intellectual disability and

neuropsychiatric symptoms. In addition to identification

by exome sequencing, it will be important to add NTNG2

to clinical gene-panel tests for intellectual disability given

the marked yet variable clinical phenotype. In summary,

our results implicate rare bi-allelic missense NTNG2 vari-

ants in the pathobiology of a neurodevelopmental disorder

consisting of severe intellectual disability, autistic features,

and motor impairment. Our findings provide strong clin-

ical and functional evidence for the importance of the

appropriate expression of NTNG2 in neurodevelopment.
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