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Abstract

Introduction: The reliability of pulse pressure analysis to estimate cardiac output is known to be affected by
arterial load changes. However, the contribution of each aspect of arterial load could be substantially different. In
this study, we evaluated the agreement of eight non-commercial algorithms of pulse pressure analysis for
estimating cardiac output (PPCO) with esophageal Doppler cardiac output (EDCO) during acute changes of arterial
load. In addition, we aimed to determine the optimal arterial load parameter that could detect a clinically
significant difference between PPCO and the EDCO.

Methods: We included mechanically ventilated patients monitored with a prototype esophageal Doppler (CardioQ-
Combi™, Deltex Medical, Chichester, UK) and an indwelling arterial catheter who received a fluid challenge or in whom
the vasoactive medication was introduced or modified. Initial calibration of PPCO was made with the baseline value of
EDCO. We evaluated several aspects of arterial load: total systemic vascular resistance (TSVR = mean arterial pressure
[MAP]/EDCO * 80), net arterial compliance (C = EDCO-derived stroke volume/pulse pressure), and effective arterial
elastance (Ea = 0.9 * systolic blood pressure/EDCO-derived stroke volume). We compared CO values with Bland-Altman
analysis, four-quadrant plot and a modified polar plot (with least significant change analysis).

Results: A total of 16,964-paired measurements in 53 patients were performed (median 271; interquartile range:
180-415). Agreement of all PPCO algorithms with EDCO was significantly affected by changes in arterial load,
although the impact was more pronounced during changes in vasopressor therapy. When looking at different
parameters of arterial load, the predictive abilities of Ea and C were superior to TSVR and MAP changes to detect a
PPCO-EDCO discrepancy ≥ 10% in all PPCO algorithms. An absolute Ea change > 8.9 ± 1.7% was associated with a
PPCO-EDCO discrepancy ≥ 10% in most algorithms.

Conclusions: Changes in arterial load profoundly affected the agreement of PPCO and EDCO, although the
contribution of each aspect of arterial load to the PPCO-EDCO discrepancies was significantly different. Changes in
Ea and C mainly determined PPCO-EDCO discrepancy.

Introduction
Cardiac output (CO) is an essential component in the
hemodynamic assessment of critically ill patients and a
central target for goal-directed resuscitation in high-risk
surgical patients [1]. During recent years, many minimally
invasive beat-to-beat methodologies have been developed

to monitor CO [2]. One of the proposed approaches that
has emerged is pulse pressure analysis (PPA) [3]. The
basic physiological principle of these techniques is that
changes in arterial pulse pressure relate directly to changes
in stroke volume (SV); thus, changes in CO can be con-
tinuously estimated from analysis of the arterial waveform.
However, this relationship can be affected by arterial load
[4,5]; therefore, if changes in arterial load occur, the relia-
bility of CO measurements by PPA techniques may be
affected [6-10]. Although each PPA algorithm is different,
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they all have to tackle similar limitations. For this reason,
most modern systems based on PPA use a calibration
(internal or external) to determine the individual arterial
load of the patient in order to convert the pressure signal
into a volume-based parameter. Subsequent recalibrations
are then required when significant variations in arterial
load occur [6-9].
Previous studies have demonstrated that changes in

arterial load can affect the reliability of pulse pressure-
derived cardiac output (PPCO) measurements [6-9,11,12];
however, these studies have focused on only one aspect of
the arterial load: the systemic vascular resistance. This
approach ignores the pulsatile nature of the cardiovascular
system and provides only a partial description of arterial
load, ignoring other components such as arterial compli-
ance or wave reflections [13].
The aim of this study was to describe the performance

of PPA during arterial load changes when comparing it
with an independent reference technique used as the
initial calibration. We assumed that changes in arterial
load would affect all PPA algorithms, although the contri-
bution of each aspect of arterial load may be substantially
different. For this purpose, we first assessed the reliability
of eight non-proprietary PPA algorithms for estimating
CO during the introduction or modification in dose of
vasoactive medication or during intravenous volume
administration. Second, we attempted to identify the opti-
mal arterial load parameter able to predict a clinically sig-
nificant discrepancy between PPCO and the esophageal
Doppler cardiac output (EDCO).

