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Abstract

Objective—Elevated aldosterone is associated with increased risk of atherosclerosis 

complications, whereas treatment with mineralocorticoid receptor (MR) antagonists decreases the 

rate of cardiovascular events. Here we test the hypothesis that aldosterone promotes early 

atherosclerosis by modulating intercellular adhesion molecule-1 (ICAM-1) expression and 

investigate the molecular mechanisms by which aldosterone regulates ICAM-1 expression.

Methods and Results—Apolipoprotein-E (ApoE)−/− mice fed an atherogenic diet and treated 

with aldosterone for 4 weeks showed increased vascular expression of ICAM-1, paralleled by 
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enhanced atherosclerotic plaque size in the aortic root. Moreover, aldosterone treatment resulted in 

increased plaque lipid and inflammatory cell content, consistent with an unstable plaque 

phenotype. ApoE/ICAM-1 double knockout (ApoE−/−/ICAM-1−/−) littermates were protected 

from the aldosterone-induced increase in plaque size, lipid content and macrophage infiltration. 

Since aldosterone is known to regulate ICAM-1 transcription via MR in human endothelial cells, 

we explored MR regulation of the ICAM-1 promoter. Luciferase reporter assays performed in 

HUVECs using deletion constructs of the human ICAM-1 gene promoter showed that a region 

containing a predicted MR-responsive element (MRE) is required for MR-dependent 

transcriptional regulation of ICAM-1.

Conclusions—Pro-atherogenic effects of aldosterone are mediated by increased ICAM-1 

expression, through transcriptional regulation by endothelial MR. These data enhance our 

understanding of the molecular mechanism by which MR activation promotes atherosclerosis 

complications.

Keywords

Intercellular Adhesion Molecule-1; Aldosterone; Mineralocorticoid Receptor; Atherosclerosis

1. Introduction

Higher aldosterone (ALDO) levels are associated with increased risk of cardiovascular 

ischemic events and mortality [1–3]. For example, patients with primary hyperaldosteronism 

have a four or six fold increased incidence of stroke or myocardial infarction (MI), 

respectively, compared to patients with essential hypertension[4]. Even within the normal 

range, ALDO levels above the median predict a significantly increased risk of MI, stroke 

and death in patients with known coronary artery disease [2]. ALDO is also a significant 

independent predictor of progression of atherosclerosis in humans[5]. ALDO levels are 

increased in the growing populations with obesity, heart failure, and resistant hypertension 

[6–9] thus understanding the mechanism by which ALDO promotes cardiovascular ischemia 

has important clinical implications. ALDO acts by binding and activating the 

mineralocorticoid receptor (MR), a hormone activated transcription factor. Accordingly, 

randomized clinical trials reveal that treatment with MR antagonists (spironolactone or 

eplerenone) reduce cardiovascular events and improve survival in patients with heart failure 

[10,11].

Atherosclerosis is a chronic inflammatory disorder of the vasculature. In response to 

cardiovascular risk factors, the endothelium lining the vessel becomes damaged. This 

dysfunctional endothelium potentiates leukocyte adhesion and migration into the vessel wall 

[12,13]. Dysfunctional endothelial cells (EC) promote vascular inflammation by expressing 

surface adhesion molecules involved in the development of atherosclerotic plaques including 

intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) 

and endothelial cell selectin [14,15]. Intravascular leukocytes then take up lipids and form 

the core of the atherosclerotic plaque. Plaques with increased inflammatory cell infiltrate 

and lipid content are prone to rupture and thrombosis, and this vulnerable plaque phenotype 

is the cause of most MIs and strokes [16]. Thus, understanding mechanisms driving plaque 

progression and inflammation and the role of ALDO/MR, may explain the clinical 
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observations linking ALDO to cardiovascular ischemia. Animal studies support a role for 

ALDO and MR in the development of atherosclerosis. ALDO infusion into the 

apolipoprotein E knockout mouse (ApoE−/−), a model prone to atherosclerosis, induced an 

increase in plaque size with increased plaque lipid and inflammatory cell content, similar to 

the vulnerable plaque in humans [17–19]. Conversely, MR antagonism reduced plaque 

development in ApoE−/−mice [20–22].

The mechanism by which ALDO contributes to vascular inflammation and atherosclerosis is 

not clear. In a mouse model of diet-induced obesity, animals developed endothelial 

dysfunction by an ALDO-dependent mechanism, and this effect was prevented by MR 

antagonist treatment, implicating a role for the MR [23]. A role for MR in ECs is suggested 

by studies in mice with MR specifically deleted from ECs. These EC-MR knockout mice 

were protected from endothelial dysfunction induced by ALDO or Angiotensin II infusion 

or exposure to high fat diet-induced obesity [24–26]. We previously demonstrated that 

ALDO treatment of human coronary artery ECs increases ICAM-1 gene expression and in 

turn promotes leukocyte adhesion to cultured human coronary ECs. These effects were 

abolished by MR antagonists or by MR knock down in cultured ECs [27]. However, whether 

MR regulation of ICAM-1 expression contributes to vascular inflammation and 

atherosclerosis in vivo has never been investigated. ICAM-1 knockout mice showed reduced 

atherosclerosis development in the ApoE−/− model indicating an important role for ICAM-1 

in the formation of atherosclerotic plaques [28]. In order to investigate if the atherogenic 

effects of ALDO are mediated by ICAM-1, we analyzed size and composition of 

atherosclerotic plaques in the aortic root of ALDO-infused double knockout mice (ApoE−/−/

ICAM-1−/−). We observed that genetic deletion of ICAM-1 prevented the increase in plaque 

size, lipid content and plaque inflammation induced by ALDO. In addition, in vitro studies 

indicated that the presence of a MR binding-site in the promoter region of ICAM-1 gene was 

necessary for MR-induced ICAM-regulation.

