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Abstract 

White matter hyperintensities (WMH) are frequently seen on brain MRI scans of older 

people. Usually interpreted clinically as a surrogate for cerebral small vessel disease, WMH 

are associated with increased likelihood of cognitive impairment and dementia (including 

Alzheimer’s disease, AD). WMH are also seen in cognitively healthy people. In this 

collaboration of academic, clinical and pharmaceutical industry perspectives, we identify 

outstanding questions about WMH and their relation to cognition, dementia and AD. What 

molecular and cellular changes underlie WMH? What are the neuropathological correlates of 

WMH? To what extent are demyelination and inflammation present? Is it helpful to sub-

divide into periventricular and subcortical WMH? What do WMH signify in people 

diagnosed with AD? What are the risk factors for developing WMH? What preventive and 

therapeutic strategies target WMH? Answering these questions will improve prevention and 

treatment of WMH and dementia.   

[140 < 150 words] 
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1. Introduction 

1.1 What do we mean by White Matter Hyperintensities?  

White matter hyperintensities of presumed vascular origin (WMH) are among the most 

prominent age-related changes on brain magnetic resonance imaging (MRI) [1]. WMH are 

seen as diffuse areas of high signal intensity (hence, “hyperintense”) on T2-weighted or fluid-

attenuated inversion recovery (FLAIR) sequences [1-3] (examples in Fig 1). WMH are 

broadly equivalent to leukoaraiosis seen on CT scans [1]. The variability in WMH 

appearance is hypothesized to reflect differences both in imaging parameters and also in 

etiology and pathological severity. 

 

*** Figure 1 near here 

 

1.2 WMH represent increased water content  

WMH seen on MRI represent changes in white matter composition indicative of altered water 

content in hydrophobic white matter fibers and tracts. WMH can be classified as specific or 

non-specific depending on the water content they present [4]. This water disproportion can 

also vary with the brain area affected [4]. Radiologic insights into WMH etiology can come 

from relaxometry, where the MR signal for water is manipulated using  different pulse 

sequences to derive various images. These images have different contrast characteristics that 

provide information about various aspects of the brain microstructure. Relaxometry can 

determine relaxation times (T1R: longitudinal relaxation time, T2*R: effective transversal 

relaxation time), providing quantitation of the tissue structure and water content [4]. 

Diffusion tensor imaging (DTI) provides further information on possible changes of the white 

matter microstructure and expansion of the WMH penumbra over time [5]. DTI data, 

specifically differences in fractional anisotropy (FA) and mean diffusivity (MD), suggest 

axonal damage [5]. Differences in water content can also be associated with white matter 

edema [4].  

 

2. Why are WMH important? 

2.1 Clinical Impact of WMH.  

In clinical MRI scans of older people, WMH are typically interpreted as a surrogate of 

cerebral small vessel disease (SVD) [1, 2, 6]. Because various pathologies can lead to 

increased MRI signal intensity in white matter [6, 7], WMH alone are not diagnostically 

specific. Notably, distinguishing WMH due to SVD from those of multiple sclerosis (MS) 

and other inflammatory brain diseases or metabolic leukodystrophies can be challenging. 

Moreover, cortical degeneration common in older persons with degenerative diseases (such 

as AD, Section 5 below) can lead to degeneration of fiber tracts and subsequent MRI 

changes. 

Ample evidence supports a cross-sectional association between greater WMH volume and 

decrements in global or domain-specific cognitive performance [1-3, 8]. That said, effect 
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sizes are relatively small. A systematic review concluded that WMH explain a modest degree 

of cross-sectional variation in cognition and cognitive decline [3]. WMH are considered to be 

particularly correlated with reductions in information processing speed and executive 

function, although correlations with other cognitive domains have also been noted [3, 9]. 

Longitudinal studies in diverse populations consistently demonstrate that increasing WMH 

volume predicts cognitive decline, mild cognitive impairment, incident dementia, stroke and 

death [1-3, 10]. WMH are also associated with decline in gait and related aspects of physical 

performance [11, 12]. Nevertheless, a given individual may have extensive WMH but 

minimal cognitive impairment. WMH location, individual resilience factors and cognitive 

reserve likely determine clinical impact.  

