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Nucleotide exchange factor Rab3GEP requires DENN and
non-DENN elements for activation and targeting of Rab27a
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ABSTRACT
Rab GTPases are compartment-specific molecular switches that
regulate intracellular vesicular transport in eukaryotes. GDP/GTP
exchange factors (GEFs) control Rab activation, and current models
propose that localised and regulated GEF activity is important in
targeting Rabs to specific membranes. Here, we investigated the
mechanism of GEF function using the Rab27a GEF, Rab3GEP
(also known as MADD), in melanocytes as a model. We show
that Rab3GEP-deficient melanocytes (melan-R3GKO) manifest
partial disruption of melanosome dispersion, a read-out of Rab27a
activation and targeting. Using rescue of melanosome dispersion in
melan-R3GKO cells and effector pull-down approaches we show
that the DENN domain of Rab3GEP (conserved among RabGEFs)
is necessary, but insufficient, for its cellular function and GEF
activity. Finally, using a mitochondrial re-targeting strategy, we show
that Rab3GEP can target Rab27a to specific membranes in a
GEF-dependent manner. We conclude that Rab3GEP facilitates the
activation and targeting of Rab27a to specific membranes, but that it
differs from other DENN-containing RabGEFs in requiring DENN and
non-DENN elements for both of these activities and by lacking
compartment-specific localisation.
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INTRODUCTION
Rab proteins are a family (>60 in humans) of small GTPases that
regulate vesicle trafficking in eukaryotic cells (Stenmark, 2009;
Hutagalung and Novick, 2011). Compartment-specific localisation is
vital for Rab function, but the mechanism(s) regulating this remain
debatable (Barr, 2013; Pfeffer, 2017). Recent studies indicate that
localised GDP/GTP exchange factors (GEFs) contribute to activation
and targeting of Rabs (Allaire et al., 2010; Yoshimura et al., 2010;

Ingmundson et al., 2007; Machner and Isberg, 2006; Murata et al.,
2006; Tarafder et al., 2011; Zhang et al., 2006). Two studies have
directly investigated this by showing that substrate Rabs follow
artificially targeting GEFs to the outer mitochondrial membrane
(Blümer et al., 2013; Gerondopoulos et al., 2012). Thus, current Rab-
targeting models suggest that cytosolic complexes between Rab–
GDP and Rab GDP dissociation inhibitor (Rab GDI) continuously
and reversibly deliver Rab–GDP to membranes where Rabs are
activated by specifically localised GEFs. This blocks their re-
extraction by Rab GDI, and promoting accumulation of Rab–GTP in
the GEF-associatedmembrane (Barr, 2013). Related to this, the ‘GEF
cascade’ model suggests that the activity of different Rabs in
trafficking pathways are linked by sequential recruitment of GEFs.
According to this model, active upstream Rabs recruit GEFs of
downstream Rabs to membranes as their effectors, thereby regulating
the recruitment and activation of downstreamRabs (Ortiz et al., 2002;
Rink et al., 2005; Poteryaev et al., 2010; Wang and Ferro-Novick,
2002; Knodler et al., 2010; Novick, 2016).

Rab27 regulates the transport and exocytosis of dense-cored
secretory granules and lysosomal-related organelles in many cell
types, e.g. pancreatic β cell, cytotoxic T cells and platelets (Fukuda,
2013). Inmelanocytes, Rab27a targets to themembrane of pigmented
melanosomes where active Rab27a–GTP recruits the motor protein
myosin-Va via direct interaction with effector melanophilin (Mlph)
(Hammer and Sellers, 2012; Hume and Seabra, 2011). This
allows actin-dependent dispersion of melanosomes into peripheral
dendrites and pigment transfer to neighbouring keratinocytes, thus
providing pigmentation and photo-protection in mammals (Wu and
Hammer, 2014).