2. Materials and Methods

2.1. Mouse Atherosclerosis model and serum analysis

Animal procedures were approved by the Italian National Institute of Health care and use 

committees. Mice deficient in both ApoE and ICAM1 gene were generated by mating ApoE
−/−mice with ICAM-1−/−mice (C57BL/6 background).The resulting ApoE−/−/ICAM-1+/− 

mice were intercrossed to produce ApoE−/−/ICAM-1−/− mice and equivalent ApoE−/−/

ICAM-1-intact littermates. In nine-week-old male mice were placed osmotic minipump 

(Alzet model 1004) subcutaneously containing vehicle (ethanol/saline) or aldosterone (6 µg/

mouse/day) for four-week. Over the 5 days prior to animal euthanasia, tail-cuff blood 

pressure and heart rate measurements were performed using the CODA mouse tail cuff 

System and software (Kent Scientific) by a 3-day training and measurement protocol that we 

have previously described and validated [29]. Prior to all surgical procedures, mice were 

anesthetized with 1.5% isofluorane. Animals undergoing survival surgeries received 0.05 

mg/kg buprenorphine administered subcutaneously prior to incision, and additional doses at 

8-hr intervals if deemed beneficial. At the time of minipump implantation, mice were placed 

on a proatherogenic HF diet (Harlan Teklad TD.88137). At the time of sacrifice, peripheral 
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blood samples were collected via retro-orbital bleeding. Fasting serum samples were assayed 

for glucose, cholesterol, sodium and potassium levels (Plaisant Srl Rome, Italy). ALDO 

serum was assayed (Siemens Health Care RIA) according to manufacturers’ instructions.

2.2. Immunohistochemistry

At the time of euthanization, animals were fasted for 4 hours, and blood was collected from 

the inferior vena cava. Animals were then perfused with phosphate-buffered saline (PBS), 

and tissues were collected. The aortic valve were embedded in optimal cutting compound 

(OCT).

Cryosections of embedded aortic roots at the site where all 3 aortic valve leaflets could be 

visualized were taken at five-micron intervals. Sequential sections were stained with Oil-Red 

O (ORO), picrosirius red (PSR), anti-Mac3 antibody (BD Pharmingen) or anti-ICAM1 to 

quantify lipids, necrotic core, collagen content, activated inflammatory cells or ICAM1 

expression in the aortic root at the level of the aortic valve. Total pixels staining positive for 

the component of interest were normalized to overall plaque area to generate fold increase 

respect to vehicle-treated mice. Images were collected and analyzed by a treatment blinded 

investigator using ImagePro Premier software (Media Cybernetics). ImagePro Premier 

software was also used to measure the necrotic core of each plaque (measured as percentage 

of the total plaque area).

2.3. Plasmids construction

3 Kb of human ICAM-1 promoter (NCBI Reference Sequence: NG_012083.1) was cloned 

into pGL3 BASIC vector (Promega) upstream of luciferase gene. Moreover four 5’ deletion 

fragments of the 3Kb promoter (1500 bp, 1141 bp, - MRE and 872 bp) were generated 

employing appropriate restriction enzymes or PCR reaction and were cloned into pGL3 

BASIC vector upstream of the firefly luciferase gene. The 1500 bp fragment was obtained 

by double digestion of 3 Kb promoter of ICAM-1 with SacI and NarI and cloned into into 

pGL3 BASIC vector previously digested with the same enzymes.

The 1141 bp, -MRE and 872 bp fragments were generated by PCR reaction performed with 

Pfu DNA Polymerase (Promega) employing as template the 3 Kb ICAM-1 promoter and 

using the following couples of primers:

F 1141 bp (GAAGAGCTCCCCGGGGAGGATTCCTGGGC) and

R 1141 bp (AATGGCGCCGGGCCTTTCTTTATGTTTT);

F - MRE (GAAGAGCTCAGGCGGCGCGGCTTGGTGCT) and

R - MRE (AATGGCGCCGGGCCTTTCTTTATGTTTT)

F 872 bp (GAAGAGCTCGGGTTTAATGCCGGTTTAC) and

R 872 bp (AATGGCGCCGGGCCTTTCTTTATGTTTT)

The PCR product was digested with SacI and NarI and cloned into pGL3 BASIC vector cut 

with the same enzymes. T4 DNA ligase (BioLabs) was used for cloning reactions.
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2.4. Transfection of HUVEC and Luciferase Assay

Sixteen hours before transfection, 8 × 104 HUVECs were plated into 6-well cell culture 

plates with 2 ml of complete EGM-2 medium (Lonza). Two hours before transfection, cells 

were shifted into medium EGM-2 medium containing 2% stripped serum and deprived of 

hydrocortisone and gentamicine. For the transfection, 98 µl of EBM-2 (basal medium) and 3 

µl of FUGENE 6 were added and gently mixed within a sterile tube and incubated for 5 

minutes at room temperature. Then, 1 µg total of appropriate mixture of vectors (containing 

980 ng of 3kb ICAM-1 plasmid or equimolar concentration of plasmids containing 

promoter’s deletions and 20 ng of pRL-TK vector) were added in the tube and incubated for 

1 hour at room temperature. The FUGENE 6/DNA complexes were then added to the cells 

in a drop-wise manner and cells returned to the incubator. The culture plates were incubated 

at 37°C and 5% CO2 for two days. Twenty four hours after beginning of transfection, cells 

were treated as indicated in the figure 6 (aldo 10−8 M, aldo 10−8 M + SPIRO 10−5 M, SPIRO 

10−5 M). Twenty four hours post treatment the cells were then washed twice with PBS and 

lysed with 250 µl of 1× Passive Lysis Buffer (Promega). The plates were rocked several time 

to ensure complete coverage of the cells with lysis buffer. Then the cells were scraped and 

the lysate was transferred into a microcentrifuge tube, vortexed and centrifuged at 12,000 × 

g for 2 minutes at 4°C. The supernatant was transferred into a new microcentrifuge tube.