WMH play a key role in lowering the threshold for the clinical expression of dementia in the 

presence of neurodegenerative lesions [13, 14], specifically, AD-related pathology [15] See 

Box 1). Although there is the possibility that WMH promote or interact with AD-related 

pathologies, current data support an additive role for vascular pathologies rather than a 

synergistic interaction with AD-related pathological lesions [16]. 

 

Box 1. The VCID concept  

The concept of vascular contributions to cognitive impairment and dementia (VCID) 

encompasses the spectrum of vascular disease processes that impact on cognitive function 

[13]. Brain vascular pathology is an important comorbidity in the multi-etiology view of 

common sporadic dementias of aging [14]. Mechanism-oriented VCID research can be 

described as the aging brain vasculature failing to cope with biological insults due to vascular 

disease, proteinopathies, metabolic disease and immune affront. In 2016 an NIH-sponsored 

summit defined research priorities in Alzheimer’s and related dementias [13]. One output is 

the MarkVCID consortium, designed for multi-site development and validation of small 

vessel VCID candidate biomarkers to the point of readiness for large-scale clinical trials (see 

https://markvcid.partners.org/).  

 

2.2 WMH in terms of clinical diagnostic criteria  

The heterogeneity of WMH etiology and clinical manifestations present diagnostic challenges 

[17, 18]. Even in patients with dementia and significant WMH, the vascular contribution to 

the clinical phenotype may be missed if neuroimaging is not performed. The NINDS-AIREN 

criteria, a popular diagnostic framework for clinical definition of vascular dementia, require 

clinical dementia with a temporal relationship to preceding stroke with relevant imaging. In 

clinical practice, this may not be straightforward and most patients who exhibit WMH have 

no stroke history. It remains challenging to attribute cognitive deficits to WMH at an 

individual patient level. Three examples of possible “vascular” clinical courses to 

symptomatic cognitive impairment are illustrated (see Figure 2). While these archetypes 

rarely present in isolation, nevertheless they illustrate the heterogeneity of vascular cognitive 

impairment. Refined diagnostic criteria taking account of the clinical course of WMH are 

likely to be beneficial [17, 18]. 

 

***** Figure 2 near here 

https://markvcid.partners.org/
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Biochemical biomarkers for clinical use 

Fluid biomarkers relevant to WMH will be clinically beneficial, reviewed elsewhere [19]. 

The neurofilament marker NF-L, extracellular metalloproteinase MMP-9, TIMP-1, the MMP-

2 index and the albumin brain/plasma ratio are all increased in people with clinical diagnosis 

of SVD. Peripheral blood markers for WMH, alongside fluid biomarkers related to AD 

pathology, will help to sub-type patients according to their degree of AD pathology and brain 

vascular burden [13, 19, 20].  

 

3. Epidemiology of WMH 

3.1 Prevalence & Progression of WMH 

Prevalence of WMH. Most individuals over age 60 have some degree of WMH, and 

prevalence increases with age. In the Rotterdam Scan Study, prevalence of subcortical WMH 

increased by 0.2% per year of age, while periventricular WMH increased by 0.4% [21] (See 

Box 2). For participants 60-70 years of age, 87% had subcortical and 68% had periventricular 

WMH. For participants 80-90 years of age, 100% had subcortical and 95% had 

periventricular WMH [21]. This age gradient of WMH has been confirmed in a wider age 

range (ages 20-90, Study of Health in Pomerania cohort) [22]. In addition, many cognitively 

healthy younger adults show some degree of WMH on MRI. 

Progression of WMH. Longitudinal studies of community-dwelling, healthy older adults 

show increasing WMH severity or WMH volume over time [23]. Rates of progression are 

variable, likely due to study-specific definitions of progression or duration of follow-up. For 

example, in the Cardiovascular Health Study 28% of participants had a worsening WMH 

grade (by at least 1 grade on a 0-9 visual rating scale) over five years [24], while in the 

Rotterdam Scan Study 39% had progression of WMH volume over 3.4 years [25]. In the 

LADIS study 74% exhibited worsening over 3.1 years [26], and 84% had progression of 

WMH volume over 9.1 years in the Oregon Brain Aging Study [12]. Overall, longitudinal 

studies show annual increases in WMH volume ranging from 4.4% to 37.2% [23]. In some 

cohorts decrease in WMH volume has been reported, though effect sizes were small [27]. 