Rab3GEP [also known as MAP kinase-activating death domain
protein (MADD), alternatively known as differentially expressed in
normal and neoplastic cells (DENN) and insulinoma glucagonoma
clone 20 (IG20)] is a GEF for Rab3 whose function is linked to
regulated exocytosis and protection against TNFR1 (also known as
TNFRSF1A)- and MAPK-driven apoptosis (Wada et al., 1997;
Tanaka et al., 2001; Yamaguchi et al., 2002; Imai et al., 2013; Li et al.,
2014; Del Villar and Miller, 2004; Kurada et al., 2009). In
melanocytes, Rab3GEP promotes melanosome dispersion by acting
as a Rab27a GEF and melanosome targeting factor (Figueiredo et al.,
2008; Tarafder et al., 2011). Here, we further investigated Rab3GEP
function in Rab27a activation and targeting in melanocytes. Our
findings indicate that firstly, the DENN domain alone of Rab3GEP is
insufficient to activate and target Rab27a to melanosomes; secondly,
GEFactivity is essential for the Rab27a targeting activity of Rab3GEP;
thirdly, Rab3GEP is important, but not alone sufficient, for activation
and targeting of Rab27a tomelanosomes; and finally, that Rab3GEP is
unlikely to stably associate with melanosomes. Based on this we
suggest that Rab3GEP differs from other DENN-containing RabGEFs
in the mechanism by which it activates Rabs, and that other factors
work alongside Rab3GEP to activate and target Rab27a.Received 10 October 2017; Accepted 11 March 2019
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RESULTS AND DISCUSSION
Melanosome dispersion is partially disrupted in
melan-R3GKO melanocytes
To investigate Rab3GEP function in Rab27a-dependent organelle
transport we generated Rab3GEP-deficient immortal melanocyte
lines, melan-R3GKO1, melan-R3GKO2 and melan-R3GKO3 (Lavado
et al., 2005; Tanaka et al., 2001) (see Materials and Methods).
Immunoblotting confirmed that all three melan-R3GKO lines cells
lacked detectable levels of Rab3GEP compared with wild-type
melanocytes (melan-a) (Fig. 1A). However, in contrast to previous
Rab3GEP siRNA knockdown experiments, we found that the three
melan-R3GKO cultures contained a mixture of cells in which
melanosomes were either dispersed throughout the cytoplasm (as
seen in melan-a; hereafter ‘dispersed-type’), or clustered in the
perinuclear cytoplasm [as seen in melan-ash (Rab27a−/−)
melanocytes; hereafter ‘clustered-type’] (percentage of clustered-
type cells 72 h after plating: melan-R3GKO1=50.05±7.79, melan-
R3GKO2=66.22±2.10, melan-R3GKO3=94.84±3.62, and melan-
a=7.406±6.196; mean±s.e.m.; Fig. 1B,C) (Figueiredo et al., 2008;
Tarafder et al., 2011). This indicates that a Rab3GEP-independent
mechanism(s) of melanosome dispersion exists in the long-term
absence of Rab3GEP. Interestingly, we observed that as melan-
R3GKO cells started to proliferate, 48–72 h after plating the
proportion of clustered-type cells in cultures increased compared
with 24 h after plating (Fig. S1). This suggests that the rate of the
Rab3GEP-independent melanosome dispersion pathway(s) does
not match the cellular requirement for melanosome dispersion in
proliferating cells. Consistent with this, by titration of the essential
melanocyte proliferation factor phorbol 12-myristate 13-acetate
(PMA) in the culture medium we found that there was a positive
correlation between proliferation rate and the proportion of
clustered-type melan-R3GKO cells in cultures (Fig. S2). A similar,
although smaller, effect was seen in melan-a cells (Fig. S2).

Melanosome dispersion in melan-R3GKO cells is dependent
upon Rab27a
Next, we tested whether melanosome dispersion in melan-R3GKO3

(melan-R3GKO hereafter) cells was Rab27a-dependent. Firstly, we
examined the expression of Rab27a and Mlph (whose expression is

Rab27a-dependent), in melan-R3GKO and melan-a cells (Hume
et al., 2007; Wu et al., 2002). Immunoblotting indicated that
expression of both proteins was reduced in melan-R3GKO compared
with melan-a cells (Fig. 2A). Secondly, we examined the effect of
siRNA depletion of Rab27a on melanosome distribution in melan-
R3GKO cells. Immunoblotting and bright-field imaging confirmed
that depletion of Rab27a expression in melan-R3GKO cells in
resulted in a significant increase in the proportion of clustered-type
cells [Fig. 2B–D; non-targeted (NT) siRNA =22.9±3.4%, mock=
11.2±4.7%, Rab27a siRNA=90.8±2.1%). Thirdly, expression of
GFP–Rab27a efficiently rescued melanosome transport defects in
melan-R3GKO cells (Fig. S3). Fourthly, we used confocal
microscopy to show that Mlph, a proxy for active Rab27a, was
more highly expressed and localised to melanosomes in dispersed-
type versus clustered-type melan-R3GKO cells [mean Mlph
fluorescence intensity in arbitrary units (AU)/cell: melan-a=
11.93±0.96; melan-R3GKO=3.31±0.51; melan-ln (Mlph−/−)=
0.55±0.41; dispersed-type=5.417±0.5 and clustered-type=2.066±
0.33; Fig. 2E–G]. These data support a role for active Rab27a in
transporting melanosomes in dispersed-type melan-R3GKO cells,
and indicate that Rab27a and Mlph levels are Rab3GEP-dependent.

The DENN domain is not sufficient for the GEF activity
and cellular function of Rab3GEP
We then used the melan-R3GKO cells to dissect the role of Rab3GEP
domains in Rab27a targeting and activation. To test whether the
DENN domain of R3G is sufficient for GEF activity, as seen in
other DENN-containing RabGEFs, we generated a model of
Rab3GEP-DENN based on the structure of the DENND1B–
Rab35 complex (Allaire et al., 2010; Wu et al., 2011; Ioannou
et al., 2015) (Fig. S4A; see Materials and Methods). Using this
model, we identified residues in Rab3GEP-DENN that could
interact with Rab27a, and generated vectors expressing mutants
expected to disrupt this interaction in melanocytes (Rab binding site
I: I353D or L366K, and site II: T371R/P372R) (Fig. 3A; Fig. S4B).
[To help quantify Rab3GEP function in melanosome dispersion we
standardised melanocyte shape by growing the cells on fibronectin
micro-patterns (Evans et al., 2014).] In melan-R3GKO we found that
Rab3GEPI353D and other mutants dispersed melanosomes to an