For the Luciferase assay, 100 µl of Luciferase Assay Reagent II for each sample were 

dispensed into a white Optiplate 96 (PerkinElmer) and 20 µl of lysed product were added. 

Immediately the plate was read in a luminometer (Tecan Infinite 200) programmed to 

perform a 12-second measurement read for Firefly Luciferase activity. After this 

measurement, 100 µl of 1× Stop &Glo Reagent were added and the plate was briefly mixed. 

The plate was read again with a 12-second measurement for Renilla Luciferase activity 

(encoded bypRL-TK vector). The ratio of the Firefly: Renilla Luciferase activity represents 

the normalized reporter gene expression.

2.5. Adenovirus Infection and cell culture study

HUVECs were grown to 50% of confluence in complete EGM-2. Two hours before 

infection, cells were shifted into EBM-2 serum free. The cells were infected in triplicates 

with the control adenovirus which expresses the green fluorescent protein (Ad-GFP), or the 

adenovirus expressing the dominant negative-c-Jun form (Ad-dn-c-Jun), or the adenovirus 

expressing the dominant negative-IκBα (Ad-dn- IκBα). Eight hours post-infection, cells 

were shifted into EGM-2 medium containing 2% stripped serum and deprived of 

hydrocortisone and gentamicine. The cells were treated for 24 hours with ALDO 10−8 M, 

ALDO 10−8 M + SPIRO 10−5 M and SPIRO 10−5 M. At the end of pharmacological 

treatment, the cells were washed twice with 1 × PBS and immediately lysed in 1 ml of 

TRIzol Reagent (Invitrogen) for RNA extraction. In other experiments, after infection, the 

cells were transfected with 1141 bp ICAM-1 promoter vector and underwent aldosterone 

and SPIRO treatment as above indicated. At the end of treatments the cells were washed 

twice with 1 × PBS and lysed with 250 µl of 1× Passive Lysis Buffer (for luciferase assay).
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In preliminary experiments, we examined GFP transgene expression in HUVECs infected 

with Ad-GFP at a MOI of 50, 100 or 200 or 500 by using fluorescence microscopy and 

found that GFP expression reaches 95% following adenoviral infection at 50 MOI.

2.6. RNA analysis

Cells and vascular tissue were washed twice with 1 × phosphate-buffered saline (PBS), 

harvested, and immediately lysed in 1 ml of TRIzol Reagent (Invitrogen). Total RNA was 

extracted following manufacturer’s indications. The purity, integrity, and yield of RNA were 

analyzed by Agilent Technologies 2001 bioanalyzer using the RNA 6000 LabChip kit. One 

microgram of total RNA was treated with RQ1 RNase-Free DNase I (Promega) and reverse-

transcribed using GoScript Reverse Transcription System (Promega). Quantitative PCR was 

performed in Mx3000P light cycler (Stratagene) using GoTaq qPCR Master Mix (Promega) 

as indicated by the manufacturer. All primers were optimized for real-time RT-PCR 

amplification checking the generation of a single peak in a melting curve assay and the 

efficiency in standard curve amplification (>98% for each primer pair).Target gene 

expression was normalized to 18S mRNA expression, the relative change in expression for 

each treatment was calculated by Mx3000P software version 2.0 (Stratagene) and is reported 

as arbitrary units. For all experiments each sample was analyzed in duplicate. Couples of 

primers used for real-time amplification are:

ICAM-1

F CAAGGCCTCAGTCAGTGTGA and

R CCTCTGGCTTCGTCAGAATC

TGF-β1

F TGCGCTTGCAGAGATTAAAA and

R CGTCAAAAGACAGCCACTCA

2.7. Flow cytometry assay

For flow cytometry at the end of each treatment the HUVECs were labeled with 

phycoerythrin-conjugated mouse antihuman ICAM1 monoclonal antibody or IgG1 isotype 

control. Mean fluorescence index was calculated by subtracting the isotype Ig control mean 

fluorescence from the ICAM1-stained mean fluorescence. Data are expressed as percentage 

of mean fluorescence index of vehicle-treated cells at each treatment time.

2.8. Western blot analysis

Specimens of aortic root (n=6 per genotype and treatment) were lysed in lysis buffer 

containing 1% Triton X-241 100, 50mM Hepes, 10% glycerol, 150mM NaCl, 1mM NaVO4 

and 75 U of aprotinin. The lysates were subjected to polyacrylamide gel electrophoresis 

(SDS-PAGE), and transferred onto PVDF membranes. Membrane were probed with anti-

PARP (Cell Signaling), or BCL-X (BD Pharmingen) or β-actin (Sigma-Aldrich) antibodies 

and horseradish peroxidase (HRP)-conjugated anti-rabbit IgG (Sigma-Aldrich, Milan, Italy). 

Immunoreactive bands were visualized using the ECL Western detection system (General 
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Electric Healthcare, Milan, Italy). Densitometric scanning analysis was performed by Mac 

OS X (Apple Computer International, Milan, Italy) using NIH 252 Image 1.62 software.

2.9. Statistical analysis

Data are reported as the mean +/− standard error of the mean. Data points greater or less 

than two standard deviations from the mean were considered statistical outliers and were 

excluded from all analyses. Statistical comparisons were made by t-test, one-way or two-

way ANOVA followed by Bonferroni post hoc analysis using Prism 6.0 (GraphPad). P<0.05 

was considered significant.