Materials and methods
Patients
This study was performed in the 17-bed multidisciplinary
intensive care unit of the Hospital de SAS Jerez from
September 2011 to October 2012. The protocol was
approved by the institutional research ethics committee
of the Hospital del SAS de Jerez de la Frontera. Informed
consent was deemed unnecessary because of the observa-
tional nature of the study and because the protocol was
considered to be part of the standard care.
Inclusion criteria included any patient who was already

monitored with an esophageal Doppler and indwelling
arterial catheter for clinical reasons and for whom the
attending physician decided to perform a fluid challenge
or titrate the dosage of norepinephrine to maintain a
desired level of mean arterial pressure (MAP). Patients
with known severe valvular regurgitation, atrial fibrillation,
or any contraindication to the use of the esophageal Dop-
pler were excluded.

Hemodynamic monitoring
Hemodynamic monitoring was performed by using the
CardioQ-Combi™ esophageal Doppler monitor (Deltex

Medical, Chichester, UK). This prototype combined a
standard Doppler monitor with eight PPCO algorithms.
The Doppler probe was inserted into the esophagus via
the nasal or oral route and advanced until the maximal
peak velocity of aortic blood flow signal was achieved.
The gain setting was then adjusted to obtain the optimal
outline of the aortic velocity waveform.

Pulse pressure analysis algorithms
All patients had an arterial catheter for continuous arterial
pressure monitoring. After zeroing of the system to atmo-
spheric pressure, the arterial waveform was carefully
checked by using a fast flush test in order to ensure opti-
mal harmonics of the arterial pressure measurement sys-
tem. The absence of overdamping/underdamping of the
arterial pressure waveform was a prerequisite for hemody-
namic measurements. The arterial pressure signal was
transferred from the patient bedside monitor to the
esophageal Doppler system by using a serial cable. Eight
non-proprietary PPA algorithms built into the CardioQ-
Combi™ software and PPCO values were continuously
displayed in the monitor along with the arterial load para-
meters. Initial calibration of PPCO was performed by
using the EDCO value before any intervention and after
stabilization of heart rate and arterial pressure (less than
5% variation for a 1-minute period). A list of all PPCO
algorithms analyzed in this study is shown in Table 1. A
more detailed description of each algorithm can be found
in the Appendix of Additional file 1. EDCO, PPCO mea-
surements, and other hemodynamic variables were aver-
aged and recorded every 10 seconds.

Arterial load assessment
Considering the pulsatile nature of arterial blood, we
evaluated different aspects of arterial load [14]. The
steady component was computed by using the total sys-
temic vascular resistance (TSVR), defined as MAP
divided by the product of EDCO times 80. The pulsatile
component was calculated by using the net arterial com-
pliance (C), defined as EDCO-derived SV divided by
arterial pulse pressure. Although this approach, by defini-
tion, overestimates the real compliance and violates the
fundamental concept of the Windkessel model (since it
assumes that the total SV is buffered in the large elastic
arteries during systole without any peripheral outflow), it
has been shown to be a useful index for the estimation
and detection of relative changes in arterial compliance
[15-17]. We also calculated the effective arterial elastance
(Ea), an integrative parameter that incorporates both the
steady and pulsatile components of arterial load, includ-
ing resistance, compliance, characteristic impedance, and
cardiac cycle time intervals [14,18,19]. Effective arterial
elastance was computed as Ea = 0.9 * systolic arterial
pressure (SAP)/EDCO-derived SV, where the 90% of SAP
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was used as a surrogate of left ventricular end-systolic
pressure [18,20].

Study protocol
Therapeutic interventions were made only according to
the decisions of attending physicians. Clinical care was
guided by local protocols and the information obtained
via EDCO. Subgroups were defined according to
patients receiving fluid administration or introduction/
modification in vasoactive dose. Fluid administration
consisted of 500-mL infusions of crystalloid for a 25- to
30-minute period. Vasopressor changes consisted of
stepwise increases or decreases in norepinephrine in 2-
to 4-μg/minute increments every 2 to 3 minutes to
maintain a desired MAP level. Supportive therapies and
ventilatory settings remained constant and vasopressors
(if any) unchanged during fluid administration. All
patients were under controlled mechanical ventilation.