 

3.2 Risk Factors for WMH 

Non-Modifiable Risk Factors. WMH are more prevalent at older ages, and some studies 

support faster progression with advanced age (see a recent review) [23]. Black race, female 

sex and APOEε4 allele presence have all been associated with greater cross-sectional WMH 

burden or with WMH progression, though results have been mixed [23, 28]. 

 

Modifiable risk factors. Identified risk factors for WMH severity and progression are 

primarily vascular, cardio-metabolic and nutritional [23]. Among these, associations are 

strongest for blood pressure-related measures. In cross-sectional analyses, elevated blood 

pressure is unequivocally associated with the presence or severity of WMH. Studies 

considering high blood pressure earlier in life generally report an association with subsequent 

WMH. In the Rotterdam Scan Study elevated blood pressure was associated with increased 
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WMH risk 5 and 20 years later. Similarly, both midlife and late-life blood pressure were 

associated with increased WMH risk in the Cardiovascular Risk Factors, Aging and 

Incidence of Dementia (CAIDE) Study[29], and elevated midlife blood pressure was related 

to late-life WMH volume in the National Heart Lung, and Blood Institute (NHLBI) Twin 

Study [30]. There is mixed evidence for dyslipidemia as a risk factor for WMH. Omega-3 

polyunsaturated fatty acids have been associated with lower WMH burden. Neither diabetes 

mellitus nor insulin resistance are strongly related to WMH, while fasting glucose has been 

related to WMH progression. Greater visceral fat accumulation is more strongly associated 

with WMH than body mass index (BMI). Tobacco smoking, higher blood levels of 

inflammatory markers (CRP, interleukin-6), and low levels of vitamin B12 and 

hyperhomocysteinemia have all been associated with WMH (see Box 4). These studies of 

risk factors are discussed in a recent review  [23].   

 

Box 2. Is it helpful to separate WMH into Subcortical and Periventricular?  

Subcortical WMH are defined as isolated foci appearing in the superficial white matter, 

which in most cases are not contiguous with periventricular WMH. The neuropathological 

substrates differ between the localizations [31, 32] (see Section 4), which can also have 

different risk factors and effects on cognition [1]. It has been proposed that cognitive 

impairments associated with periventricular WMH reflect disruption of cholinergic 

projections from the basal forebrain to the cortex.  

Elevated levels of activated microglia in periventricular WMH indicate that these may 

particularly involve neuroinflammatory responses following disruption of the blood-brain 

barrier (BBB), see Box 4. This response is not seen in subcortical WMH [31]. In contrast, 

subcortical (but not periventricular) WMH volume was associated with lipid peroxidation in 

blood, which mediated the effect of hypertension, adding biological validity to a vascular 

etiology for subcortical WMH [20]. There may be further valid subdivisions within 

subcortical WMH. Nevertheless, it may be premature to discriminate periventricular from 

subcortical WMH clinically. 

 

4. Neuropathological changes that underlie WMH 

4.1 Types of underlying tissue damage in WMH 

Pathophysiology of SVD-associated white matter histological lesions has been attributed to 

multiple mechanisms, including hypoperfusion, defective cerebrovascular reactivity, and 

BBB dysfunction [5, 6, 33-35]. The white matter microvascular network likely contributes to 

WMH pathogenesis, with vascular changes including arteriolar tortuosity, loss of blood 

vessel density, and venous collagenosis. Other possible mechanisms include dysfunction of 

oligodendrocyte precursor cells [36], or impaired perivascular (“glymphatic”) clearance. 

Different presentations of WMH indicate differences in underlying pathological changes. For 

example, punctate WMH (considered to represent mild tissue changes) are associated with 

myelin damage, gliosis and enlarged perivascular spaces, whereas extensive, confluent WMH 

are considered to represent more progressive pathological changes, including some degree of 

myelin loss, axonal disruption, and astrogliosis [6, 7]. Pathological differences in WMH also 

occur based on anatomical location, for example when evaluating periventricular vs. 
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subcortical WMH (see Box 2), or watershed vs. non-watershed regions. Minor pathological 

changes associated with WMH (at the caps/rims of periventricular regions, Fig 1) are most 

consistent with disturbed cerebrospinal fluid (CSF) transport and periventricular edema, both 

of which accompany aging.  