3. Results

3.1. ALDO infusion increases aortic ICAM-1 expression in an atherosclerosis model in vivo

In order to explore the role in vivo of ICAM-1 in ALDO-induced atherosclerosis, we 

generated ApoE−/−/ICAM-1−/−double knockout mice. Male ApoE−/−/ICAM-1−/−mice and 

ApoE−/−/ICAM-1+/+ littermates were fed an atherogenic high fat diet (HFD) and 

randomized to infusion with vehicle or ALDO for 4 weeks. After 4 weeks, ICAM-1 mRNA 

expression was quantified in whole aortic tissue. ALDO infusion significantly increased 

ICAM-1 mRNA expression in the aorta of ApoE−/−/ICAM-1+/+ mice compared to vehicle-

treated ApoE−/−/ICAM-1+/+ mice (Fig.1A). As expected, ICAM-1 transcript levels were 

virtually undetectable in ApoE−/−/ICAM-1−/− mice regardless of ALDO- or vehicle-

treatment, validating ICAM-1 deletion in our mouse model. Consistent with the transcript 

profile, ICAM-1 protein expression was evident in atherosclerotic plaques in aortic root 

sections of vehicle- and ALDO-treated ApoE−/−/ICAM-1+/+ mice, as shown by 

immunostaining for ICAM-1 (Figure 1B). As expected ApoE−/−/ICAM-1−/− mice, did not 

show any ICAM-1 staining.

3.2. ICAM-1 is required for ALDO-enhanced atherosclerotic plaque formation

As previously demonstrated [17], low dose of ALDO infusion (6 µg/mouse per day) 

significantly increased early atherosclerotic plaque formation in the aortic root of ApoE−/− 

mice fed an atherogenic diet for 4 weeks (Figure 2).This dose of ALDO was chosen because 

it produces a 3- to 5-fold elevation in serum ALDO levels, similar to that seen in patients 

with cardiovascular risk factors [6–8]. This level of ALDO did not cause any significant 

change in blood pressure, body weight, or serum total cholesterol (Table 1). Importantly, 

littermates lacking ICAM-1 were protected from the ALDO-induced increase in plaque 

burden (Figure 2). These data support the concept that at levels that do not increase blood 

pressure, ALDO increases aortic ICAM-1 expression in high fat fed ApoE−/− mice and that 

ICAM-1 is necessary for ALDO-induced atherosclerosis (Figure 2).

3.3. ICAM-1 is necessary for ALDO induction of a vulnerable plaque phenotype

Plaque composition was next investigated in histological sections of aortic root from ALDO- 

or vehicle-treated ApoE−/−/ICAM-1+/+ and ApoE−/−/ICAM-1−/−littermates. The fraction of 

the plaque that is composed of lipids or necrotic core was quantified in Oil Red O stained 

sections (Figure 2) and the inflammatory cell and collagen component was quantified in 

serial sections of aortic root stained with anti-Mac3 antibody or Sirius Red, respectively 
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(Figure 3). As previously demonstrated, in mice with intact ICAM-1, ALDO treatment 

resulted in plaques with a significant increase in lipid content (2.1 fold, Figure 2C). ALDO 

did not affect the percent necrotic core (Figure 2D) or markers of apoptosis (Supplemental 

Figure 1). ALDO also increased activated inflammatory cell-positive area (2.1 fold, Figure 

3A) compared with vehicle-treated ApoE−/−/ICAM-1+/+ mice. Plaque fibrosis as measured 

by collagen content did not differ among treatment groups (Figure 3B) nor did ALDO alter 

TGF-β1 transcript levels by real time RT-PCR in samples of aortic root (Supplemental 

Figure 2). Overall ALDO produced a plaque phenotype with increased lipids and 

inflammation with no change in necrosis and fibrosis. Importantly, the ALDO-induced 

increase in plaque lipid content and inflammation was prevented in ApoE−/−/ICAM-1−/− 

mice (Figure2B and 3A, respectively), indicating that ICAM-1 is necessary to mediate the 

effects of ALDO on plaque phenotype.

3.4. ALDO regulates ICAM-1 expression in human endothelial cells by MR-dependent 
transcriptional control

To explore the mechanism by which ALDO regulates endothelial ICAM-1expression, we 

first examined ALDO regulation of ICAM-1 mRNA expression in human umbilical vein 

ECs (HUVEC). Transcript levels of ICAM-1 were analyzed by qRT-PCR in HUVECs 

treated with ALDO (10−8M) in presence or absence of the MR antagonist spironolactone 

(SPIRO, 10−5M), in serum lacking steroid hormones. ALDO treatment of HUVECs for 24 

hours resulted in a significant increase in ICAM-1 mRNA expression (1.5 fold) and this was 

significantly inhibited by SPIRO (Figure 4A), supporting a MR-dependent mechanism. In 

addition to transcriptional regulation, ALDO is also capable of exerting rapid non-genomic 

effects on vascular cells [30,31]. In order to explore potential non-genomic effects of ALDO 

on ICAM-1 surface protein expression, HUVECs were treated with ALDO (10−8M) for 30 

minutes, 1 hour, 3 hours, 24 hours in the presence or absence of SPIRO (10−5M) and surface 

ICAM-1 protein levels were quantified by flow cytometry. ALDO did not significantly 

increase ICAM-1 protein surface expression between 30 minutes and 3 hours making non-

genomic effects on ICAM-1 membrane trafficking an unlikely mechanism. In accordance 

with the qPCR studies, ALDO treatment significantly increased surface ICAM-1 protein 

after 24 hours, (Figure 4B). This increase was prevented by co-treatment with SPIRO. These 

data support a model in which ALDO regulates ICAM-1 expression in HUVECs through a 

genomic mechanisms that requires endothelial MR.