Statistical analysis
Normal distribution of data was tested by using the
D’Agostino-Pearson test. The results are expressed as
mean ± standard deviation (SD) or as median and inter-
quartile range (IQR), as appropriate. Bland-Altman analy-
sis for repeated measurements was used to assess the
agreement between EDCO and each PPCO algorithm
[21]. Bias was defined as the mean difference between
EDCO and PPCO measurements. Limits of agreement
(LOAs) were calculated as mean bias ± 1.96 SD. Percen-
tage error (PE) was calculated for comparison of CO as

PE (%) = LOA/[(mean EDCO + mean PPCO)/2]. Coeffi-
cient of variation (CV) of EDCO measurements was
determined during a 1-minute period at baseline during
stable hemodynamic conditions in all patients. As sug-
gested by Cecconi and colleagues [22], the precision of
the reference technique was calculated as 2 times CV,
and the least significant change (LSC), the minimum
change between successive measurements that can be
considered a real change and not due to random error,
was calculated as LSC = precision × √2.
The ability to track EDCO changes by each PPCO

algorithm was tested by using a concordance analysis
[23]. Concordance was defined as the percentage of data
in which the direction of change agreed in four-quad-
rant plots or as the percentage of data within ± 30°
radial limits of agreement (RLOA = θ ± 1.96 SD) in
polar plots, according to the method proposed by
Critchley and colleagues [24]. This method accounts not
only the direction but also the magnitude of CO change
to assess trending ability. Acceptable concordance was
assumed when the concordance rate was more than 90%
in four-quadrant plots or when the mean angular bias
(that is, the mean angle of all radial vectors from the
polar axis) and RLOA were less than ± 5° and less than
30%, respectively. To exclude random measurement
error, a central exclusion zone was selected for analysis.
We tested a new approach by implementing the concept
of LSC in each polar plot, by suggesting that the exclu-
sion zone size should be calculated using the combined
LSC for EDCO and PPCO. Assuming an LSCPPCO equal

Table 1 Pulse pressure-derived algorithms tested

Algorithm name
(source, year)

Algorithm description

Windkessel
(Erlanger and Hooker [31], 1904)

k * (SBP-DBP) * HR

Windkessel with RC decay
(Bourgeois et al. [32], 1976)

k * (MAP/T) * ln(SBP/DBP) * HR

Liljestrand-Zander
(Liljestrand and Zander [33], 1928)

k * (SBP-DBP)/(SBP + DBP) * HR

Herd
(Herd et al. [34], 1966)

k * (MAP-DBP) * HR

Pressure root-mean-square
(Jonas and Tanser [35], 2002)

k ∗
√∫

T
(ABP(t) − MAP)2dt ∗ HR

Systolic area
(Jones et al. [36], 1959; Verdouw et al. [37], 1975)

k ∗
∫

sys
ABP(dt) ∗ HR

Systolic area with correction
(Warner et al. [38], 1953; Kouchoukos et al. [39], 1970)

k ∗
∫

sys
ABP(dt) ∗

(
1 +

Tsys
Tdia

)
∗ HR

Corrected impedance
(Wesseling et al. [40], 1983; Rauch et al. [41], 2002)

k ∗ (163 + HR − 0.48 ∗ MAP)*
∫

sys
ABP(dt) ∗ HR

ABP, arterial blood pressure; DBP, diastolic blood pressure; HR, heart rate; k, calibration factor obtained from esophageal Doppler cardiac output; MAP, mean
arterial pressure; SBP, systolic blood pressure; T, duration of cardiac cycle (T = √HR/60); Tdia, duration of diastole (Tdia = T − Tsys); Tsys, duration of systole
(estimated as a 30% of cardiac cycle time).
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to LSCEDCO, the combined LSC was calculated as √[2 ×
(LSCEDCO)