Watershed zones are bordered by the distal territories of the anterior, middle, and posterior 

cerebral arteries. In an event of hemodynamic compromise, watershed regions are more 

susceptible to hypoperfusion and thus more likely to develop ischemic (or, oligemic) lesions. 

There are differences in the arteries supplying periventricular and subcortical white matter. 

While long perforating branches supply the periventricular white matter, shorter branches 

supply the subcortical white matter.  

WMH severity has been associated with microinfarcts and with diffuse amyloid plaque load 

in brains of people diagnosed with AD [37]. In the context of AD pathology, especially in 

late stages of the disease, it is conceivable that some white matter lesions occur secondary to 

Wallerian degeneration, triggered by cortical neurodegenerative pathology [38]. More likely, 

AD pathology (common in older people) and WMH of vascular origin (even more common 

in older people) frequently co-present as has been noted in multiple autopsy based studies on 

mixed pathologies [14]. 

 

4.2 Demyelination in WMH 

Early imaging studies indicated that severe WMH are related to cell death and myelin loss, 

see [6, 7], with early confluent WMH presenting more marked demyelination than 

focal/punctate WMH. Compared to subcortical WMH, periventricular WMH show increased 

axonal loss, astrocytosis, microglial density, and loss of oligodendrocytes. There may also be 

lobar variability. Early myelin changes may involve the frontal lobe, with subsequent gradual 

involvement of the parietal, temporal, and occipital lobes [39].  

Demyelination is not a universal feature of WMH. In addition to demyelination, myelin 

“pallor” has been confirmed as a histological substrate of WMH. With aging the ability of the 

oligodendrocytes to regenerate myelin sheaths decreases [36]. To what degree pallor 

represents loss of myelin sheaths or loss of myelin secondary to axonal loss remains 

unresolved [40]. In aged primates, cognitive impairment exacerbated by hypertension is 

associated with myelin damage and microglial changes within white matter (Box 3). 

 

4.3 Insights from MRI-histopathology correlative studies of WMH  

Several studies have examined the underlying pathology of WMH using ex vivo MRI 

combined with histopathology [6, 33-35]. Early MRI-neuropathology correlative studies 

reported ischemic changes, with evidence of plasma extravasation (indicative of BBB 

dysfunction), rarefaction or loss of parenchymal tissue structure [41]. More advanced lesions 

showed reduced myelin density [41]. These data are broadly confirmed by more recent 

molecular studies [34, 35].  
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Box 3. White matter pathology and cognitive impairment in experimental primates  

The rhesus monkey has brain structure similar to humans and similar age-related decline in 

cognitive function [42].  The monkey adult life span is up to 40 years and cognitive 

impairments appear from around 13 years and accelerate from 20 years, with deficits in 

executive function, working memory and recognition memory (resembling clinical criteria 

for subcortical SVD). There is considerable variability between subjects, the majority 

exhibiting severe impairments while some are only mildly impaired. Markers of AD 

pathology (amyloid plaques, hyper-phosphorylated tau) are variable or absent, and correlate 

poorly with cognitive impairment. Neuronal loss is not detectable and gray matter is well 

preserved [42]. MRI shows age-related loss of forebrain white matter volume, and decrease  

of FA in subcortical white matter tracts, both correlated with cognitive decline. Electron 

microscopy shows accumulating myelin defects, including splitting and ballooning of myelin 

sheaths, as well as complete degeneration of axons and their myelin. Age-related myelin 

histopathology correlates well with FA reduction and with diminution in the corpus callosal 

compound action potential. Possible mechanisms for age-related white matter damage in 

monkeys include oxidative stress and inflammation, worsened by age-related reductions in 

microglial activity and myelin repair [42, 43]. These observations point to white matter 

pathology, independent of neurodegeneration, as the source of age-related VCID in primates. 

 

5. Are WMH related to Alzheimer Disease? 

We acknowledge a distinction between AD as a syndromal diagnosis in living people and AD 

as a neuropathological description, or molecular aetiology [15]. With regard to clinical 

diagnosis, most people with AD diagnosis above the age of 70 have some degree of WMH. 