3.5. Promoter analysis of human ICAM-1 gene in HUVECs

To further investigate the transcriptional regulation of ICAM-1 by ALDO, luciferase reporter 

assays were performed in HUVECs after transient transfection with a reporter vector 

containing the 3kb proximal promoter region of the human ICAM-1 gene. ALDO treatment 

(10−8M) significantly increased the activity of the 3kb ICAM-1 promoterfragment (Figure 

5A) to a similar extent as the ALDO-induced increased ICAM-1 mRNA expression (Figure 

4A). This effect on ICAM-1 promoter activity was inhibited by the co-treatment with SPIRO 

(10−5M) (Figure 5A), supporting a MR-dependent mechanism for ALDO regulation of 

ICAM-1 transcription.
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Serial 5’-deletions of the ICAM-1 promoter fragment were prepared to identify sequences 

critical for ALDO-regulation of ICAM-1 promoter activity. Figure 5B shows the deleted 

ICAM-1 promoter fragments used in the transfection experiments. ALDO administration 

significantly increased the activity of the 1500 bp and the 1141 bp ICAM-1 promoter 

fragments (1.8 and 2.2 fold, respectively), without affecting the activity of the 872 bp 

construct (Figure 5C).The ALDO-mediated increase was inhibited by co-treatment with 

SPIRO. Altogether these data identify putative sequences localized in the region of ICAM-1 

promoter comprised between 1141 and 872 bp that are necessary for MR activation of the 

ICAM-1 promoter (Figure 5C).

3.6. A mineralocorticoid responsive element (MRE) in the ICAM-1 promoter is necessary 
for MR-dependent transcriptional regulation

To identify putative binding sites for transcription factors that may be involved in 

modulation of ICAM-1 gene expression induced by ALDO, we performed bioinformatic 

analysis (database on jasper.genereg.net) of the promoter region between nucleotides −1141 

and −872. The analysis showed the presence of putative binding sites for MR, NF-κB and 

AP-1 (Figure 6A). In order to determine if the MRE mediates ALDO responsiveness of the 

1141 bp ICAM-1 promoter fragment, we first generated an 1141bp promoter fragment 

lacking the putative MRE. Transcriptional analysis showed that the absence of the MRE 

completely blocked the ALDO-induced promoter activity (Figure 6B). The promoter activity 

in the absence of MRE was comparable to that of the 872bp construct. We also examined the 

involvement of NF-κB and c-Jun (a component of the AP-1 transcription factor) by 

analyzing ALDO responsiveness of the 1141 bp promoter after adenovirus infection with 

dominant negative constructs for c-Jun (Ad-dn-c-Jun) or for NF-κB (Ad-dn-IκBα). A viral 

construct expressing Ad-GFP was used as control. Interestingly, cells infected with Ad-dn-c-

Jun and Ad-dn- IκBα (50 MOI) displayed blunted 1141bp ICAM-1 promoter activity, 

induced by ALDO, compared to control infection with Ad-GPF (Figure 6C), suggesting that 

c-Jun and NF-κB may contribute in part to the regulation of ICAM-1 promoter activity by 

MR in human ECs.

4. Discussion

This study reveals a fundamental role for ICAM-1 in ALDO induction of early 

atherosclerosis and supports a novel mechanism by which blood pressure–independent 

effects of ALDO promote early development of vascular inflammation and atherosclerotic 

plaque formation. Specifically, we demonstrated for the first time in vivo that ALDO 

enhances vascular ICAM-1 expression in the aorta of ApoE−/− mice and that ICAM-1 is 

necessary for ALDO to increase aortic root plaque size and lipid and inflammatory cell 

content independent of blood pressure. In addition, we show that ALDO regulates ICAM-1 

expression in human ECs by activating EC MR and enhancing ICAM-1 transcription via a 

MRE in the human ICAM-1 proximal promoter.

A robust body of evidence demonstrates that plasma levels of ALDO represent an 

independent predictor of cardiovascular ischemia [5]. In fact, it has been shown that higher 

ALDO levels, even within the normal range, predict a significant increase in myocardial 
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infarction and cardiovascular death, in patients with atherosclerosis [2]. A recent study on 

the general population reported that ALDO levels were associated with hypertension, 

visceral obesity, metabolic syndrome, high triglycerides, concentric left ventricular 

hypertrophy, and increased mortality. Importantly, this association persisted even after 

adjustment for body mass index and after excluding subjects with ALDO levels above the 

normal range [32]. Thus, ALDO levels are elevated in growing populations at high risk for 

cardiovascular ischemic events and, even in the general population, predicts poor 

cardiovascular outcomes by mechanisms that are not totally clear.

In the present study we used a dose of ALDO that produced a modest, but clinically 

relevant, increase in serum ALDO, to mimic ALDO plasma level of patients with 

cardiovascular diseases [17], and then characterized atherosclerotic plaque burden in ApoE
−/−/ICAM-1+/+ and ApoE−/−/ICAM-1−/− mice treated for 4 weeks and fed a HFD. 

Importantly, ALDO treatment at this dose did not increase systolic blood pressure, nor did it 

alter metabolic parameters known to affect cardiovascular risk (body weight, total 

cholesterol, glucose, Table1), excluding confounding hemodynamic and metabolic factors 

that could have altered the atherosclerotic process. This suggests a direct effect of ALDO on 

the vasculature that we suggest may be mediated by activation of MR in the endothelium to 

up-regulate ICAM-1. This is consistent with our data showing that this dose of ALDO 

significantly increased ICAM-1 transcript levels in whole aorta independent of changes in 

blood pressure.