Fig. 1. Melanosomes are dispersed in a sub-set of
melan-R3GKO cells. (A) Western blots comparing
Rab3GEP and calnexin expression (loading control) in
lysates from melan-R3GKO1, melan-R3GKO2, melan-
R3GKO3 and melan-a (wild-type) cell lines. (B) Phase-
contrast images showing the distribution ofmelanosomes
in melan-a, melan-ash (Rab27a−/−) and melan-R3GKO3

cells. Scale bar: 25 µm. (C) A scatter plot showing the
percentage of clustered-type melanocytes in melan-
R3GKO1, melan-R3GKO2, melan-R3GKO3 and melan-a
cultures 72 h after plating. Data are from 3–4 independent
experiments each performed in triplicate. Plotted points
represent the mean data in each experiment, data
presented as mean±s.e.m. ****P<0.0001, ***P<0.001.
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intermediate level compared with GFP-only control and wild-type
Rab3GEP (Rab3GEP-WT) [pigment dispersion distance (PDD):
Rab3GEPI353D=14.47±2.156 µm; Rab3GEPL366K=14.87±2.121 µm;
Rab3GEPT371R/P372R=15.23±1.36 µm; Rab3GEP-WT=16.89±
0.5225 µm and GFP=12.63±2.648 µm; Fig. 3B,C]. In contrast,
the Rab3GEPR514A mutant, in which the altered residue is outside
the predicted Rab binding sites (Fig. S4B), rescued melanosome
dispersion in melan-R3GKO cells with similar efficiency to
Rab3GEP-WT (PDD: 16.71±1.138 µm; Fig. 3A–C). These data

support the importance of the Rab3GEP DENN domain, and
suggest that the interaction mechanism of DENN-containing GEFs
with Rabs is conserved.

To better understand how DENN mutants reduced cellular
Rab3GEP function, we tested their effect on Rab3GEP GEF activity
using an effector pulldown assay that reports Rab27a–GTP levels
(see Materials and Methods) (Figueiredo et al., 2008). In accord
with the results of the melanosome dispersion assay we saw that the
Rab27a–GTP levels in Rab3GEPI353D and Rab3GEPR514A were

Fig. 2. Rab27a and Mlph disperse
melanosomes in melan-R3GKO cells.
(A) Coomassie-stained gel and western blots of cell
lysates showing protein loading and Rab27a and
Mlph expression. (B–D) melan-R3GKO cells were
transfected with Rab27a-specific and non-targeted
(NT) control siRNA, and the effect on protein
expression and melanosome distribution
investigated. (B) Western blot showing Rab27a
and GAPDH (loading control) expression in lysates
of melan-R3GKO non-transfected (mock) or siRNA-
transfected cells. (C) Phase-contrast images
showing the melanosome distribution in
transfected melan-R3GKO cells. Boxes in left
panels indicate the area shown in higher
magnification on the right. (D) Scatter plot showing
the percentage of clustered-type cells in melan-
R3GKO cultures 72 h after transfection. Data are
from four independent experiments each
performed in triplicate. Plotted points represent the
mean data from each experiment, data presented
as mean±s.e.m. (E–G) Melanocytes were fixed,
stained for immunofluorescence and the
distribution of Mlph and melanosomes recorded
using a confocal microscope. (E) Fluorescence
(left), phase-contrast (centre) and merged images
showing the distribution of Mlph, melanosomes
and their overlap. White boxes indicate the regions
shown in high magnification images below. White
arrowheads indicate co-localisation of
melanosomes and Mlph. (F,G) Scatter plots
showing the mean anti-Mlph fluorescence
intensity/cell for different cell types (F), and
clustered- and dispersed-type melan-R3GKO cells
(G). Results presented are representative of three
independent experiments. ****P<0.0001,
**P<0.01, *P<0.05. Scale bars: 20 µm.
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similar to those seen in cells expressing GFP and Rab3GEP-WT,
indicating that GEF activity is essential for Rab3GEP function in
melanosome transport and that the DENN domain plays an
important role in both of these activities (Fig. 3D).
We next used a DENN alone truncation to test whether

Rab3GEP-DENN catalysed Rab27a-specific GEF activity and
Rab27a-dependent melanosome dispersion. Using both the cell
and pulldown assays we found that Rab3GEPDENN functioned with
comparable efficiency to GFP and significantly less efficiently than
Rab3GEP-WT (PDD: 11.94±1.859 µm; Fig. 3B–D). Similar results
were obtained using the Rab3GEPΔDD mutant that lacks the
C-terminus death domain (DD) (PDD=14.12±1.922 µm; Fig. 3A–C).
These observations, with others using N-terminus Rab3GEP

truncation mutants, indicate that while the DENN is important,
other parts of the protein, including the DD and central region, are
also required for Rab3GEP function (PDD: ΔDENN=14.71±
1.369 µm; ΔDD=14.13±2.257 µm; Fig. 3A–C). As previously
seen, Rab3GEP and variants were distributed throughout the
melanocyte cytoplasm (even at very low expression levels) and
not enriched near melanosomes (Fig. 3B; Fig. S4C) (Figueiredo
et al., 2008). This indicates that Rab3GEP is unlikely to stably
associate with melanosomes. The exception to this was the
Rab3GEPDD mutant, which distributed in cytoplasmic punctae,
consistent with the ability of DDs to oligomerise (Feinstein et al.,
1995) (Fig. 3B; Fig. S4C). Results were similar for Rab3GEP and
mutants in non-pattern grown cells (Fig. S4C).