2] for selecting the exclusion zone size.
The relationship between changes in arterial load para-

meters and discrepancy between EDCO and each PPCO
algorithm [EDCO-PCCO discrepancy (%) = (PPCO −
EDCO)/EDCO] was assessed by a regression analysis. A
discrepancy of at least 10% between techniques after initial
calibration was considered clinically significant. For each
PPCO algorithm, a receiver operating characteristic (ROC)
curve was also constructed for testing the ability of abso-
lute percentage changes on each arterial load parameter to
predict an absolute PPCO-EDCO discrepancy of at least
10%. Areas under the ROC curves were compared by
using the method described by DeLong and colleagues
[25]. Differences between groups were compared by the
Mann-Whitney U test or an independent Student t test
for independent samples, as appropriate. A P value of less
than 0.05 was considered statistically significant. All statis-
tical analyses were two-tailed and performed using Med-
Calc for Windows version 12.3.0 (MedCalc Software bvba,
Mariakerke, Belgium).

Results
Fifty-three consecutive patients were included. Patient
characteristics are summarized in Table 2. Thirty-five
patients (66%) had sepsis as defined by standard criteria
[26]. In total, 16,964 paired measurements were performed
(median 271, IQR 180 to 415). Forty-five fluid challenges
were performed in 38 patients, and 19 of the fluid chal-
lenges (42%) induced an EDCO increase of at least 10%.
The main reason for volume administration was oliguria
(95%). Forty-seven changes in dose or introduction of
vasopressors were performed in 36 patients. Baseline CO
was 6.3 ± 2.9 L/minute, heart rate was 92 ± 21 beats per
minute, and MAP was 70 ± 12 mm Hg.
Overall, the median EDCO value was 6.3 L/minute (IQR

4.9 to 7.2 L/minute), and absolute percentage change
throughout all interventions was 4.9% (IQR 2.1% to 9.8%)
with a range of change from −46.9% to 57.7%. During the
introduction or modification in vasoactive dose, the abso-
lute percentage change for EDCO was 4.5% (IQR 1.8% to
9.7%) with a range of change from −46.9% to 37.7%. After
volume administration, EDCO increased 9.5% (IQR 3.8%
to 16.3%).
The mean CV for EDCO measurements was 2.4% ±

1.3%. The precision and LSC for EDCO were 4.7% and
6.7%, respectively. According to the combined LSC for
both techniques, we selected a 9.5% value for central
exclusion zone in the concordance analysis.

Reliability of pulse pressure analysis during arterial load
changes
A detailed description of the agreement analysis
between EDCO and all PPCO algorithms is shown in

Table 3. Bland-Altman plots for differences between
absolute values of EDCO and PPCO are presented in
Figure 1. Subgroup analyses are reported in Figures 1
and 2 of Additional file 1. The best agreement was
for the Liljestrand-Zander algorithm in all conditions
(bias ± LOA: 0.1 ± 1.7 L/minute, PE 27.2%), whereas
the Pressure root-mean-square Algorithm performed the
worst (bias ± LOA: −0.1 ± 2.5 L/minute, PE 40.8%). The
mean bias, LOA, and PE were significantly higher in
the vasopressor group (P < 0.01 versus patients receiving
fluid administration). There were no significant differ-
ences between septic and non-septic patients in bias
(−0.03 versus −0.13 L/minute, P = 0.06) and PE (37.76%
versus 34.08%, P = 0.14). However, LOA was wider in
the septic group (2.36 versus 1.87 L/minute, P < 0.01;
Table 1 of Additional file 1).
The concordance between changes of PPCO and

EDCO during fluid administration was good for all algo-
rithms according to the four-quadrant plots (90% ± 5%),
except for those based on the assessment of systolic
area (Table 3). The concordance between changes of
PPCO and EDCO during introduction or changes in
dosage of vasopressors was poor for all algorithms (51%
± 18%), except for the Liljestrand-Zander (95.5%). When
both the magnitude and the direction of changes were
analyzed, the concordance decreased to 63.5% ± 4%
with RLOA of 55.9 ± 5.2° (Table 3 and Figure 2).