Moreover, we showed for the first time that ApoE−/−/ICAM-1−/− mice are resistant to 

develop early atherosclerosis induced by ALDO treatment for 4 weeks. Perhaps more 

importantly, the ALDO-induced increase in plaque lipid and inflammatory cell content was 

also prevented in mice lacking ICAM-1. This has important clinical implications since a 

plaque phenotype with increased lipids and inflammatory cells is known to contribute to 

susceptibility to rupture, the cause of most MIs and strokes [16]. This mechanism may 

therefore explain the increased risk of MI and stroke in patients with elevated ALDO levels 

[2,4].

Since ICAM-1 is a known mediator of atherogenesis, it may seem surprising that we found 

no difference in the plaque burden in the vehicle treated animals lacking ICAM-1. This 

apparent discrepancy is likely explained by the early time frame with only 4 weeks of 

treatment with high fat diet. This is consistent with a previous paper by Bourdillon et al. 
which investigated the effects of the lack of the ICAM-1 gene on atherosclerosis 

development in ApoE−/− mice [28]. In this work, the authors analyzed the atherosclerotic 

plaque size in the aortic arch region of ApoE−/−/ICAM-1−/− (DKO) and ApoE−/−/ICAM-1+/+ 

(KO) mice fed chow or HFD for 3, 6, 15, 20 weeks. DKO and KO mice fed HFD for 6 

weeks showed comparable atherosclerosis, indicating that the lack of ICAM-1 gene does not 

affect plaque burden at this early time. On the other hand, Bourdillon et al. observe that, 

after a longer treatment with HFD, DKO mice displayed reduced atherosclerosis compared 

with KO mice, indicating that the atherosclerotic burden observed after 15 weeks of HFD is 

affected by the presence of ICAM-1. Overall, the data supports that ALDO promotes early 

plaque development and inflammation by upregulation of ICAM-1 and that even in the 

absence of exogenous ALDO, ICAM-1 further contributes to late plaque burden.
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In the vasculature, ECs express several adhesion molecules, including ICAM-1, involved in 

early steps of atherosclerosis. Whether the EC-MR-ICAM1 pathway plays an important role 

in inflammation in vivo has been controversial [33]. A mouse lacking MR in ECs and 

leukocytes developed less inflammation and macrophage recruitment into cardiac tissue in 

response to mineralocorticoid-induced hypertension [34]. Another study showed that ALDO 

treatment increases ICAM-1 in rat heart, leading to inflammatory arterial lesions [35]. While 

these studies suggested a role for EC-MR regulation of ICAM in cardiac inflammation, in 

another study examining cardiac inflammation in response to pressure overload induced by 

trans-aortic constriction, ICAM-1 levels in the heart increase and contribute to cardiac 

inflammation but this was not affected by specific deletion of MR only from ECs [36]. The 

current study is the first to evaluate the role of ICAM-1 regulation by MR in atherosclerosis 

and vascular inflammation in vivo.

Since EC adhesion molecules contribute to vascular inflammation and atherosclerosis in 

animal models and humans, studies have examined whether these proteins could be 

biomarkers to predict ischemic events. Some studies have shown an association between 

serum levels of adhesion molecules and plaque stability. For example, Hoke et al. identified 

soluble ICAM-1 and VCAM-1 as predictors of cardiovascular events in patients with stable 

carotid atherosclerosis [37]. However, the prognostic significance of soluble ICAM-1 

(sICAM-1) in the cardiovascular diseases is still controversial with some studies showing 

patients with higher circulating levels of sICAM-1 having increased number of 

cardiovascular events [38,39] and others finding no relationship between sICAM-1 and the 

risk of cardiovascular events [40]. Thus further studies are needed to determine if circulating 

adhesion molecules will be a clinically valuable biomarker of risk or perhaps serum 

aldosterone levels may be more predictive.

In addition to transcriptional regulation, MR is known to modulate the expression of target 

genes through rapid non-genomic activation of protein kinases and secondary messenger 

signaling pathways [41]. To clarify the mechanisms by which endothelial MR regulates 

ICAM-1, we explored the time course of the increase in EC ICAM-1 surface protein 

expression in response to ALDO. We confirmed that 24-hours of ALDO treatment increased 

transcript levels of ICAM-1 and that SPIRO prevented such effect, consistent with prior 

studies [27,34]. Increased surface protein expression of ICAM-1 was detected after 24 hours 

of ALDO treatment but not after 30 minutes to 3 hours, excluding the involvement of rapid 

non-genomic effects of ALDO in the control of ICAM-1 surface protein expression.

To date, despite the large body of evidence that links MR activation with pro-inflammatory 

phenotype [17,42], only few studies have investigated the molecular mechanism by which 

MR directly interacts with pro-inflammatory gene promoters. In vascular smooth muscle and 

mesangial cells, it has been observed that ALDO is able to activate NF-κB and AP-1 

(heterodymer of c-Jun/c-Fos) to induce inflammatory responses [43,44], but the molecular 

mechanism through which ALDO induces ICAM-1 transcription in human ECs has not 

previously been elucidated. In cultured mesangial cells, it was shown that ALDO stimulates 

ICAM-1 gene expression through Serum-Glucocorticoid Regulated Kinase 1/NF-κB 

signaling [45]. Conversely, in neutrophil cell cultures, ALDO decreases ICAM-1 expression 

by inhibiting NF-κB pathway [46]. These studies indicate that inflammatory pathways 
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downstream MR may vary depending on the cell type and environment. Therefore we sought 

to investigate mechanisms controlling ICAM-1 transcription in response to ALDO in human 

ECs. Our analysis of the human ICAM-1 promoter identified a novel MRE and two closely 

adjacent binding sites for NF-κB and AP-1. We demonstrated that specific deletion of MRE 

in human ICAM-1 promoter leads to complete inhibition of promoter activity induced by 

ALDO, indicating this MRE as essential for MR-induced ICAM-1 gene expression. Inability 

of several MR antibodies that we tested to immunoprecipitate MR in HUVECs or HEK293T 

(human embryonic kidney, expressing high level of MR) cell lines, did not allow us to 

perform chromatin immunoprecipitation assay to demonstrate direct binding of MR to the 

endogenous ICAM-1 promoter region, and this represents a limitation of our study.