Fig. 3. Rab3GEP-DENN is necessary, but
insufficient, for melanosome dispersal in
melan-R3GKO cells and Rab27a activation.
(A) A schematic representation of the domain
organisation of Rab3GEP (block diagram)
showing the position of point mutations. Line
diagram indicates the regions included in each
of the truncations used in these experiments.
(B) melan-R3GKO cells were infected with
adenoviruses expressing wild-type (WT) and
mutant Rab3GEP, or GFP, plated onto micro-
patterned cover-slips, fixed and processed for
immunofluorescence. Representative images
of melanosome (phase) and GFP (centre)
distribution in individual cells expressing the
indicated proteins and pigment probability
maps (right) for each population of cells (n for
each indicated in brackets). White circles
indicate the shape of the micro-pattern
(diameter=46 µm). Scale bar: 10 µm.
(C) Scatter plot showing the pigment dispersion
distance (PDD) for each cell in each population
as shown in B. The significance of differences
in PDD values for each mutant compared with
the GFP and RabGEP-WT controls was
calculated and are displayed below and above
each scatter, respectively. (D) Scatter plot
showing the ability of Rab3GEP-WT and
mutant variants, and GFP alone to activate
Rab27a as reported by effector pulldown in
vitro. Activity is expressed relative to
Rab3GEP-WT and GFP controls, as indicated
in heatmap key (normalised to 1 and 0). Results
are from three independent experiments. The
significance of differences in active Rab27a
values for eachmutant and GFP comparedwith
RabGEP-WT are above each scatter. Data
presented as mean±s.e.m. ****P<0.0001;
***P<0.001; **P<0.01; ns, not significant.
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Intact mitochondria-localised Rab3GEP targets Rab27a
to mitochondria
Finally, we investigated the role of Rab3GEP in targeting Rab27a to
organelle membranes. For this we generated a fusion protein that
targeted Rab3GEP-WT to the outer mitochondrial membrane (mito-
Rab3GEP) and tested its ability to target mCherry–Rab27a to
mitochondria in melan-R3GKO cells (Fig. 4A). Mito-Rab3GEP
localised to MitoTracker-labelled mitochondria but did not disperse
melanosomes (Fig. 4B; Fig. S3). In most cells we saw that mito-
Rab3GEP-positive mitochondria aggregated close to the nucleus, in
contrast to their normal dispersed cytoplasmic distribution,
suggesting that mito-Rab3GEP causes their aggregation. We also
saw that mCherry–Rab27a co-localised with mito-Rab3GEP to a
significantly greater extent than mCherry alone. (PCC: mito-
Rab3GEP/mCherry–Rab27a=0.424±0.016 versus mito-Rab3GEP/
mCherry=0.149±0.026; Fig. 4B,C). This indicates that Rab3GEP
influences Rab27a localisation and that tethering Rab3GEP to
mitochondria reduces its ability to activate and target Rab27a to
melanosomes.

We then examined the importance of the GEF activity of Rab3GEP
inRab27a targeting.We found that GEF-deficientmito-Rab3GEPI353D

and mito-Rab3GEPΔDD mutants localised to mitochondria, but
recruited mCherry–Rab27a to a significantly lower extent than wild-
type mito-Rab3GEP (PCC: mito-Rab3GEPI353D/mCherry–Rab27a=
0.358±0.020; mito-Rab3GEPI353D/mCherry=0.312±0.029; mito-
Rab3GEPΔDD/mCherry–Rab27a=0.307±0.023; mito-Rab3GEPΔDD/
mCherry=0.227±0.017; Fig. 4B,C). This indicates that the GEF
activity of Rab3GEP is required for Rab27a targeting. We observed
that mitochondria in cells expressing mito-Rab3GEPΔDD, but not
other mito-Rab3GEPs, were dispersed throughout the cytoplasm,
indicating that DD promotes mitochondrial aggregation, possibly
through oligomerisation (Feinstein et al., 1995).

Here, we investigated how Rab3GEP regulates Rab27a activation
and/or targeting using melanocytes as a model and present several
novel findings. Firstly, Rab27a can undergo Rab3GEP-independent
activation and/or targeting, and that although Rab3GEP enhances
these activities it is not absolutely required. One possible
mechanism for this is that other GEFs compensate for the loss of