This may reflect associated vascular pathology, consistent with autopsy studies showing a 

high prevalence of mixed AD and vascular pathologies [14]. To what extent AD 

neuropathology causes WMH (of vascular or nonvascular origin) is still debated. The 

majority of amyloid PET studies found no association between β-amyloid tracer uptake and 

WMH burden [16, 44]. Nevertheless, a recent study in the ADNI cohort (using florbetapir 

instead of Pittsburgh compound-B as the amyloid tracer) observed a correlation between 

elevated brain β-amyloid and WMH [45]. Further, in people carrying dominant AD 

mutations, WMH volume is elevated up to 20 years in advance of cognitive symptoms, 

concomitant with altered levels of Aβ and tau in CSF [46]. Because vascular disease is 

uncommon in these younger mutation-bearing persons, these data suggest that AD pathology 

may be related to vascular and/or nonvascular processes resulting in WMH. 

Cerebral amyloid angiopathy (CAA) is a common age-related small vessel disease, 

characterized by the accumulation of Aβ in the walls of cortical arterioles and leptomeningeal 

vessels [44, 47]. Some degree of histological CAA is present in most (but not all) brains that 

contain AD neuropathological hallmarks. CAA may contribute to the microvascular 

processes underlying WMH (impaired perivascular clearance, plasma extravasation, 

inflammation, hypo-perfusion, endothelial dysfunction) [44]. Whether or not AD is 

concomitant, CAA plays a distinct role in the spectrum of dementia [16, 47]. 
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Box 4. Is inflammation a feature in WMH?  

An explicit inflammatory process, in the manner of MS, does not apply to WMH of presumed 

vascular origin. Nevertheless some participation of inflammation-related molecules and cells 

appears likely and merits deeper understanding. In some large studies, circulating peripheral 

pro-inflammatory markers (e.g., CRP and interleukin-6) have been associated with WMH 

indicating possible involvement of inflammatory pathways in WMH. Other peripheral pro- 

and anti-inflammatory cytokines (e.g. interleukin-8) are elevated specifically in people with a 

clinical AD diagnosis who also have extensive WMH [20].  

 

6. Implications for Treatment Interventions 

 

6.1 Non-pharmacological interventions 

Physical activity & Diet. A meta-analysis of cross-sectional observational studies 

demonstrated that physical fitness and activity were associated with lower global WMH 

volume, but had mixed results when local WMH (periventricular and subcortical) were 

examined separately [48]. In relation to WMH, few randomized controlled trials of physical 

activity have been carried out. These studies have been restricted to prevention of WMH 

progression as opposed to primary prevention. In older women, twice weekly resistance 

training reduced WMH volume progression, relative to balance and toning control [32].  

Observational cohort studies of diet and nutrition suggest that the consumption of tuna/non-

fried fish and the Mediterranean diet is associated with less WMH load [49, 50]. Higher 

plasma omega-3 polyunsaturated fatty acids (abundant in both diets) are associated with less 

WMH mediated executive function decline in aging and these findings have led to a 

randomized-controlled trial of omega 3 fatty acids for the prevention of WMH accumulation 

(n-3 PUFA for Vascular Cognitive Aging, NCT01953705).   

Multi-domain interventions. The Look AHEAD study tested a 10-year physical activity and 

dietary modification intervention in overweight and obese older adults with type 2 diabetes 

mellitus. Although there was no effect of the intervention on cognition in the MRI sub-study, 

the intervention group had significantly lower WMH volume relative to the control group 

[51]. Similarly, in the EVA study, participants with clinical AD diagnoses and MRI evidence 

of SVD (WMH, lacunar or cortical infarcts) were randomized to either a multi-domain 

approach (dietary and physical activity counselling, smoking cessation as well as 

pharmacologic treatment of cardiovascular risk factors) or standard care. Those randomized 

to the composite intervention had reduced progression of WMH (but not global atrophy or 

new infarcts) [52]. 