Using adenovirus expressing dominant negative for c-Jun and NF-kB, we also observed that 

inhibition of each of these two transcription factors does not completely abolish MR-induced 

ICAM-1 transcription but rather partially attenuated the effect of ALDO. These data suggest 

a mechanism in which NF-kB and AP1 play a permissive role in MR-mediated regulation of 

ICAM-1 transcription that requires the MRE. This suggests that in ECs, ALDO regulates 

ICAM-1 transcription by a mechanism that differs from that in mesangial cells [45].

Several additional limitations of our study should be pointed out. First, all studies were 

performed in male mice. As the incidence and outcomes from atherosclerotic vascular 

disease differ in males and females, and studies show that estrogen receptor may modulate 

MR regulation of ICAM-1 in endothelial cells [47], future studies are needed to explore 

whether this mechanism contributes to plaque formation in females. Another limitation 

stems from the lack of investigation of macrophages ICAM-1 expression in response to 

ALDO, which could also contribute to explain the pro-atherogenic effects of ALDO [48]. In 

fact, MR is expressed in macrophages and affects their M1/M2 polarization and cardiac 

infiltration [49–51]. Notably, monocytes undergo macrophage activation in atherosclerotic 

lesions and contribute differently to the evolution of the plaque [52]. We did not quantify the 

smooth muscle cell component of the plaques since recent studies suggest that traditional 

smooth muscle cell markers are down-regulated in plaque SMCs thereby preventing accurate 

quantification of SMC without lineage tracing [53]. Finally, we did not measure HDL and 

LDL levels in serum samples, since the volume of serum obtained from mice was not 

enough to include these measurements.

Despite these limitations, our study broadens the possibility of therapeutic use of MR 

antagonists in different clinical settings, well beyond primary aldosteronism and resistant 

hypertension [54]. Since we show the critical relevance of endothelial MR activation by 

ALDO in the induction of ICAM-1 expression, vascular inflammation, and formation of 

vulnerable atherosclerotic plaques, this may be relevant in new populations of patients. 

Pharmacological blockade of the MR could be considered to prevent adverse cardiovascular 

outcomes in patients with obesity, metabolic syndrome, or known atherosclerotic vascular 

disease, where the risk of myocardial infarction or stroke is increased and independently 

associated with plasma ALDO levels. In this context, it is important to remark that the 

current normal values for ALDO do not take into account sensitivity of the endothelium to 

ALDO at levels that do not increase blood pressure and that the adverse cardiovascular 

effects of ALDO occur when plasma levels are inappropriate for salt status [55]. Finally, this 
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study identifies transcriptional up-regulation of ICAM-1 by endothelial MR as a novel 

mechanism that may contribute to the association of ALDO with risk of cardiovascular 

ischemia and highlights the clinical relevance of pharmacological MR antagonism to prevent 

atherosclerosis in patients with high cardiovascular risk.
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Nonstandard Abbreviations and Acronyms

ALDO aldosterone

MI myocardial infarction

MR mineralocorticoid receptor

EC endothelial cell

ICAM-1 intercellular adhesion molecule 1

VCAM-1 vascular cell adhesion molecule 1

ApoE apolipoprotein E

HFD high fat diet

SPIRO spironolactone

MRE mineralocorticoid responsive element

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells

AP-1 activator protein 1

HUVEC human umbilical vein endothelial cell

TGFβ Transforming growth factor β
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Fig. 1. ALDO infusion in ApoE−/− mice induces aortic ICAM-1 expression
Aldosterone (ALDO) or vehicle was infused into ApoE−/−/ICAM-1+/+ or ApoE−/−/

ICAM-1−/− mice fed an atherogenic diet for 4 weeks and the aorta was harvested. A) 
ICAM-1 mRNA was quantified by RT-PCR in mRNA isolated from whole aorta. Values are 

expressed as means ± SEM. **=p<0.01 versus ApoE−/−/ICAM-1+/+ + vehicle; ***=p<0.001 

versus ApoE−/−/ICAM-1+/+ + ALDO. B) Representative immunostaining (red staining, 

arrows) for ICAM-1 in aortic root sections in vehicle- or ALDO-treated ApoE−/− mice fed 

an atherogenic diet for 4 weeks. N=6 for each treatment and genotype for the whole figure.
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Fig. 2. ICAM-1 is required for early ALDO-induced atherosclerosis development
A, Aortic roots from Aldosterone (ALDO)- or vehicle-infused ApoE−/−/ICAM-1+/+ or ApoE
−/−/ICAM-1−/− mice fed an atherogenic diet for 4 weeks were harvested. Sections were 

stained with Oil-red-O and plaque area, (B) percentage of the plaque area that stains positive 

for lipids (C) and percentage of the plaque composed of necrotic core (D) were compared 

between genotypes and treatments. Values are expressed as means ± SEM. **=p<0.01, 

***=p<0.001vs vs ApoE−/−/ICAM-1+/+ + vehicle; ##=p<0.01, ###=p<0.001 vs ApoE−/−/

ICAM-1+/+ + ALDO. N=12 per genotype and treatment.
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Fig. 3. ICAM-1 is necessary for aldosterone to produce plaques with increased inflammation
Aldosterone (ALDO) or vehicle was infused into ApoE−/−/ICAM-1+/+ or ApoE−/−/