Fig. 4. Mito-Rab3GEP can re-target Rab27a
to mitochondria by a GEF-dependent
mechanism. (A) Schematic representation of
mito-Rab3GEP showing the arrangement of
proteins within the fusion and the topology of its
association with the outer mitochondrial
membrane. (B) melan-R3GKO cells were co-
infected with adenoviruses expressing GFP-
tagged mito-Rab3GEP (wild-type) or mutants
(I353D and ΔDD), and mCherry–Rab27a or
mCherry, then fixed and protein distribution
recorded by confocal microscopy. Co-
localisation of GFP and mCherry was
determined using Pearson correlation analysis.
Confocal images show the distribution of
melanosomes (phase), mito-Rab3GEP and
mutants, mCherry–Rab27a or mCherry, and
their co-localisation. Scale bar: 20 µm.
(C) Scatter plot showing the extent of
colocalisation of (1) mito-Rab3GEP and mutant
variants and (2) mCherry–Rab27a (+, solid
circles) or mCherry (−, open circles). The
significance of differences between Pearson
correlation co-efficient values for populations
expressing mCherry versus mCherry–Rab27a
for eachmito-Rab3GEP protein were calculated
using an unpaired Student’s t-test.
****P<0.0001; *P<0.05; ns, not significant.
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Rab3GEP, e.g. DENND4B and GRAB (also known as Rab3IL1)
(Figueiredo et al., 2008; Yoshimura et al., 2010). However, siRNA
depletion of these targets did not augment the proportion of
clustered-type cells seen in melan-R3GKO cells, indicating that these
GEFs do not contribute to Rab27a activation (Fig. S4A,B). Another
possible mechanism is that the intrinsic nucleotide exchange
activity of Rab27a disperses melanosomes in slow-growing cells.
Supporting this, in vitro studies of GTP loading of purified Rabs
indicate that Rab27a has a higher intrinsic nucleotide exchange
activity compared with Rab1 and Rab5a that reaches ∼35% of the
level achieved in the presence of purified Rab3GEP (Fig. S4C).
This, coupled with the low rate of intrinsic Rab27a GTPase activity
(one thirtieth that of Rab5a), could explain the existence of a pool of
active Rab27a in melan-R3GKO cells (Larijani et al., 2003).
Interestingly a yeast Rab7 mutant (Ypt7K127E), that has been
shown to enhance nucleotide exchange and reduce nucleotide
affinity, targeted to vacuolar membranes in the absence of its GEF,
the Mon1–Ccz1 complex (Cabrera and Ungermann, 2013). These
data underline that RabGEFs are enhancers rather than absolute
determinants of Rab activation and/or targeting. Thus, it is likely
that the severe phenotypic alterations seen in Rab3GEP-deficient
mice and worms result from reduced function of their multiple Rab
substrates (Iwasaki et al., 1997; Tanaka et al., 2001). Secondly,
Rab3GEP-DENN is necessary, but insufficient, to catalyse Rab27a
activation and/or targeting. This contradicts studies showing that
DENN-only truncations of connecdenn (also known as DENND1B)
and DENND2B maintained GEF activities comparable with their
intact counterparts (Allaire et al., 2010; Wu et al., 2011; Ioannou
et al., 2015). In contrast, our data indicate that elements throughout
Rab3GEP make significant contributions to its activity. Studies
using Rab3a as a Rab3GEP substrate reached similar conclusions
(Oishi et al., 1998; Coppola et al., 2002). Meanwhile, sequence
comparison indicates that there is significant conservation of DENN
and non-DENN elements of Rab3GEP throughout evolution
(Iwasaki et al., 1997; Mahoney et al., 2006). Thus, Rab3GEP
likely activates and/or targets Rab27a and Rab3a via a similar
mechanism, but this may differ from that of other DENN-containing
RabGEFs e.g. connecdenn, DENND1A and DENND2B. Thirdly,
the GEF activity of Rab3GEP is absolutely required for its function
in targeting Rab27a to membranes. These observations are
consistent with previous work showing that the membrane-
targeting activity of Rabex-5 (also known as RABGEF1), DrrA
and Rabin8 (also known as RAB3IP) was dependent upon their
GEF activity (Blümer et al., 2013). Fourthly, we show that the
cytoplasmic localisation of Rab3GEP is important for its function in
Rab27a targeting and/or activation.
In conclusion, our data are broadly consistent with models

suggesting that RabGEFs serve as important targeting factors by
locally activating Rabs and stabilising their association with
membranes by preventing their extraction by Rab GDI. Nevertheless,
our findings here and previously indicate that Rab3GEP is unlikely to
be the sole Rab27a targeting factor (Tarafder et al., 2011). Future work
should aim to identify and characterise these factors.

MATERIALS AND METHODS
Derivation and maintenance of immortal melanocytes
Cultures of immortal Rab3GEP-deficient melanocytes (melan-RG3KO)
were derived essentially as described previously (Lavado et al., 2005). In
brief, mice heterozygous for a previously generated Rab3GEP loss-of-
function allele were crossed with Ink4a-Arf mutant mice in order to generate
embryos homozygous for the Rab3GEP mutant allele and heterozygous for
Ink4a-Arf mutant allele. Genotyping of the embryos was as previously

described (Lavado et al., 2005; Tanaka et al., 2001). Melanocytes were then
derived from the dorsal skin of mutant embryos as previously described
(Bennett et al., 1989). melan-R3GKO1, melan-R3GKO2 and melan-R3GKO3

melanocytes were derived from three different embryos from the same litter.
Cultures of immortal melan-RG3KO, melan-ash, melan-a and melan-ln
melanocytes were maintained, infected with adenovirus expression vectors,
transfected with siRNA oligonucleotides and tested for contamination as
described previously (Hume et al., 2006, 2007). The melanocyte cell lines
described here are available from the Wellcome Trust Functional Genomics
Cell Bank (http://www.sgul.ac.uk/depts/anatomy/pages/WTFGCB.htm).