Relationship between pulse pressure-derived cardiac
output and arterial load changes
Changes in arterial load parameters throughout different
interventions are described in Table 4. Changes were
more pronounced during introduction or modifications
in vasopressor dosage. The contribution of Ea and C
changes to PPCO-EDCO differences was superior to
TSVR and MAP changes in all PPA algorithms (Figures
3 to 6 of Additional file 1). The Liljestrand-Zander algo-
rithm was the less influenced by arterial load changes.
An example of the influence of arterial load variations
on discrepancies between one of the PPCO algorithms
and EDCO measurements is shown in Figure 3.
The ability of absolute percentage changes of each

arterial load parameter to detect an absolute PPCO-
EDCO discrepancy of at least 10% is detailed in Table 2
of Additional file 1. ROC curves for arterial load para-
meters on individual PPCO algorithms are shown in
Figure 7 of Additional file 1. Areas under ROC curves
for each arterial load parameter were significantly differ-
ent in all algorithms. Overall, the performance of Ea and
C changes to predict a PPCO-EDCO discrepancy of at
least 10% was superior to TSVR and MAP changes in
all algorithms. The performance of Ea changes was bet-
ter in algorithms based on assessment of systolic area,
whereas the ability of C changes to detect a significant
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PPCO-EDCO difference was superior in Windkessel,
Herd, and Pressure root-mean-square Algorithms. How-
ever, the overall performance of Ea changes was super-
ior to other arterial load parameters (Table 5). As long
as the absolute percentage Ea change was less than 7%
to 11%, the EDCO-PPCO difference was less than 10%.

Discussion
In this study, we observed that PPCO agreement with
EDCO was greatly affected by changes in arterial load,
although the contribution of each aspect of arterial load
to the observed discrepancies was significantly different.
Changes in Ea and C mainly determined PPCO-EDCO

discrepancies, whereas the impact of TSVR and MAP
changes was lower. In practice, changes in traditional
indices such as TSVR or MAP fail to identify when
EDCO and PPCO diverge. On the other hand, the per-
formance of new indices such as Ea and C is signifi-
cantly better.
To our knowledge, this is the first study to demon-

strate that (a) arterial load changes during changes in
vasopressor therapy and fluid administration signifi-
cantly affect the agreement between EDCO and PPCO;
(b) during fluid loading, arterial load changes are less
pronounced than during changes in vasopressor therapy;
(c) during fluid administration, EDCO and PPCO

Table 2 Characteristics and demographic data of study population

Age, years 60.1 ± 15.2

Gender, males/females 37/16

Weight, kg 80 (70 to 90)

Height, cm 169.6 ± 8.3

ICU mortality rate, number (%) 14 (26.4)

Vasoactive agents at inclusion time, number (dose, µg/kg per minute)

Norepinephrine 38 (0.16; 0.09 to 0.28)

Dobutamine 5 (8.33; 7.18 to 9.59)

Analgesia and sedative drugs

Fentanyl, n (dose, µg/kg per hour) 40 (1.44; 1.07 to 2)

Remifentanil, n (dose, µg/kg per minute) 8 (0.09; 0.08 to 0.12)

Morphine, n (dose, mg/hour) 2 (2 to10)

Midazolam, n (dose, mg/kg per hour) 42; 0.09 ± 0.03

Propofol, n (dose, mg/kg per minute) 6 (0.92; 0.59 to 1.54)

Ventilator settings

Tidal volume, mL/kg predicted body weight 7.9 (7.2 to 8.8)

Respiratory rate, breaths per minute 18.6 ± 1.6

Total PEEP, cm H2O 6 (6 to 8)

FiO2, % 66.5 ± 17.8

SaO2, % 99 (97 to 99)

Arterial catheter site, radial/femoral 46/7

Acute respiratory distress syndrome, n 6

Reason for admission, n

Sepsis/Septic shock

Abdominal 22

Pulmonary 10

Urological 2

Neurological 1

Cardiogenic shock 5

Hemorrhagic shock 6

Mesenteric thrombosis 1

Acute cerebrovascular disease 4

Polytrauma 3

Values are expressed as mean ± standard deviation, median (25th to 75th percentile), or absolute numbers, as appropriate. FiO2, inspired oxygen fraction; ICU,
intensive care unit; PEEP, positive end-expiratory pressure; SaO2, arterial oxygen saturation.
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algorithms not based on systolic pressure analysis are
interchangeable; (d) during vasopressor therapy, the
agreement between EDCO and PPCO is severely
affected; (e) precision of PPCO algorithms is more
affected in patients with sepsis; and (f) the LSC can
implement the power of the polar plot concordance
analysis.
We believe that from our study we can draw some

important information that helps us to understand how
EDCO and several PPCO algorithms perform when used
at the same time. We have observed that changes in the
arterial load (mainly, effective arterial elastance and net
arterial compliance) were major determinants in discre-
pancies between EDCO and PPCO. This is the first study
to demonstrate that, during a fluid challenge, EDCO and