ICAM-1−/− mice fed an atherogenic diet for 4 weeks and the aortic root was harvested, and 

sectioning was performed. Mac3 immunostaining was used to label inflammatory cells and 

picrosirius red staining was used to quantify fibrosis. The percentage of the plaque area that 

stained positive for activated inflammatory cells (anti-Mac3 antibody, A) and collagen 

(Sirius Red, B) was compared between genotypes and treatments. Data was expressed as 

fold increase compared with ApoE−/−/ICAM-1+/+ + vehicle. Values are represented as 

means ± SEM. **=p<0.01 vs ApoE−/−/ICAM-1+/+ + vehicle; #=p<0.05 vs ApoE−/−/

ICAM-1+/+ + ALDO. N=12 mice per genotype and treatment.
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Fig. 4. MR regulates ICAM-1 mRNA and protein expression in human endothelial cells in a 
genomic time frame
A, Human umbilical vein endothelial cells (HUVEC) were treated with vehicle or 

aldosterone (ALDO ;10−8M) or ALDO + spironolactone (SPIRO ; 10−5M) for 24 hours and 

mRNA was quantified by qRT-PCR and expressed as fold-increase versus vehicle. 

***=p<0.001 versus Vehicle; ###=p<0.001 versus ALDO. B, ICAM-1 surface protein was 

measured by flow cytometry and expressed as percentage of vehicle-treated cells at each 

time point. Values are represented as means ± SEM in the whole figure. *=p<0.05 vs 24 

hours of vehicle; #=p<0.05 vs 24 hours of ALDO.
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Fig. 5. MR regulates transcription of the human ICAM-1 promoter
A) Human umbilical vein endothelial cells (HUVEC) were transfected with a luciferase 

reporter containing the 3Kb promoter of human ICAM-1 gene. Transfected HUVECs were 

treated with vehicle, aldosterone (ALDO 10−8M), ALDO + spironolactone (SPIRO; 10−5M) 

or SPIRO alone. Luciferase activity was expressed as fold increase compared to Vehicle. 

***=p<0.001 versus vehicle and ###=p<0.001 versus ALDO. B) Schematic representation 

of ICAM-1 promoter fragments. C) Transcriptional activity of a series of 5' ICAM-1 deleted 

promoter fragments. HUVECs, transfected with different promoter fragments, were treated 

with vehicle, ALDO (10−8M), ALDO + SPIRO (10−5M) and SPIRO. The luciferase activity 
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was expressed as fold increase compared to Vehicle. **=p<0.01, ***=p<0.001 versus 

vehicle and #=p<0.05, ##=p<0.01 versus ALDO. Values are expressed as means ± SEM in 

the whole figure. N = 3 independent experiments.
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Fig. 6. A predicted mineralocorticoid receptor responsive element in the ICAM-1 promoter is 
necessary for MR-induced transcriptional activity
A) Schematic representation of putative binding sites for known transcription factors 

determined by bioinformatic analysis of ICAM-1 promoter region between 1141 bp and 872 

bp. B) Human umbilical vein endothelial cells (HUVEC) were transfected with luciferase 

reporter constructs containing the intact 1141Kb promoter of human ICAM-1 gene and with 

the predicted MR responsive element (MRE) deleted. Transfected HUVECs were treated 

with vehicle, aldosterone (ALDO 10−8M) or ALDO + spironolactone (SPIRO; 10−5M). 

Luciferase activity was expressed as fold increase compared to Vehicle. ***=p<0.001 versus 
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Vehicle and ###=p<0.001 vs ICAM1141 + ALDO. C) Promoter activity of the 1141bp 

ICAM-1 promoter fragment after infection with dominant negative (dn) constructs. After 

infection with Ad-GFP, Ad-dn-c-Jun and Ad-dn-IκBα, HUVECs were transfected with 

ICAM1141 promoter fragment and treated with vehicle or ALDO (10−8M). The luciferase 

activity was expressed as fold increase compared to Vehicle Ad-GFP. ***=p<0.001 versus 

Vehicle Ad-GFP. N = 3 independent experiments.
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Table 1

Cardiovascular risk parameter evaluation in ApoE−/−/ICAM-1+/+ and ApoE−/−/ICAM-1−/−mice treated with 

vehicle or ALDO.

Genotype ApoE−/−/ICAM-1+/+ ApoE−/−/ICAM-1−/−

Treatment Vehicle (n) ALDO (n) Vehicle (n) ALDO (n)

Prerandomization

  Weight, g 26.3±0.6 (18) 24.7±0.5 (20) 24.8±0.5 (16) 25.5±0.7 (17)

After 4 weeks of infusion

  Weight, g 28.6±0.7 (18) 27.6±0.5 (19) 28.9±0.6 (16) 27.5±0.7 (17)

  Blood glucose, mg/dL 173±8 (8) 185±7 (8) 170±10 (8) 179±9 (8)

  Serum Cholesterol, mg/dL 572±18 535±20 564±25 538±28

  Serum ALDO, nmol/L 1.28±0.3 4.07±0.7** 1.32±0.4 4.19±0.3**

  Serum Sodium, mEq/L 143.8±0.8 148.2±1* 144.5±1.2 149.0±0.9*

  Serum Potassium, mEq/L 3.98±0.2 3.01±0.1* 4.01±0.5 3.09±0.4*

  Systolic BP, mm Hg 104±3.5 (6) 111.0±2.7 (6) 106±6.8 (6) 112.9±5.1 (6)

  Diastolic BP, mmHg 73±1.7 (6) 79.7±1.3 (6) 73.9±6.2 (6) 79.9±5.2 (6)

  Heart Rate, pulse/min 532.9±26.2 (6) 582.4±47.6 (6) 513.7±52 (5) 579.8±35.6 (6)

*
=p<0.05,

**
=p<0.01 ALDO versus Vehicle in the same genotype.
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