Immunoblotting
Immunoblotting was performed as described previously (Hume et al., 2007)
using rabbit anti-Rab3GEP (gift from Dr Yoshimi Takai, Osaka University
Graduate School of Medicine, Japan; 1:1000) goat anti-melanophilin
(Everest Biotech, EB05444; 1:1000), goat anti-GAPDH (Sicgen, Ab0049-
200; 1:5000), goat anti-calnexin (Sicgen, Ab3741-200; 1:1000) and goat
anti-Rab27 (Sicgen, Ab1023-200; 1:1000) primary antibodies, and IRDye
800CW-conjugated secondary antibodies (Odyssey 926-32214; 1:10,000).
Signal was detected using a Li-Cor infrared scanner (Odyssey).

Plasmid and virus constructs
Generation of virus vectors allowing expression of full-length human
Rab3GEP as a fusion to the C-terminus of EGFP was previously described
(Figueiredo et al., 2008). Adenoviruses expressing Rab3GEPI353D,
Rab3GEPR514A, Rab3GEPL366K, Rab3GEPT371R/P372R, Rab3GEPΔDD,
Rab3GEPΔDENN, Rab3GEPDENN and Rab3GEPDD were all generated using
quick-change site-directed mutagenesis, using pENTR-GFP-Rab3GEP as
template (the sequences of primers used for this are available on request). To
generate adenoviruses expressing mito-Rab3GEP we PCR-amplified a 240 bp
fragment of DNA corresponding to the N-terminus mitochondrial targeting
sequence of murine TOMM70a (GenBank accession number AAI39422.1).
This was then ligated into an engineered HindIII site located upstream of the 5′
end of the EGFP coding sequence of pENTR-GFP-Rab3GEP. Mutants
variants of this were generated by site-directedmutagenesis as described above.

Microscopy and image analysis
Cells for immunofluorescence were cultured on 13 mm coverslips (1.5
thickness; Scientific Laboratory Supplies UK, 6422-307164),
paraformaldehyde fixed, stained, and fluorescence and transmitted light
images of melanocytes were then collected using a Zeiss LSM710 confocal
microscope fitted with a 63×1.4 NA oil immersion Apochromat lens or a
Zeiss Axiovert 100S inverted microscope fitted with a 10× objective and an
AxiocamMR3 CCD camera. All images presented are single sections in the
z-plane. Antibodies and stains were used as indicated; mouse monoclonal
anti-GFP (Roche, 11814460001; 1:200) rabbit anti-Mlph [antigen mouse
Mlph 150–400 aa (Strom et al., 2002); 1:100] goat anti-rabbit and goat anti-
mouse IgG secondary antibodies both Alexa Fluor 568 labelled (Invitrogen,
A-11001 and A-11011; both 1:500). For live-cell experiments confirming
the targeting of mito-Rab3GEP to mitochondria, cells were plated in 35 mm
diameter glass-bottomed petri dishes (Matek, P35G-1.5-20-C) (1×104 cells/
dish). 24 h later cells were infected with adenoviruses expressing mito-
Rab3GEP or GFP alone, and after a further 48 h the mitochondria were
labelled by incubation for 30 min in 200 nMMitoTracker Red FM (Thermo
Fisher, M7512). After washing twice in medium (L-15 supplemented with
10% fetal calf serum, 100 U/ml penicillin G, and 100 mg/ml streptomycin)
without MitoTracker, cells were transferred to the environmental chamber
(37°C) surrounding the stage of the Zeiss LSM710 confocal microscope and
images of the distribution of GFP, MitoTracker-labelled mitochondria and
melanosomes were acquired using the 488 nm Ar and 568 nm HeNe laser
lines, respectively. Analysis of melanosome clustering in siRNA-transfected
cells and melanosome distribution in micro-pattern grown cells was as
previously described (Evans et al., 2014; Robinson et al., 2017).

Effector pulldown assay for detection of Rab27a–GTP
HEK293a cells were plated in 10 cm dishes (∼5×106 cells/dish) and 24 h
later co-infected with adenoviruses expressing mCherry–Rab27a and either
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GFP, Rab3GEP-WT or mutant variants of Rab3GEP. After expression for
24 h cells were washed twice with ice-cold PBS and lysed using buffer A
[50 mMTris pH 7.5, 150 mMNaCl, 5 mMMgCl2, 1 mM dithiothreitol, 1%
CHAPS, and protease inhibitor cocktail (Complete ULTRA Tablets,
Roche)] for 30 min on ice. Cell contents were harvested using a scraper
and lysates were clarified by centrifugation at 13,400 g for 15 min at 4°C
using Eppendorf centrifuge 5415R. Supernatant was collected and protein
quantification was performed using a Bradford protein assay (Bio-Rad).
2 mg of the total protein was pre-cleared by incubation with 20 µl of
glutathione-sepharose 4B Fast Flow beads (GE Healthcare, 17-5132-01) for
2 h. After pelleting the beads by centrifugation at 3220 g at 4°C the
supernatant was incubated with 200 pmol of GST or 200 pmol of GST–Slp1
(1–200 aa fragment) and 25 µl of glutathione-sepharose 4B beads for 16 h at
4°C. Beads were pelleted as above and washed three times in buffer A
10 min. Bound proteins were released from the beads by incubation in
Laemmli buffer [100 mM Tris-Cl pH 6.8, 4% (w/v) SDS, 0.2% (w/v)
Bromophenol Blue, 20% (v/v) glycerol and 200 mM β-mercaptoethanol]
for 5 min at 95°C. Bound proteins were then resolved by SDS-PAGE and
mCherry–Rab27a was detected by immunoblotting and signal intensity
quantified using ImageJ.