PPCO perform similarly as long as the arterial load does
not change. This finding brings strength to the current
practice of using less invasive devices to monitor changes
in CO during fluid administration [1,27]. However, when
the magnitude of changes was examined, the concordance
between PPCO and EDCO decreased. In practice,
although trending ability seems similar, one should note
that different techniques might measure different magni-
tudes of changes in CO.
After changes in vasopressors therapy, the agreement

between EDCO and PPCO was significantly affected. This
finding can generate important research hypotheses
regarding the need of external calibrations for less invasive
devices. Our study suggests that arterial load changes may
provide information about when to recalibrate a device.

Table 3 Agreement and concordance analyses between esophageal Doppler and pulse pressure-derived algorithms for
estimation of cardiac output and tracking EDCO changes

PPCO algorithm Mean CO, L/
minute

Bias ± LOA, L/
minute

PE,
percentage

Four-quadrant plot Polar plot

Concordance,
percentage

Concordance,
percentage

Mean θ ± RLOA,
degrees

Windkessel 6.40 −0.11 ± 2.50 40.2 76.8 63.8 12.5 ± 52.7

Fluid administration 6.30 −0.01 ± 1.67 27.0 93.4 74.9 6.5 ± 47.5

Vasopressor change 6.59 −0.29 ± 3.15 49.8 51.8 44.7 22.9 ± 55.1

Windkessel with RC
decay

6.41 −0.12 ± 2.42 38.9 77.2 64.9 12.0 ± 52.5

Fluid administration 6.31 −0.02 ± 1.68 27.2 93.6 76.8 6.5 ± 46.7

Vasopressor change 6.60 −0.31 ± 2.99 47.3 51.0 43.4 21.9 ± 57.5

Liljestrand-Zander 6.16 0.13 ± 1.66 27.2 92.3 70.5 −5.6 ± 48.8

Fluid administration 6.07 0.22 ± 1.55 25.5 91.4 64.0 −3.9 ± 53.4

Vasopressor change 6.32 −0.03 ± 1.70 27.5 94.1 84.4 −9.2 ± 35.9

Herd 6.45 −0.16 ± 2.47 39.6 76.1 59.5 13.1 ± 55.4

Fluid administration 6.35 −0.06 ± 1.89 30.6 91.7 64.5 9.9 ± 49.1

Vasopressor change 6.63 −0.34 ± 2.91 46.0 48.2 39.2 19.4 ± 64.4

Pressure root-mean-
square

6.42 −0.13 ± 2.54 40.8 75.6 63.9 13.6 ± 52.6

Fluid administration 6.31 −0.02 ± 1.69 27.4 92.1 77.7 7.2 ± 44.8

Vasopressor change 6.63 −0.34 ± 3.21 50.7 45.7 40.1 24.5 ± 57.9

Systolic area 6.37 −0.08 ± 2.29 36.9 66.6 59.9 6.1 ± 62.7

Fluid administration 6.19 0.10 ± 1.49 24.4 88.5 75.1 −3.9 ± 50.7

Vasopressor change 6.69 −0.39 ± 2.88 45.3 36.6 35.3 22.2 ± 67.1

Systolic area with
correction

6.34 −0.05 ± 2.27 36.7 66.3 61.5 4.9 ± 62.5

Fluid administration 6.17 0.12 ± 1.55 25.3 86.1 74.7 −3.7 ± 51.2

Vasopressor change 6.66 −0.37 ± 2.78 43.8 38.4 35.8 19.2 ± 69.1

Corrected impedance 6.27 0.02 ± 2.10 34.1 65.4 60.2 −1.8 ± 60.3

Fluid administration 6.10 0.19 ± 1.50 24.7 80.3 70.4 −8.5 ± 50.9

Vasopressor change 6.60 −0.31 ± 2.48 39.2 44.9 41.9 10.2 ± 68.3

Concordance refers to the percentage of agreement between changes between esophageal Doppler cardiac output (EDCO) and pulse-pressure derived cardiac
output (PPCO) measurements (exclusion zone = 9.5%, obtained from the combined least significant change for EDCO and PPCO). CO, cardiac output; LOA, limits
of agreement; mean θ, mean angle of all radial vectors from the polar axis; PE, percentage of error = 2 standard deviations/mean of pulse pressure-derived and
esophageal Doppler cardiac output measurements; RLOA, radial limits of agreement.
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Figure 1 Bland-Altman plots for the absolute values of pulse pressure-derived cardiac output (PPCO) versus esophageal Doppler cardiac
output (EDCO). Agreement between PPCO and EDCO measurements according to Bland-Altman analysis is shown. Only one marker for subject is
represented in the graph. The marker size is relative to the number of observations per subject. Solid lines represent bias (mean difference between
EDCO and PPCO measurements). Dashed lines are the upper and lower limits of agreement: bias ± 1.96 standard deviation (SD).