 

6.2 Pharmacological interventions 

Blood pressure medications. Randomised clinical trial sub-analyses indicate that effective 

antihypertensive therapy reduces WMH incidence. Treatment with an angiotensin-converting 

enzyme (ACE) inhibitor over 36 months reduced WMH number and total WMH volume in 
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the PROGRESS trial [53]. An observational cohort study suggested that treatment with an 

angiotensin receptor blocker, vs. an ACE inhibitor, was associated with smaller WMH 

volumes in people with a clinical AD diagnosis [54]. An MRI sub-study of the preDIVA trial 

[55] suggested a beneficial effect in the sub-group with large baseline WMH volume, but 

found no overall impact of intensive vascular management on WMH progression. A trial of 

intensive vs. standard blood pressure control (based on ambulatory blood pressure) is 

ongoing in individuals who are either normal or mildly impaired on cognition and mobility, 

with WMH progression as a secondary  outcome [56]. Similarly, the results of the SPRINT 

MIND trial of intensive vs. standard blood pressure control on WMH were presented at 

AAIC 2018, and we await published, peer-reviewed results [57]. The effect of two years of 

treatment with either ACE inhibitor or angiotensin II receptor blockers on an outcome of 

SVD progression, including WMH and silent brain infarcts, is currently being tested in the 

CEREBRAL study [58]. 

Statins. Nearly three years of treatment with 40 mg daily pravastatin in the PROSPER study 

did not reduce WMH progression over the placebo group in individuals with increased 

vascular risk [59].  

Antithrombotic agents. The ASPREE-Neuro Study is evaluating 100 mg daily aspirin vs. 

placebo over one year, with a secondary outcome of WMH volume change [60].  

 

Concluding comments  

Converging data from clinical, neuropathological and experimental studies have begun to 

unravel WMH mechanisms. We are optimistic that the next ten years will see substantial 

advances in molecular understanding and clinical management of WMH and VCID. Deeper 

molecular understanding of the various etiologies and pathologies that lead to WMH will 

improve diagnostic specificity. It will also enable more refined medicinal chemistry, for 

generating improved biomarkers (both imaging and biochemical) and novel therapeutic 

agents. Better structural and molecular biomarkers will serve as endpoints in clinical trials of 

targeted treatments, based on pathological understanding. How the WMH profile of a given 

dementia patient should guide treatment, while minimizing adverse clinical outcomes, 

remains a fertile field for clinical research. 

Currently, treatment of WMH of presumed vascular origin is limited to lifestyle 

modifications and risk factor management. Given the associations between WMH and 

vascular risk factors, it is imperative to target vascular health throughout the life-course as a 

prevention strategy. At a societal level, there are enormous opportunities for policy makers to 

combat the 21st century obesogenic environment which contributes significantly to poor 

vascular and metabolic health. Effective regulations on the content of foods (e.g. sugar in 

food and drinks), clear labelling of food products, and food marketing (to children in 

particular) will likely have more healthcare impact than any drug.   

Scientific progress is needed in the following areas. 1) Application of emerging diagnostic 

criteria, to identify different subtypes of WMH, possibly with differing etiology, outcomes 

and clinical significance. 2) Robust differential biomarkers, to discriminate different 

pathologies (SVD, CAA, AD), their possible interactions and their relation to VCID. 3) 

Consensus on segregation algorithms (e.g. definitions of regional WMH boundaries). 4) 
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Animal models relevant to WMH of different pathological origin. 5) Further detailed MRI-

histopathology correlative studies, to encompass the range of WMH-related lesion 

characteristics. 6) Hypothesis-driven, randomized controlled trials of drugs and other 

interventions targeting WMH. 
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Figure Legends 

 

Figure 1. MRI scans showing typical examples of WMHs of presumed vascular origin. Scan 

A: punctate deep subcortical WMH in left hemisphere and periventricular caps. This scan is 

Fazekas grade 1, on the Fazekas scale of WMH severity (range 0-3). In the right thalamus a 

lacune can be seen. B, C: two examples of severe confluent WMH. Note that borders between 

periventricular and deep subcortical WMH become difficult to define. Scans B and C are  

Fazekas grade 3. Scans A-C are FLAIR sequences. Figure provided by GJ Biessels.  

 

Figure 2. Conceptual clinical courses leading to vascular dementia. A; Multi-infarct 

dementia, stepwise pattern of cognitive decline. B; Strategic vascular dementia, due to a focal 

lesion in a clinically eloquent site. One step pattern, with some recovery. C; WMH-associated 

subcortical vascular dementia. Slow progression without stepwise pattern. Figure provided by 

J Kwon.  
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