Modelling of the structure of the DENN domain of Rab3GEP
The structural model of Rab3GEP was produced using the HHpred server in
conjunction with MODELLER (Alva et al., 2016). In brief, the amino acid
sequence of the GEF domain of Rab3GEP was submitted to HHpred first.
The server identified the GEF domain of DENND1A as the closest structural
homologue. Subsequently, the generated amino acid sequence alignment
between Rab3GEP and DENND1A was used as a basis for producing a
structural model of Rab3GEP using MODELLER by directly forwarding
the result produced through HHpred.

Quantitative real-time PCR
Primers and probes for qRT-PCR targets (from Sigma Genosys, Cambridge,
UK)were designed using Primer Express software (Life Technologies). Probes
were labelled at the 5′ and 3′ ends with fluorophore 6-carboxyfluorescein
(6-FAM) and quencher tetramethylrhodamine (TAMRA), respectively. For
GRAB and DENND4B the primers were 5′-CAGCCTGTTTGAGGAAGC-
TC-3′ (sense strand) and 5′-TGGTGTGGATG-TGATGACCA-3′ (reverse
strand), and 5′-TGCGCCACGTCGGACTCAAC-3′ (sense strand) and 5′-T-
CCTTGCCCATGCTGCTGGC-3′ (reverse strand) and the probes were 5′-
CGCCTGCTTCATGTTGGCTTCCCG-3′ and 5′-GAGACGCTAGGGCC-
CCCTCC-3′. For GAPDH the primers were 5′-GTGTCCGTCGTGGATC-
TGA-3′ (sense strand) and 5′-CCTGCTTCACCACCTTCTTGA-3′ (reverse
strand) and the probe was 5′-CCGCCTGGAGAAACCTGCCAAGTATG-3′.
To generate mRNA, sample pools of melan-R3GKO cells grown in 6-well
plates (1×105 cells/well) were transfectedwith siRNA in triplicate as described
previously (Hume et al., 2007). 72 h later cells were harvested and mRNA
extracted using the RNeasy Mini RNA extraction kit (Qiagen). cDNA was
generated usingMoloneymurine leukemia virusM-MLV reverse transcriptase
(Promega) using random primers. To generate a standard curve of
signal:template concentration for each qRT-PCR assay, a pool containing
5% of each of the cDNA samples analysed was generated. This pool was
serially diluted in DEPC water (1:4, 1:16, 1:64, 1:256) and these were used as
template in Rab1a and GAPDH qRT-PCR assays. The shape of the standard
curve indicates the relationship between signal and template concentration. For
both assays standard curves gave straight lines with R2>0.99 indicating that
there is a linear relationship between signal and template. To measure the
expression of targets in siRNA-transfected cells, each neat cDNAwas diluted
1:32 in DEPC water and the following reagents were added per well of a 96-
well plate: 6.5 µl TaqMan Fast 2× PCRMasterMix (Life Technologies); 0.4 µl
forward primer (10 µM); 0.4 µl reverse primer (10 µM); 0.25 µl probe
(10 µM); 3 µl cDNA; 2.45 µl DEPC water. For each sample, three technical
repeats were performed. Reaction plates were sealed with optically clear
adhesive film, centrifuged, and qRT-PCR performed using a StepOnePlus
Real-Time PCR system (Applied Biosystems) using the ‘fast’mode. CTvalues
for each reaction were determined by StepOne software. The slope (S),
intercept (I) and R2 values were calculated for the standard curve of each qRT-
PCRassay. CTvalues from siRNA-transfected sampleswere then processed to

generate a ‘quantity value’ for each CT value as follows; (1) (CT−I)/S=LQ
(LQ, log quantity), (2) 10LQ=Q, (3) Q×(1/MNT)=GOIP (MNT, mean
non-targeted quantity value; GOIP, gene of interest product) and
(4) GOIP/GP=normalised expression of target relative to GAPDH (GP,
normalised quantity value for the GAPDH primer).

Statistical analysis of data
Unless otherwise indicated, statistical analysis of data was carried out
with GraphPad Prism 7 software using the one-way ANOVA test and
Bonferroni’s multiple comparisons post-test facility within the software and
assuming nonparametric distribution of data. ****P<0.0001, ***P<0.001,
**P<0.01, *P<0.05 and ns, not significant (P>0.05).
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Alva, V., Nam, S.-Z., Söding, J. and Lupas, A. N. (2016). The MPI bioinformatics
Toolkit as an integrative platform for advanced protein sequence and structure
analysis. Nucleic Acids Res. 44, W410-W415. doi:10.1093/nar/gkw348

Barr, F. A. (2013). Review series: Rab GTPases and membrane identity: causal or
inconsequential? J. Cell Biol. 202, 191-199. doi:10.1083/jcb.201306010