Figure 2 Trending ability of pulse pressure-derived cardiac output (PPCO) versus esophageal Doppler cardiac output (EDCO) based on
polar plot analysis. Concordance analysis based on polar plots for evaluating trending ability of PPCO versus EDCO (agreement in direction and
magnitude of change). Exclusion zone was 9.5% (central white circle). The magnitude of polar vector (the distance from the center of polar plot)
represents the mean change in cardiac output. The angle of polar vector with the horizontal axis (θ) is the agreement between both methods.
Good trending capability was assumed when most of the data lie within ± 30° radial limits of agreement. Conc, concordance rate.
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This could represent an important finding that needs to be
verified with protocols aiming at recalibrating when a
change in arterial load has been observed.
Interestingly, our results suggest that the precision of

PPA is more affected in patients with sepsis. This find-
ing is consistent with recently demonstrated central-to-
peripheral vascular tone decoupling in experimental
endotoxic shock [28]. Decoupling of aortic and radial
arterial pressure may be responsible for degrading the
reliability of PPA in estimating CO when assessed at
peripheral sites in this clinical condition.
In our study, we arbitrarily used the EDCO as our refer-

ence technique and we performed an initial calibration of
PPCO based on EDCO values. The poor agreement after
significant changes in arterial load could be explained as
follows: (a) PPCO is significantly affected by these changes
and is not reliable, (b) EDCO is significantly affected by
these changes and is not reliable, or (c) PPCO and EDCO
are both partially affected by these changes. We believe
that the third conclusion represents the most likely expla-
nation, but the lack of an additional external calibration
prevents us from speculating any further about which
technique would be affected more significantly. We argue
that our findings support the recommendation of using an
external calibration when significant changes in arterial
load are suspected [29]. It would be important to test this
hypothesis by performing a similar experiment while using
an external calibration (that is, pulmonary thermodilution
or transpulmonary dilution techniques) when assessing
the agreement of different CO monitors after changes in
vasopressor therapy.
Another important finding of this study is that the

LSC calculation as suggested by Cecconi and colleagues
[22,30] can be used to implement the concordance ana-
lysis when looking at changes in CO and agreement
between different techniques. We suggest that this

approach be used in further studies comparing different
CO monitors.
There are several limitations to our study which need

to be addressed. First, our comparison did not include
any commercial PPCO algorithms. Nevertheless,
although commercially available algorithms have signifi-
cant differences, they are based on similar assumptions
and thus, in theory, are susceptible to similar shortcom-
ings [3,5]. Second, we used the EDCO as our reference
technique. This is a well-validated technique, although
we believe that an external calibration would clear some
of the doubts from our article. However, during rapid
changes (such as a fluid challenge), there is no external
calibration that would allow changes to be recorded.
Last, we used a processed arterial pressure signal from
the bedside patient monitor and this could have signifi-
cantly affected the quality of the arterial waveform and
the reliability of PPCO measurements. Moreover, most
of our PPCOs were connected to a radial arterial line.
Although this is the most common practice, we cannot
exclude the possibility that the performance may have
been different at other sites.