Bennett, D. C., Cooper, P. J., Dexter, T. J., Devlin, L. M., Heasman, J. andNester,
B. (1989). Clonedmousemelanocyte lines carrying the germlinemutations albino
and brown: complementation in culture. Development 105, 379-385.
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Figure S1. Proliferation rate correlates positively with defects in melanosome dispersion in melan-

R3GKO cells.  (A-C) melan-R3GKO and melan-a cells were seeded into 24-well tissue culture plates 

(1.5x104 cells/well) and the numbers of (A, D), and proportion of clustered- versus dispersed-type cells 

(B-C, E-F) was recorded over time (as described in materials and methods). (A-C) cells cultured in 40nM 

PMA and (D-F) either 0 or 80nM PMA. (A-B, D-E) Line plots and (C, F) phase contrast images showing 

the rate of proliferation, and proportion of clustered-type melanocytes in cultures of melan-a and 

melan-R3GKO. Red and black arrows indicate dispersed- and clustered-type melan-R3GKO melanocytes, 

respectively. Scale bar = 100m. Results are representative of 3 independent experiments.  
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Figure S2. Expression of GFP-Rab3GEP or GFP-Rab27a, but not Rab3GEP-DENN domain mutants, 

rescues defects in melanosome dispersion in melan-R3GKO cells. A) Cover-slip grown melan-R3GKO 

cells were infected with adenoviruses expressing the indicated GFP fusion protein, fixed 24 hours later 

and the distribution of melanosomes and GFP protein was recorded using a microscope. Images 

showing the distribution of melanosomes (bright-field) and GFP fusion distribution Scale bar = 50 m. 

(B) A structural model of the DENN domain of Rab3GEP was generated based on the previously 

determined structure of DENND1A (as described in materials and methods).  Ribbon diagrams of the 

3D structure of the DENN domains of DENND1A and Rab3GEP individually and overlaid to allow 

comparison (Wu et al 2011). (C) Space filling and ribbon diagrams (upper and lower panels, 

respectively) indicating the position of Rab binding sites I and II (left- and right-hand sides) in the DENN 

domains (red in DENND1A and blue in Rab3GEP). Upper and lower panels show the location of site I 

and II in the context of the entire DENN (as well as the location of R514), and the position of residues 

mutated in each of these in this study, respectively. White boxes in lower panels indicate the 

correspondence between site I and II mutations in DENND1B and Rab3GEP. (D) To test the functional 

importance of the predicted Rab27a binding sites in DENN and other Rab3GEP domains, melan-R3GKO 

cells were infected with adenoviruses expressing GFP-tagged of the indicated Rab3GEP proteins. Cells 

were then fixed, processes for immunofluorescence and the distribution of melanosomes (using 

transmitted light/phase contrast optics) and GFP was examined using a confocal microscope (as 

described in material and methods). White arrows indicate cells with dispersed melanosome 

distribution. Scale bar = 50 m (A) and 20 m (D). 
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Figure S3. Mito-Rab3GEP targets to mitochondria and does not disperse melanosomes in melan-

R3GKO cells. (A) melan-R3GKO cells grown in glass-bottomed culture dishes were infected with 

adenoviruses expressing mito-Rab3GEP or GFP, labelled 48 hours later with mito-tracker red to reveal 

the distribution of mitochondria and images alive using a confocal microscope (as described in 

materials and methods). Images show the distribution of mito-Rab3GEP/GFP, mitotracker and the 

extent of their overlap (merge) and the distribution of melanosomes (phase contrast) Scale bar = 

10m. (B-C) melan-R3GKO cells were infected with adenoviruses expressing mito-Rab3GEP or 

Rab3GEP-WT, fixed 48 hours later, imaged using bright-field and epifluorescence optics to reveal the 

distribution of melanosomes in populations of cells and confirm the expression of the Rab3GEP 

proteins (B). The proportion of clustered-type melanocytes was determined for each condition (C). 

Data are from 4 independent experiments each performed in triplicate on different pools of cells. 

Plotted points represent the average percentage of cells with perinuclear clustered melanosomes 

from each experiment (as described in material and methods). **** indicate p=<0.0001, relative to 

Rab27a depleted cells was determined by unpaired student’s t-test.  
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Figure S4. The intrinsic GDP/GTP exchange activity in vitro Rab27a, rather than alternative GEFs, is 

likely to be responsible for the phenotype of dispersed-type melan-R3GKO cells. (A) Purified (His)6-

Rab1a, (His)6-Rab5a and (His)6-Rab27a were incubated with [35S]-GTPγS at 30°C for the indicated time 

periods in the absence of Rab3GEP. [35S]-GTPγS binding was quantified by filter binding assay 

followed by scintillation counting as previously described (Figueiredo et al., 2008). (B-C) melan-R3GKO 

cells were transfected with the indicated siRNA (as described in Materials and methods) and the 

effects of this on mRNA levels (B) melanosome distribution (C) and was investigated. Data are from at 

least 3 independent experiments each performed in triplicate on different pools of cells. Plotted points 

represent the average percentage of cells with perinuclear clustered melanosomes from each 

experiment (as described in material and methods). **** and ** indicate p=<0.0001 and p=<0.01, 

relative to NT siRNA transfected cells was determined by one-way ANOVA. Scale bar = 50m. 
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