Conclusions
Changes in arterial load during changes in vasopressor
dosage or fluid administration profoundly affect the
agreement between EDCO and PPCO. Arterial load
changes are less pronounced during fluid loading and
this may explain the better agreement between EDCO
and PPCO after a fluid challenge. The impact in EDCO-
PPCO discrepancy is not equal for all arterial load para-
meters, the Ea and the C being the most influential vari-
ables in all studied algorithms. As long as the absolute
Ea change is less than 7% to 11%, the EDCO and PPCO
seem interchangeable. The LSC can be used to identify
the best cutoff in a concordance analysis.

Table 4 Changes on arterial load parameters and mean arterial pressure throughout different interventions

Absolute percentage change Range of percentage change

Mean arterial pressure

Fluid administration 4.29 (1.7 to 8.3) −18.3 to 44.8

Vasopressor change 11.6 (3.3 to 16.5)a −30.9 to 61.6

Total systemic vascular resistance

Fluid administration 5.5 (2.5 to 9.9) −31.1 to 59.7

Vasopressor change 12.1 (5.2 to 24.5)a −38.1 to 132.1

Net arterial compliance

Fluid administration 6.1 (2.7 to 11.3) −46.5 to 57.6

Vasopressor change 11.4 (5.1 to 21.4)a −47.4 to 102.2

Effective arterial elastance

Fluid administration 4.9 (2.4 to 9.4) −34.4 to 79.6

Vasopressor change 10.3 (4.1 to 20.8)a −43.7 to 86.2

Data are expressed as median (25th to 75th interquartile range) or as range. aP <0.0001 versus fluid administration.
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Figure 3 Example of influence of mean arterial pressure, total systemic vascular resistance, net arterial compliance, and effective
arterial elastance changes on discrepancies between pulse pressure-derived cardiac output (PPCO) and esophageal Doppler cardiac
output (EDCO). PPCO-EDCO discrepancy (expressed as a percentage) is calculated by the formula (PPCO − EDCO)/EDCO. C, net arterial
compliance; Ea, effective arterial elastance; MAP, mean arterial pressure; TSVR, total systemic vascular resistance.

Table 5 Pooled predictive performance of absolute percentage changes in arterial load parameters on all PPCO
algorithms to detect an absolute PPCO-EDCO discrepancy of at least 10%

Pooled AUC
(95% CI)

Pooled sensitivity
(95% CI)

Pooled specificity
(95% CI)

Pooled optimal cutoff Pooled
Youden index

ΔMAP 0.77 (0.75-0.77) 65.2% (63.9%-66.4%) 76.8% (76.0%-77.6%) 7.4% ± 1.1% 0.42 ± 0.06

ΔTSVR 0.79 (0.78-0.79) 63.1% (61.9%-64.1%) 82.1% (81.3%-82.8%) 10.6% ± 1.3% 0.45 ± 0.14

ΔC 0.83 (0.83-0.84) 72.6% (71.4%-73.7%) 82.5% (81.8%-83.2%) 10.3% ± 0.9% 0.55 ± 0.12

ΔEa 0.86 (0.85-0.86) 75.1% (73.9%-76.2%) 83.3% (82.6%-83.9%) 8.9% ± 0.6% 0.58 ± 0.14

AUC, area under the receiver operating characteristic curve; C, net arterial compliance; CI, confidence interval; Ea, effective arterial elastance; EDCO, esophageal
Doppler cardiac output; MAP, mean arterial pressure; PPCO, pulse pressure-derived cardiac output; TSVR, total systemic vascular resistance.
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Key messages
• The agreement between all PPCO algorithms and
EDCO was profoundly affected by arterial load
changes induced by changes in vasopressor therapy
and fluid administration.
• The precision of PPCO algorithms was more
affected in patients with sepsis.
• The contribution of net arterial compliance and
effective arterial elastance to the EDCO-PPCO discre-
pancies was superior to TSVR and MAP changes in all
PPCO algorithms.
• An absolute Ea change of more than 7% to 11%
was associated with a PPCO-EDCO discrepancy of
at least 10%.

Additional material

Additional file 1: Additional Tables, Figures and Appendix. Subgroup
analyses, impact of individual arterial load parameters and PPA
algorithms description.
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